1
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030343. [PMID: 35327715 PMCID: PMC8947358 DOI: 10.3390/children9030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Salivary biomolecules are considered important modulators of the oral microflora, with a potential subsequent impact on dental health. The present study aimed to investigate the relationship between salivary enzymatic activity and carious experience in children. The carious experience of a sample of 22 school children was evaluated by calculating dmf/DMF indices, following WHO recommendations. Unstimulated whole saliva was collected, and salivary alpha-amylase levels, total protease activity, and matrix metalloproteinase levels (MMP-8 and MMP-9) were measured. The data were analyzed using parametric and nonparametric tests. Our findings revealed no significant relationship between the investigated salivary parameters and the carious experience in permanent teeth (DMFT/DMFS scores). Carious indices scores for primary teeth (dmft and dmfs) were positively associated with MMP-8 levels (r = 0.62, p = 0.004 and rs = 0.61, p = 0.006, respectively) and MMP-9 levels (r = 0.45, p = 0.05 and rs = 0.48, p = 0.039, respectively) and negatively associated with alpha-amylase levels (rs = −0.54, p = 0.017 and rs = −0.59, p = 0.006, respectively). Although with a marginal significance, PEK−054 levels positively correlated with dental caries, while for PFU−089, a negative correlation was observed. These results suggest that salivary alpha-amylase and MMP-8 and MMP-9 levels may be considered potential indicators of carious experience in children. Further studies with a prospective design are needed in order to elucidate the role of these biomolecules in caries development.
Collapse
|
3
|
Culp DJ, Robinson B, Cash MN. Murine Salivary Amylase Protects Against Streptococcus mutans-Induced Caries. Front Physiol 2021; 12:699104. [PMID: 34276419 PMCID: PMC8283412 DOI: 10.3389/fphys.2021.699104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.
Collapse
Affiliation(s)
- David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
4
|
Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S, Ray RR. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front Cell Infect Microbiol 2021; 11:660048. [PMID: 33987107 PMCID: PMC8112260 DOI: 10.3389/fcimb.2021.660048] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ritwik Banerjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sushil Kumar Pathak
- Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
5
|
Mukai Y, Torii M, Urushibara Y, Kawai T, Takahashi Y, Maeda N, Ohkubo C, Ohshima T. Analysis of plaque microbiota and salivary proteins adhering to dental materials. J Oral Biosci 2020; 62:182-188. [PMID: 32151606 DOI: 10.1016/j.job.2020.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 01/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Plaque causes oral diseases and aspiration-pneumonia in the elderly. It is not known whether pellicle-like attached salivary proteins and microbiota on dental materials are identical to those on teeth. The purpose of this study was to determine the properties of salivary proteins and microbiota that attach to dental materials. METHODS Eight subjects wore removable oral splints with pieces of pure-titanium, cobalt-chromium alloy, silver-palladium-copper-gold-alloy, denture-base-resin, and hydroxyapatite for 24 h. The bacteria that adhered to each material were analyzed using 16S rRNA sequencing simultaneously. Each material sample was then immersed in pooled saliva, and the attached proteins were collected. Salivary proteins were analyzed using MALDI-TOF/MS, and high molecular weight proteins were identified using peptide mass fingerprinting. RESULTS Among the dental materials, the α- and β-diversity of adherent flora were similar. The bacterial species that adhered easily to materials were Streptococcus sp. oral taxon 058, Neisseria mucosa, Gemella haemolysans, and Rothia dentocariosa. Regardless of material, the peaks or spots of attached salivary proteins had similar patterns, containing functioning proteins such as anchoring receptors for early colonizers. CONCLUSIONS There were no significant differences in microbiota and protein adherence in hydroxyapatite compared to the dental materials. Therefore, similar microbiota was determined to have formed on the similar pellicle-like proteins. In our study, the characteristics of plaque adhesion on both hydroxyapatite and dental materials were clarified. Based on this study, the creation of new methods of inhibiting plaque adhesion to prevent aspiration-pneumonia and oral infections can be undertaken.
Collapse
Affiliation(s)
- Yoko Mukai
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Mana Torii
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Yu Urushibara
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Tomomi Kawai
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Yasuharu Takahashi
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Nobuko Maeda
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Tomoko Ohshima
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
6
|
Spengler C, Thewes N, Nolle F, Faidt T, Umanskaya N, Hannig M, Bischoff M, Jacobs K. Enhanced adhesion ofStreptococcus mutansto hydroxyapatite after exposure to saliva. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Nicolas Thewes
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Friederike Nolle
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Natalia Umanskaya
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene; Saarland University; Homburg Saarland Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| |
Collapse
|
7
|
Sullan RMA, Li JK, Crowley PJ, Brady LJ, Dufrêne YF. Binding forces of Streptococcus mutans P1 adhesin. ACS NANO 2015; 9:1448-60. [PMID: 25671413 PMCID: PMC4369792 DOI: 10.1021/nn5058886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (∼50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (∼500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans-SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.
Collapse
Affiliation(s)
- Ruby May A. Sullan
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| | - James K. Li
- Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H8, Canada
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| |
Collapse
|
8
|
Heim KP, Sullan RMA, Crowley PJ, El-Kirat-Chatel S, Beaussart A, Tang W, Besingi R, Dufrene YF, Brady LJ. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem 2015; 290:9002-19. [PMID: 25666624 DOI: 10.1074/jbc.m114.626663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 12/29/2022] Open
Abstract
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.
Collapse
Affiliation(s)
- Kyle P Heim
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Ruby May A Sullan
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Paula J Crowley
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Wenxing Tang
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Richard Besingi
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| | - Yves F Dufrene
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - L Jeannine Brady
- From the Department of Oral Biology, University of Florida, Gainesville, Florida 32610 and
| |
Collapse
|
9
|
Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl Environ Microbiol 2012; 79:416-23. [PMID: 23144140 DOI: 10.1128/aem.02581-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation.
Collapse
|
10
|
Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S, Ooshima T. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 2011; 50:148-54. [DOI: 10.1016/j.micpath.2011.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
11
|
Duailibe SADC, Gonçalves AG, Ahid FJM. Effect of a propolis extract on Streptococcus mutans counts in vivo. J Appl Oral Sci 2009; 15:420-3. [PMID: 19089172 PMCID: PMC4327263 DOI: 10.1590/s1678-77572007000500009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 08/20/2007] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the antibacterial action of an extract of geopropolis produced by the bee Melipona compressipes fasciculata on the concentration of Streptococcus mutans colonizing the oral cavity of young patients. Forty-one young volunteers performed 21 mouth rinses divided into three rinses per day for 7 days, with no other changes in their oral hygiene and dietary habits. Saliva was collected at three time points: before the first rinse, and one hour and 7 days after the first rinse. A reduction in the concentration of S. mutans was observed in 49% of all samples collected after use of the extract, 26% showed no alterations, and an increasing in S. mutans was observed in 25%. Was performed with the Statistica for Windows 5.9 program using the Kruskal-Wallis test for analysis of variance and the Mann-Whitney U test, with the level of significance set at 5%. The propolis extract possesses in vivo antimicrobial activity against S. mutans present in the oral cavity and might be used as an alternative measure to prevent dental caries.
Collapse
|
12
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
13
|
Gregory RL. Modified immunogenicity of a mucosally administered antigen. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:540-4. [PMID: 11329454 PMCID: PMC96097 DOI: 10.1128/cdli.8.3.540-544.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus mutans is present in the saliva of most individuals and is modified by salivary components bound to the cells. These saliva-bound S. mutans are swallowed, exposed to high levels of acidity in the stomach, and presented to the common mucosal immune system. Much effort has been directed to identifying the specific S. mutans antigens that the mucosal immune responses are directed against. However, little is known about the host-altered antigenic determinants that the mucosal immune system recognizes. The immunogenicity of gastrically intubated untreated S. mutans cells, cells coated with whole human saliva, cells treated with HCl (pH 2.0), and saliva-coated and acid-treated cells in mice was investigated. Saliva and serum samples were assayed by enzyme linked immunosorbent assay for immunoglobulin A (IgA) and IgG antibodies, respectively, against the untreated or treated S. mutans cells. In general, the levels of salivary IgA and serum IgG antibodies to the antigen against which the mice were immunized were significantly higher (P < or = 0.05). In addition, human saliva and serum samples from 12 subjects were assayed for naturally occurring antibody against the untreated or treated S. mutans cells. In every case, significantly higher reactivity was directed against the saliva-coated and acid-treated cells followed by the saliva-coated S. mutans. These results provide evidence for the altered immunogenicity of swallowed S. mutans in humans by coating native S. mutans antigens with salivary components and/or denaturing surface S. mutans antigens in the acidic environment of the stomach, which would lead to an immune response to modified S. mutans determinants and not to native S. mutans antigens.
Collapse
Affiliation(s)
- R L Gregory
- Department of Oral Biology, Indiana University, Indianapolis, Indiana 46202-5186, USA.
| |
Collapse
|
14
|
Fontana M, Buller TL, Dunipace AJ, Stookey GK, Gregory RL. An In vitro microbial-caries model used to study the efficacy of antibodies to Streptococcus mutans surface proteins in preventing dental caries. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:49-54. [PMID: 10618276 PMCID: PMC95821 DOI: 10.1128/cdli.7.1.49-54.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first step for a pathogenic bacterium to initiate infection is via attachment (i.e., through surface determinants) to a suitable receptor. An in vitro microbial artificial-mouth model was used to test the efficacy of polyclonal antibodies to Streptococcus mutans cell surface proteins (CsAb) and a cell surface 59-kDa protein (59Ab) in preventing S. mutans colonization and carious lesion formation. In study 1, groups of 12 human teeth specimens were inoculated with S. mutans, which were incubated with different concentrations of CsAb (A1 [positive control], sterile saline, no antibody; A2, 0.007 mg of antibody protein/ml; and A3, 0.7 mg of antibody protein/ml) for 1 h at 37 degrees C. The negative control group (B1) was not infected and was incubated with Trypticase soy broth (TSB) without dextrose supplemented with 5% sucrose (TSBS). In study 2, the same study design was used except that 59Ab was used instead of CsAb, normal rabbit serum was used in the positive control group (A1), and TSB supplemented with 1% glucose was used as the nutrient to control for sucrose-dependent colonization. All groups were exposed for 4 days to circulating cycles of TSBS and TSB (study 1 and study 2, respectively; 30 min each, three times per day) and a mineral washing solution (21 h per day). Prior to each nutrient cycle, 1 ml of the appropriate CsAb or 59Ab solution was administered to each group and allowed to mix for 30 min before cycling was resumed. Data obtained by confocal laser scanning microscopy demonstrated the presence of a significantly smaller (P < 0.05) lesion area and a smaller total lesion fluorescence in group A3 than in group A1 for both studies. In study 1, group A2 had significantly smaller values than A1 for lesion depth and area. There were no significant differences between groups A2 and A3 for lesion area or between groups A1 and A2 for total lesion fluorescence. In study 2, there were no significant differences among groups A1 and A2 for lesion depth or between groups A2 and A3 for all of the parameters studied. In both studies, there were no significant differences between S. mutans plaque CFU numbers among any of the groups. These studies demonstrated the efficacy of CsAb and 59Ab in reducing primary caries development in this model, although the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- M Fontana
- Oral Health Research Institute, School of Dentistry and School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
15
|
Fontana M, Dunipace AJ, Stookey GK, Gregory RL. Intranasal immunization against dental caries with a Streptococcus mutans-enriched fimbrial preparation. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:405-9. [PMID: 10225844 PMCID: PMC103731 DOI: 10.1128/cdli.6.3.405-409.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 01/29/1999] [Indexed: 11/20/2022]
Abstract
Streptococcus mutans has been identified as the major etiological agent of human dental caries. The first step in the initiation of infection by this pathogenic bacterium is its attachment (i.e., through bacterial surface proteins such as glucosyltransferases, P1, glucan-binding proteins, and fimbriae) to a suitable receptor. It is hypothesized that a mucosal vaccine against a combination of S. mutans surface proteins would protect against dental caries by inducing specific salivary immunoglobulin A (IgA) antibodies which may reduce bacterial pathogenesis and adhesion to the tooth surface by affecting several adhesins simultaneously. Conventional Sprague-Dawley rats, infected with S. mutans at 18 to 20 days of age, were intranasally immunized with a mixture of S. mutans surface proteins, enriched for fimbriae and conjugated with cholera toxin B subunit (CTB) plus free cholera toxin (CT) at 13, 15, 22, 29, and 36 days of age (group A). Control rats were either not immunized (group B) or immunized with adjuvant alone (CTB and CT [group C]). At the termination of the study (when rats were 46 days of age), immunized animals (group A) had significantly (P < 0.05) higher salivary IgA and serum IgG antibody responses to the mixture of surface proteins and to whole bacterial cells than did the other two groups (B and C). No significant differences were found in the average numbers of recovered S. mutans cells among groups. However, statistically fewer smooth-surface enamel lesions (buccal and lingual) were detected in the immunized group than in the two other groups. Therefore, a mixture of S. mutans surface proteins, enriched with fimbria components, appears to be a promising immunogen candidate for a mucosal vaccine against dental caries.
Collapse
Affiliation(s)
- M Fontana
- Oral Health Research Institute, Schools of Dentistry and of Medicine, Indiana University, Indianapolis, Indiana 46202-5186, USA.
| | | | | | | |
Collapse
|