1
|
Srisaisap M, Suwankhajit T, Boonserm P. A fusion protein designed for soluble expression, rapid purification, and enhanced stability of parasporin-2 with potential therapeutic applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00851. [PMID: 39219730 PMCID: PMC11364052 DOI: 10.1016/j.btre.2024.e00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2's thermal stability also makes it appropriate for bioproduction and therapeutic applications.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Thanya Suwankhajit
- Undergraduate Program in Biological Sciences, Mahidol University International College, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Srisaisap M, Boonserm P. Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein. Sci Rep 2024; 14:15544. [PMID: 38969695 PMCID: PMC11226667 DOI: 10.1038/s41598-024-66650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024] Open
Abstract
Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom, 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
3
|
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients. Microbiol Spectr 2024; 12:e0024424. [PMID: 38747631 PMCID: PMC11237469 DOI: 10.1128/spectrum.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.
Collapse
Affiliation(s)
- William Medeiros
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Kelly Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Tiago Leão
- Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Miguel de Carvalho
- Center for Computing in Engineering and Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Valeria Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
4
|
Savelyeva E, Avdeenko A. The use of antigens derived from Bacillus thuringiensis bacteria for further differentiation. Heliyon 2024; 10:e29744. [PMID: 38681647 PMCID: PMC11053190 DOI: 10.1016/j.heliyon.2024.e29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study is devoted to studying Bacillus thuringiensis antigens and their insecticide activity as critical features in bacterial differentiation. Indeed, 190 samples were examined for flagellar antigenicity as well as the insecticidal activity exhibited. From a serological perspective, 122 isolates (64.2 %) were attributed to 8 H-serogroups, including 3 non-typeable and 65 unverified. The dominant serotype was H3abc (82 % frequency); H6 was less frequent (8.5 %). The other 6 serotypes accounted for a low frequency of occurrence (up to 1.5 %). Of the 190 isolates tested, 125 (65.8 %) formed bipyramidal, and 63 (33.2 %) represented spherical inclusions. All H3abc isolates contained bipyramidal inclusions. The same applied to H8ab and H7 isolates. Insecticide activity was noted in 70.1 % of the population. In general, 128 samples were toxic to both species (Bombyx mori, Aedes sp.). Another 3 samples were toxic only to B. mori, and 2 for Aedes sp. Among the samples exhibiting toxicity to both species, 97.6 % belonged to bipyramidal paraspore inclusions (H3abc). All H7 samples were toxic to two insect species. Monotoxic B. thuringiensis against Aedes sp. were found only among organisms producing spherical parasporal inclusions in the cell. Examples of such microorganisms include an isolate of the H4ab/43 serotype.
Collapse
Affiliation(s)
- Ekaterina Savelyeva
- Department of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Aleksei Avdeenko
- Department of Agriculture and Storage Technologies for Crop Products, Don State Agrarian University, Persianovsky, Russian Federation
| |
Collapse
|
5
|
Girija D, Deepa K, Chubicka T, Shidhi PR, Hussan S, Raghavamenon AC, Babu TD. Structural and functional validation of a cloned parasporin from Bacillus thuringiensis isolate KAU 41 native to Western Ghats of India. Proteins 2023; 91:1487-1495. [PMID: 37401522 DOI: 10.1002/prot.26544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/20/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Parasporins of Bacillus thuringiensis (Bt) exhibit specific toxicity to cancer cells. PCR based mining has identified apoptosis inducing parasporin in KAU41 Bt isolate from the Western Ghats of India. The study aimed to clone and overexpress the parasporin of native KAU41 Bt isolate for determining structural and functional characteristics of the protein. Parasporin gene was cloned in pGEM-T, sequenced, sub-cloned in pET30+ and overexpressed in Escherichia coli. The expressed protein was characterized by SDS-PAGE and in silico methods. Cytotoxicity of cleaved peptide was assessed by MTT assay. SDS-PAGE displayed a 31 kDa protein (rp-KAU41) overexpressed. Upon proteinase K digestion, the protein was cleaved into 29 kDa peptide which was found to be cytotoxic to HeLa cells. The protein has a deduced sequence of 267 amino acids with β-strands folding pattern of crystal protein. Even though rp-KAU41 shared a 99.15% identity to chain-A of non-toxic crystal protein, it only showed a less similarity to the existing parasporins like PS4 (38%) and PS5 (24%) in UPGMA analysis, emphasizing the novelty of rp-KAU41. The protein is predicted to have more similarity to the pore forming toxins of Aerolysin superfamily and an additional loop in rp-KAU41 may be contributing towards its cytotoxicity. The molecular docking with caspase 3 resulted in higher Z dock and Z rank score substantiating its role in the activation of intrinsic pathway of apoptosis. The recombinant parasporin protein, rp-KAU41 is presumed to belong to the Aerolysin superfamily. An interaction with caspase 3 substantiates its role in activating the intrinsic pathway of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Devaki Girija
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| | - Kizhakkeettil Deepa
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala, India
| | - Thomas Chubicka
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | - P R Shidhi
- Department of Computational Biology and Bioinformatics, North Campus-Karyavattam, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Safna Hussan
- Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | | | | |
Collapse
|
6
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
7
|
Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis. Cells 2022; 11:cells11233739. [PMID: 36496998 PMCID: PMC9737320 DOI: 10.3390/cells11233739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.
Collapse
|
8
|
Site-Directed Mutants of Parasporin PS2Aa1 with Enhanced Cytotoxic Activity in Colorectal Cancer Cell Lines. Molecules 2022; 27:molecules27217262. [DOI: 10.3390/molecules27217262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Parasporin 2 has cytotoxic effects against numerous colon cancer cell lines, making it a viable alternative to traditional treatments. However, its mechanism of action and receptors remain unknown. In this study, site-directed mutagenesis was used to obtain PS2Aa1 mutants with variation in domain I at positions 256 and 257. Variants 015, 002, 3-3, 3-35, and 3-45 presented G256A, G256E, G257A, G257V, and G257E substitutions, respectively. Cytotoxicity tests were performed for the cell viability of cell lines SW480, SW620, and CaCo-2. Mutants 3-3, 3-35, and 3-45 efficiently killed the cell lines. It was found that the activated forms of caspase-3 and PARP were in higher abundance as well as increased production of γH2AX when 3-35 was used to treat CaCo-2 and SW480. To assess possible membrane-binding receptors involved in the interaction, an APN receptor blocking assay showed reduced activity of some parasporins. Hence, we performed molecular docking and molecular dynamics simulations to analyze the stability of possible interactions and identify the residues that could be involved in the protein–protein interaction of PS2Aa1 and APN. We found that residues 256 and 257 facilitate the interaction. Parasporin 3-35 is promising because it has higher cytotoxicity than PS2Aa1.
Collapse
|
9
|
Cruz J, Suárez-Barrera M, Rondón-Villarreal P, Olarte-Diaz A, Guzmán F, Visser L, Rueda-Forero N. Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colorectal cancer cells. Biosci Rep 2021; 41:BSR20211964. [PMID: 34796903 PMCID: PMC8661510 DOI: 10.1042/bsr20211964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and β-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.
Collapse
Affiliation(s)
- Jenniffer Cruz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Miguel Orlando Suárez-Barrera
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
- Corporación Académica Ciencias Básicas Biomédicas Universidad de Antioquia, Medellín, Colombia
| | - Paola Rondón-Villarreal
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Andrés Olarte-Diaz
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Fanny Guzmán
- NBC Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Valparaíso, Chile
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University medical Center Groningen, Groningen, Netherlands
| | - Nohora Juliana Rueda-Forero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| |
Collapse
|
10
|
Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules 2021; 26:molecules26247476. [PMID: 34946558 PMCID: PMC8706377 DOI: 10.3390/molecules26247476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a bacterium capable of producing Cry toxins, which are recognized for their bio-controlling actions against insects. However, a few Bt strains encode proteins lacking insecticidal activity but showing cytotoxic activity against different cancer cell lines and low or no cytotoxicity toward normal human cells. A subset of Cry anticancer proteins, termed parasporins (PSs), has recently arisen as a potential alternative for cancer treatment. However, the molecular receptors that allow the binding of PSs to cells and their cytotoxic mechanisms of action have not been well established. Nonetheless, their selective cytotoxic activity against different types of cancer cell lines places PSs as a promising alternative treatment modality. In this review, we provide an overview of the classification, structures, mechanisms of action, and insights obtained from genetic modification approaches for PS proteins.
Collapse
|
11
|
Bacillus thuringiensis: From biopesticides to anticancer agents. Biochimie 2021; 192:83-90. [PMID: 34653542 DOI: 10.1016/j.biochi.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023]
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium that produces several proteins that are toxic to different invertebrates such as insects, nematodes, mites, and also some protozoans. Among these, Cry and Cyt proteins are most explored as biopesticides for their action against agricultural pests and vectors of human diseases. In 2000, a group of researchers from Japan isolated parasporal inclusion proteins from B. thuringiensis, and reported their cytotoxic action against human leukemia. Later, other proteins with similar antitumor properties were also isolated from this bacterium and these cytotoxic proteins with specific activity against human cancer cells were named parasporins. At present, nineteen different parasporins are registered and classified in six families. These parasporins have been described to have specific in vitro antitumor activity against several cancer cell lines. The antitumor activity makes parasporins possible candidates as anticancer agents. Various research groups around the world are involved in isolating and characterizing in vitro antitumor activity of these proteins and many articles reporting such activities in detail have been published. However, there are virtually no data regarding the antitumor activity of parasporins in vivo. This review summarizes the properties of these potentially useful antitumor agents of natural origin, focusing on their in vivo activity thus also highlighting the importance of testing these proteins in animal models for a possible application in clinical oncology.
Collapse
|
12
|
Branching out the aerolysin, ETX/MTX-2 and Toxin_10 family of pore forming proteins. J Invertebr Pathol 2021; 186:107570. [PMID: 33775676 DOI: 10.1016/j.jip.2021.107570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Abstract
Organisms have evolved mechanisms in which cellular membranes can both be targeted and punctured thereby killing the targeted cell. One such mechanism involves the deployment of pore forming proteins (PFPs) which function by oligomerizing on cell membranes and inserting a physical pore spanning the membrane. This pore can lead to cell death by either causing osmotic flux or allowing the delivery of a secondary toxin. Pore forming proteins can be broadly classified into different families depending on the structure of the final pore; either α-PFPs using channels made from α -helices or β-PFPs using channels made from β-barrels. There are many different β-PFPs and an emerging superfamily is the aerolysin-ETX/MTX-2 superfamily. A comparison between the members of this superfamily reveals the pore forming domain is a common module yet the receptor binding region is highly variable. These structural and architectural variations lead to differences in the target recognition and determine the site of activity. Closer investigation of the topology of the family also suggests that the Toxin_10 family of PFPs could be considered as part of the aerolysin-ETX/MTX-2 superfamily. Comparatively, far less is known about how Toxin_10 proteins assemble into the final pore structure than aerolysin-ETX/MTX-2 proteins. This review aims to collate the pore forming protein members and bridge the structural similarities between the aerolysin-ETX/MTX-2 superfamily and the insecticidal Toxin_10 subfamily.
Collapse
|
13
|
The Cytocidal Spectrum of Bacillus thuringiensis Toxins: From Insects to Human Cancer Cells. Toxins (Basel) 2020; 12:toxins12050301. [PMID: 32384723 PMCID: PMC7291302 DOI: 10.3390/toxins12050301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Collapse
|
14
|
Mendoza-Almanza G, Rocha-Zavaleta L, Aguilar-Zacarías C, Ayala-Luján J, Olmos J. Cry1A Proteins are Cytotoxic to HeLa but not to SiHa Cervical Cancer Cells. Curr Pharm Biotechnol 2020; 20:1018-1027. [PMID: 31376817 DOI: 10.2174/1389201020666190802114739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bacillus thuringiensis toxins are effective against multiple biological targets such as insects, nematodes, mites, protozoa, and importantly, human cancer cells. One of the main mechanisms by which Cry toxins to trigger cell death is the specific recognition of cadherin-like membrane cell receptors. OBJECTIVE This work aimed to assess the cytotoxicity of the Cry1Ab and Cry1Ac toxins from Bacillus thuringiensis in HeLa, cervical cancer cell line, as well as their antitumor activity in mouse models. METHODS We analyzed several biological targets of Cry1Ab and Cry1Ac including erythrocytes, insect larvae, as well as cancer and non-cancer cell lines. The viability of HeLa, SiHa, MCF7 and HaCat cells was assessed by MTT 24 h after the administration of Cry toxins. We also studied apoptosis as a possible cytotoxicity mechanism in HeLa. The capacity of Cry toxins to eliminate tumors in xenograft mouse models was also analyzed. RESULTS Both toxins, Cry1Ab and Cry1Ac, showed specific cytotoxic activity in HeLa (HPV18+) cervical cancer cell line, with a Cry1Ab LC50 of 2.5 µg/ml, and of 0.5 µg/ml for Cry1Ac. Apoptosis was differentially induced in HeLa cells using the same concentration of Cry1Ab and Cry1Ac toxins. Cry1Ac eliminated 50% of the tumors at 10 µg/ml, and eliminate 100% of the tumors at 30 and 50 µg/ml. CONCLUSION Bacillus thuringiensis Cry1A toxins show dual cytotoxic activity, in insects as well as in HeLa cancer cell line.
Collapse
Affiliation(s)
- Gretel Mendoza-Almanza
- Catedra CONACYT, Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Cecilia Aguilar-Zacarías
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Jorge Ayala-Luján
- Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Jorge Olmos
- Departamento de Biotecnologia Marina, Centro de Investigacion Científica y Educacion Superior de Ensenada, Ensenada, Mexico
| |
Collapse
|
15
|
Differential proteolytic activation of the Bacillus thuringiensis Cry41Aa parasporin modulates its anticancer effect. Biochem J 2019; 476:3805-3816. [PMID: 31794004 DOI: 10.1042/bcj20190732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces intracellular protein crystals toxic to a wide variety of insect larvae and is the most commonly used biological pesticide worldwide. More recently, Bt crystal proteins known as parasporins have been discovered, that have no known insecticidal activity but target some human cancer cells exhibiting strong cytocidal activities with different toxicity spectra and varied activity levels. Parasporin-3, also called Cry41Aa, has only been shown to exhibit cytocidal activity towards HL-60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells) cell lines after being proteolytically cleaved. In order to understand this activation mechanism various mutations were made in the N-terminal region of the protein and the toxicity against both HepG2 and HL-60 cell lines was evaluated. Our results indicate that only N-terminal cleavage is required for activation and that N-terminally deleted mutants show some toxicity without the need for proteolytic activation. Furthermore, we have shown that the level of toxicity towards the two cell lines depends on the protease used to activate the toxin. Proteinase K-activated toxin was significantly more toxic towards HepG2 and HL-60 than trypsin-activated toxin. N-terminal sequencing of activated toxins showed that this difference in toxicity is associated with a difference of just two amino acids (serine and alanine at positions 59 and 60, respectively) which we hypothesize occlude a binding motif.
Collapse
|
16
|
Aberkane L, Nacer-Khodja A, Djenane Z, Djouadi LN, Ouafek A, Bouslama L, Grib H, Mameri N, Nateche F, Djefal A. In Vitro Cytotoxicity of Parasporins from Native Algerian Bacillus thuringiensis Strains Against Laryngeal and Alveolar Cancers. Curr Microbiol 2019; 77:405-414. [PMID: 31844934 DOI: 10.1007/s00284-019-01841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Parasporins (PS), a class of non-insecticidal and non-hemolytic crystal proteins of Bacillus thuringiensis (Bt), are being explored as promising anti-cancer agents due to their specific toxicity to cancer cells. This work is considered as a first initiative aiming at investigating Algerian soil Bt isolates' activity and cytotoxic potential against cancer cells. A total of 48 Bacillus spp. were isolated from different sites in Algeria. Phenotypic and biochemical tests, 16S rDNA molecular identification, and microscopic observation of crystal have confirmed the identification of Bt for ten strains. A screening for non-hemolytic crystalline proteins was performed. Extraction, purification, and activation of non-hemolytic proteins by chromatographic analysis yielded several polypeptides of different molecular weights. A purified PS1, with pro-protein of 81 kDa and several peptides with different molecular weights (18-58 kDa) after activation by trypsin, has been identified from the strain BDzG. The NH2-terminal sequence deciphered in BLAST analysis showed homology to a Bt PS1 protein. Moreover, the screening of parasporin-1 (PS1) gene has also been performed. Cytocidal activity against human epithelial type 2 (HEp2) cells, considered to originate from a human laryngeal carcinoma, was observed with an IC50 equal to 2.33 μg/ml, while moderate cytotoxicity against adenocarcinomic human alveolar basal epithelial (A549) cells has been shown with IC50 equal to 18.54 μg/ml. No cytotoxicity against normal cells was noted. Fluorescence microscopy revealed a condensed or fragmented chromatin indicating the apoptotic death of HEp2 cells. Thus, Bt PS-producer isolated from Algerian soil might have a potential to join the arsenal of natural anti-cancer drugs with high therapeutic potential.
Collapse
Affiliation(s)
- Lila Aberkane
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria.,Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Assia Nacer-Khodja
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria
| | - Zahia Djenane
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Lydia Neila Djouadi
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Abdelhakim Ouafek
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), University of Tunis El Manar, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Hocine Grib
- Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Nabil Mameri
- Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Assia Djefal
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria.
| |
Collapse
|
17
|
Enhancement of Purified Human Colon Cancer-Specific Parasporal Toxin from Bacillus thuringiensis-LDC-501. Curr Microbiol 2019; 77:104-114. [DOI: 10.1007/s00284-019-01800-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
18
|
Wang Y, Guo W, Wu X, Zhang Y, Mannion C, Brouchkov A, Man YG, Chen T. Oncolytic Bacteria and their potential role in bacterium-mediated tumour therapy: a conceptual analysis. J Cancer 2019; 10:4442-4454. [PMID: 31528208 PMCID: PMC6746139 DOI: 10.7150/jca.35648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
As the human microbiota has been confirmed to be of great significance in maintaining health, the dominant bacteria in them have been applied as probiotics to treat various diseases. After the detection of bacteria in tumours, which had previously been considered a sterile region, these bacteria have been isolated and genetically modified for use in tumour therapy. In this review, we sum up the main types of bacteria used in tumour therapy and reveal the mechanisms of both wild type and engineered bacteria in eliminating tumour cells, providing potential possibilities for newly detected, genetically modified, tumour-associated bacteria in anti-tumour therapy.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxuan Guo
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - XiaoLi Wu
- JiangXi university of traditional Chinese medicine, College of basic medicine, Nanchang 330000, PR China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ciaran Mannion
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Anatoli Brouchkov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Tyumen State University, Volodarskogo 6, Tyumen 625003, Russia
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian Health-Hackensack University Medical Center, NJ, USA
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
19
|
Crystal Protein of a Novel Bacillus thuringiensis Strain Inducing Cell Cycle Arrest and Apoptotic Cell Death in Human Leukemic Cells. Sci Rep 2019; 9:9661. [PMID: 31273223 PMCID: PMC6609778 DOI: 10.1038/s41598-019-45928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Parasporal inclusions of a native non haemolytic Bacillus thuringiensis strain KAU 59 was screened for its cytotoxicity against human lymphocytic leukemic cell line jurkat and normal human lymphocytes. The cytotoxicity of proteinase activated and non activated solubilised parasporal inclusions against both cell lines was assessed by Cell Titer 96 Aqueous Non Radioactive Cell Proliferation Assay Kit using MTS. The 50 per cent effective concentration (EC50) values were deduced from log probit analysis at 48 h. Morphological changes associated with cytotoxicity were evaluated and molecular mechanisms of cell death were elucidated by TUNEL assay at 48 h post-inoculation. The fluorescence assisted cell sorting was done in the flow cytometer to assess the stage of cell cycle arrest. Relative quantification of caspase-3 expression in Jurkat cells treated with parasporal inclusion protein of KAU 59 was done by qRTPCR The results indicated that the protein was cytotoxic to jurkat cells at the same time non toxic to normal lymphocytes. Cytotoxicity was evident only after proteolytic activation. Apoptotic cell death was confirmed in the protein treated cells by TUNEL Assay and also up regulated caspase-3 gene expression (P < 0.001). S phase cell cycle arrest was confirmed by and fluorescence associated cell sorting.
Collapse
|
20
|
Specific Cytotoxic Effects of Parasporal Crystal Proteins Isolated from Native Saudi Arabian Bacillus thuringiensis Strains against Cervical Cancer Cells. Molecules 2019; 24:molecules24030506. [PMID: 30708936 PMCID: PMC6384957 DOI: 10.3390/molecules24030506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/29/2022] Open
Abstract
Currently, global efforts are being intensified towards the discovery of local Bacillus thuringiensis (Bt) isolates with unique anticancer properties. Parasporins (PS) are a group of Bt non-insecticidal crystal proteins with potential and specific in vitro anticancer activity. However, despite the significant therapeutic potential of PS-producing Bt strains, our current knowledge on the effects of these proteins is limited. Hence, the main objective of this study was to screen Bt-derived parasporal toxins for cytotoxic activities against colon (HT-29) and cervical (HeLa) cancerous cell lines. Nine non-larvicidal and non-hemolytic Bt strains, native to Saudi Arabia, were employed for the isolation of their parasporal toxins. 16S rDNA sequencing revealed a 99.5% similarity with a reference Bt strain. While PCR screening results indicated the absence of selected Cry (Cry4A, Cry4B, Cry10 and Cry11), Cyt (Cyt1 and Cyt2) and PS (PS2, PS3 and PS4) genes, it concluded presence of the PS1 gene. SDS-PAGE analysis revealed that proteolytically-cleavaged PS protein profiles exhibit patterns resembling those observed with PS1Aa1, with major bands at 56 kDa and 17 kDa (Bt7), and 41 kDa and 16 kDa (Bt5). Solubilized and trypsinized PS proteins from all Bt strains exhibited a marked and dose-dependent cytotoxicity against HeLa cancerous cells but not against HT-29 cells. IC50 values ranged from 3.2 (Bt1) to 14.2 (Bt6) with an average of 6.8 µg/mL. The observed cytotoxicity of PS proteins against HeLa cells was specific as it was not evident against normal uterus smooth muscle cells. RT-qPCR analysis revealed the overexpression of caspase 3 and caspase 9 by 3.7, and 4.2 folds, respectively, indicative of the engagement of intrinsic pathway of apoptosis. To the best of our knowledge, this is the first report exploring and exploiting the versatile repertoire of Saudi Arabian environmental niches for the isolation of native and possibly novel Saudi Bt strains with unique and specific anticancer activity. In conclusion, native Saudi Bt-derived PS proteins might have a potential to join the arsenal of natural anticancer drugs.
Collapse
|
21
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
22
|
Velásquez Cardona LF, Rojas Torres DS, Cerón Salamanca J. TOXINAS DE Bacillus thuringiensis CON ACTIVIDAD ANTICANCERÍGENA: PARASPORINAS. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n2.73668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las toxinas Cry de Bacillus thuringiensis (Bt) han sido reconocidas por su acción biocontroladora contra insectos plaga. Recientemente se ha descrito que algunas cepas de Bt presentan proteínas que no presentan actividad insecticida, pero al ser enfrentadas a líneas celulares de cáncer de diferentes tipos han demostrado actividad citotóxica. Estas proteínas han sido denominadas parasporinas (PS) y surgen como una potencial alternativa para el tratamiento del cáncer debido a que presentan alta citotoxicidad hacia diferentes líneas celulares cancerígenas, y baja o nula citotoxicidad hacia células normales.
Collapse
|
23
|
Chubicka T, Girija D, Deepa K, Salini S, Meera N, Raghavamenon AC, Divya MK, Babu TD. A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway. J Biosci 2018; 43:407-416. [PMID: 29872027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parasporins, a class of non-insecticidal crystal proteins of Bacillus thuringiensis (Bt) are being explored as promising anticancer agents due to their specific toxicity to cancer cells. The present study has identified 25 Bt isolates harbouring parasporin genes from Western Ghats region, the hotspot of biodiversity in India. Among these, the isolate, KAU 41 (Kerala Agricultural University isolate 41) contained non-hemolytic homogenous crystals showing specific cytotoxicity towards cancer cells. SDS-PAGE analysis of this crystal, isolated by aqueous biphasic separation, revealed a 31 kDa sized peptide. The N-terminal sequence deciphered in BLAST analysis showed homology to a hypothetical Bt protein. Upon proteolysis, a 29 kDa active peptide was generated which exhibited heterogenic cytotoxic spectrum on various cancer cells. HeLa cells were highly susceptible to this peptide with IC 50 1 lg/mL and showed characteristics of apoptosis. RT-qPCR analysis revealed the overexpression of APAF1, caspase 3 and 9 by 14.9, 8 and 7.4 fold, respectively which indicates the activation of intrinsic pathway of apoptosis. However, at higher concentrations of peptide (greater than 3 lg/mL), necrotic death was prominent. The results suggest that the 31 kDa protein from Bt isolate, KAU 41 is a parasporin that may have high therapeutic potential.
Collapse
Affiliation(s)
- Thomas Chubicka
- Department of Biochemistry, Amala Cancer Research Centre, Amala Nagar P O, Thrissur, Kerala 680 555, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9759-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Moazamian E, Bahador N, Azarpira N, Rasouli M. Anti-cancer Parasporin Toxins of New Bacillus thuringiensis Against Human Colon (HCT-116) and Blood (CCRF-CEM) Cancer Cell Lines. Curr Microbiol 2018; 75:1090-1098. [DOI: 10.1007/s00284-018-1479-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/12/2018] [Indexed: 11/28/2022]
|
26
|
Karunagaran V, Rajendran K, Sen S. Optimization of Biosynthesis of Silver Oxide Nanoparticles and Its Anticancer Activity. INTERNATIONAL JOURNAL OF NANOSCIENCE 2017. [DOI: 10.1142/s0219581x17500181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Silver oxide nanoparticle can be synthesized by chemical and biological methods. Biological synthesis has emerged as an exciting, ecofriendly approach. However, the process tends to be slow when we consider its industrial applicability. The development of reliable method for rapid synthesis of nanoparticles is one of the significant zones of interests in current nanotechnological research. In this paper, optimization of physiochemical parameters for rapid silver oxide nanoparticle synthesis using Bacillus thuringiensis SSV1 culture supernatant has been elucidated. Spherical-shaped silver oxide nanoparticles with an average particle size of 30[Formula: see text]nm were obtained. The cytotoxic effect of silver oxide nanoparticles was studied against HepG2 and Chang liver cell lines by MTT assay. These nanoparticles showed dose-dependent response on HepG2 (IC[Formula: see text]g/mL) and Chang liver cells (IC[Formula: see text]g/mL).
Collapse
Affiliation(s)
- Vithiya Karunagaran
- Industrial Biotechnology Division, School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Kumar Rajendran
- Industrial Biotechnology Division, School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Shampa Sen
- Industrial Biotechnology Division, School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
27
|
Screening and Identification of Bacillus thuringiensis Strains Native to Saudi Arabia that Exhibit Demonstrable Anticancer Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Jurat-Fuentes JL, Crickmore N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J Invertebr Pathol 2017; 142:5-10. [DOI: 10.1016/j.jip.2016.07.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
|
29
|
Akiba T, Okumura S. Parasporins 1 and 2: Their structure and activity. J Invertebr Pathol 2017; 142:44-49. [DOI: 10.1016/j.jip.2016.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022]
|
30
|
Abe Y, Inoue H, Ashida H, Maeda Y, Kinoshita T, Kitada S. Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547. J Invertebr Pathol 2016; 142:71-81. [PMID: 27863961 DOI: 10.1016/j.jip.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
Parasporin-2 (PS2), alternatively named Cry46Aa1, an anticancer protein derived from Bacillus thuringiensis strain A1547, causes specific cell damage via PS2 oligomerization in the cell membrane. Although PS2 requires glycosylphosphatidylinositol (GPI)-anchored proteins for its cytocidal action, their precise role is unknown. Here, we report that the glycan of GPI induces PS2 oligomerization, which causes cell death. Cytotoxicity, cell-binding and oligomerization of the toxin were not observed in GPI-anchored protein-deficient Chinese hamster ovary cells. Expression and protease-treatment analyses showed that the actions of the toxin were dependent on the glycan core, not the polypeptide moiety, of GPI-anchored proteins. However, surface expression of some GPI-anchored proteins is observed in PS2-insensitive cells. These data suggest that GPI-anchored proteins do not determine the target specificity, but instead function as a kind of coreceptor, in the cytocidal action of PS2.
Collapse
Affiliation(s)
- Yuich Abe
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroshi Inoue
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hisashi Ashida
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Osaka 565-0871, Japan
| | - Yusuke Maeda
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Osaka 565-0871, Japan
| | - Sakae Kitada
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan; Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
31
|
Periyasamy A, Kkani P, Chandrasekaran B, Ponnusamy S, Viswanathan S, Selvanayagam P, Rajaiah S. Screening and characterization of a non-insecticidal Bacillus thuringiensis strain producing parasporal protein with selective toxicity against human colon cancer cell lines. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1204-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
32
|
Anti-cancer Parasporin Toxins are Associated with Different Environments: Discovery of Two Novel Parasporin 5-like Genes. Curr Microbiol 2015; 72:184-189. [PMID: 26563301 DOI: 10.1007/s00284-015-0934-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Cry toxins are primarily a family of insecticidal toxins produced by the bacterium Bacillus thuringiensis (Bt). However, some Cry toxins, called parasporins (PSs), are non-insecticidal and have been shown to differentially kill human cancer cells. Based on amino acid homology, there are currently six different classes of parasporins (PS1-6). It is not known what role parasporins play in nature, nor if certain PSs are associated with Bt found in particular environments. Herein, we present ten parasporin-containing isolates of Bt from the Caribbean island of Trinidad. Genes coding for PS1 and PS6 were found in isolates associated mainly with artificial aquatic environments (e.g., barrels with rain water), while Bt possessing two novel PS5-like genes (ps5-1 and ps5-2), were isolated from manure collected directly from the rectum of cattle. The amino acid sequences inferred from the two PS5-like genes were 51 % homologous to each other, while being only 41 or 45 % similar to PS5Aa1/Cry64Aa, the only reported member of the parasporin five class. The low level of amino acid homology between the two PS5-like genes and PS5Aa1 indicate that the two PS5-like genes may represent a new class of parasporins, or greatly expand the level of diversity within the current parasporin 5 class.
Collapse
|
33
|
Brasseur K, Auger P, Asselin E, Parent S, Côté JC, Sirois M. Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells. PLoS One 2015; 10:e0135106. [PMID: 26263002 PMCID: PMC4532506 DOI: 10.1371/journal.pone.0135106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023] Open
Abstract
In previous studies, parasporin-2Aa1, originally isolated from Bacillus thuringiensis strain A1547, was shown to be cytotoxic against specific human cancer cells but the mechanisms of action were not studied. In the present study, we found that proteinase K activated parasporin-2Aa1 protein isolated from a novel B. thuringiensis strain, 4R2, was specifically cytotoxic to endometrial, colon, liver, cervix, breast and prostate cancer. It showed no toxicity against normal cells. Upon treatment with proteinase K-activated parasporin-2Aa1, morphological changes were observed and western blot analysis revealed the cleavage of poly (ADP-Ribose) polymerase, caspase-3 and caspase-9 in cancer cell lines exclusively, indicative of programmed cell death, apoptosis. Flow cytometry analyses,using propidium iodide and annexin V, as well as a caspases 3/7 assay confirmed apoptosis induction. Further analyses were performed to study survival pathways, including AKT, XIAP, ERK1/2 and PAR-4, a known inducer of apoptosis. These results indicate that parasporin-2Aa1 is a selective cytotoxic protein that induces apoptosis in various human cancer cell lines from diverse tissues.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, 3351, Boul. Des Forges, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | - Pascal Auger
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, 3351, Boul. Des Forges, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | - Eric Asselin
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, 3351, Boul. Des Forges, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | - Sophie Parent
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, 3351, Boul. Des Forges, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | - Jean-Charles Côté
- Agriculture and Agri-Food Canada, Research Centre, 430, Boul. Gouin, Saint-Jean-sur-Richelieu, Québec, Canada J3B 3E6
| | - Marc Sirois
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, 3351, Boul. Des Forges, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
- * E-mail:
| |
Collapse
|
34
|
Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis. Biochem Biophys Res Commun 2015; 462:184-9. [DOI: 10.1016/j.bbrc.2015.04.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 11/23/2022]
|
35
|
The expression and crystallization of Cry65Aa require two C-termini, revealing a novel evolutionary strategy of Bacillus thuringiensis Cry proteins. Sci Rep 2015; 5:8291. [PMID: 25656389 PMCID: PMC4319155 DOI: 10.1038/srep08291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/14/2015] [Indexed: 11/11/2022] Open
Abstract
The insecticidal crystal protein (Cry) genes of Bacillus thuringiensis are a key gene resource for generating transgenic crops with pest resistance. However, many cry genes cannot be expressed or form crystals in mother cells. Here, we report a novel Cry protein gene, cry65Aa1, which exists in an operon that contains a downstream gene encoding a hypothetical protein ORF2. We demonstrated that ORF2 is required for Cry65Aa1 expression and crystallization by function as a C-terminal crystallization domain. The orf2 sequence is also required for Cry65Aa expression, because orf2 transcripts have a stabilizing effect on cry65Aa1 transcripts. Furthermore, we found that the crystallization of Cry65Aa1 required the Cry65Aa1 C-terminus in addition to ORF2 or a typical Cry protein C-terminal region. Finally, we showed that Cry65Aa1 has a selective cytotoxic effect on MDA-MB231 cancer cells. This report is the first description of a 130-kDa mass range Cry protein requiring two C-termini for crystallization. Our findings reveal a novel evolutionary strategy of Cry proteins and provide an explanation for the existence of Cry protein genes that cannot form crystals in B. thuringiensis. This study also provides a potential framework for isolating novel cry genes from “no crystal” B. thuringiensis strains.
Collapse
|
36
|
Palma L, Muñoz D, Berry C, Murillo J, de Escudero IR, Caballero P. Molecular and insecticidal characterization of a novel Cry-related protein from Bacillus thuringiensis toxic against Myzus persicae. Toxins (Basel) 2014; 6:3144-56. [PMID: 25384108 PMCID: PMC4247256 DOI: 10.3390/toxins6113144] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 11/16/2022] Open
Abstract
This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC₅₀ = 32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm². This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva 31192, Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona 31006, Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona 31006, Navarra, Spain.
| | - Iñigo Ruiz de Escudero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva 31192, Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva 31192, Navarra, Spain.
| |
Collapse
|
37
|
Characterization of parasporin gene harboring Indian isolates of Bacillus thuringiensis. 3 Biotech 2014; 4:545-551. [PMID: 28324389 PMCID: PMC4162902 DOI: 10.1007/s13205-013-0190-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/02/2013] [Indexed: 12/03/2022] Open
Abstract
Bacillus thuringiensis (Bt) is popularly known as insecticidal bacterium. However, non-insecticidal Bt strains are more extensively available in natural environment than the insecticidal ones. Parasporin (PS) is a collection of genealogically heterogeneous Cry proteins synthesized in non-insecticidal isolates of Bt. An important character generally related with PS proteins is their strong cytocidal activity preferentially on human cancer cells of various origins. Identification and characterization of novel parasporin protein which are non-hemolytic and non-insecticidal but having selective anticancer activity raise the possibility of a novel application of Bt in medical field. In the present study, seven new indigenous isolates (T6, T37, T68, T98, T165, T186, and T461) of Bt showed variation in colony morphology, crystal characters and protein profiles with each other. Out of the seven new isolates screened for parasporin (ps) and cry genes, two of the new indigenous isolates (T98 and T186) of Bt showed the presence of ps4 gene. Partial ps4 gene was cloned from the two new isolates and the sequence of partial ps4 gene showed high homology with its holotype ps4Aa1. These two isolates were characterized based on the proteolytic processing of the inclusion proteins and the proteolytic products were found to be comparable to the PS4 reference strain A1470. The two isolates of Bt did not show toxicity toward Spodoptera litura and Helicoverpa armigera. Based on the results of this study, it can be concluded that the isolates T98 and T186 are parasporin producers.
Collapse
|
38
|
Xu C, Wang BC, Yu Z, Sun M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 2014; 6:2732-70. [PMID: 25229189 PMCID: PMC4179158 DOI: 10.3390/toxins6092732] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.
Collapse
Affiliation(s)
- Chengchen Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
40
|
Okumura S, Koga H, Inouye K, Mizuki E. Toxicity of parasporin-4 and health effects of pro-parasporin-4 diet in mice. Toxins (Basel) 2014; 6:2115-26. [PMID: 25033273 PMCID: PMC4113745 DOI: 10.3390/toxins6072115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022] Open
Abstract
Parasporin-4 (PS4) is an aerolysin-type β-pore-forming toxin produced by Bacillus thuringiensis strain A1470. It exhibits specific cytotoxicity against human cancer cell lines; therefore, it is expected to be useful for the diagnosis and treatment of particular types of cancer cells. We examined the acute toxicity of PS4 on ICR mice. The LD50 value was 160 μg/kg by a subcutaneous route. Potassium, ammonium, magnesium ion, creatinine, and urea nitrogen decreased in urine by the injection of PS4. Simultaneously, creatinine and urea nitrogen in mice serum increased. These results imply that PS4 impairs kidney function in mice. PS4 is obtained from Pro-parasporin-4 (ProPS4) by processing, and ProPS4 is produced by recombinant Escherichia coli as the inclusion body. The inclusion body of ProPS4 can be solubilized in a weak acid solution and activated by pepsin, implying that it would be solubilized and activated in the stomach of mammals after oral administration. Thus, the influence of the oral administration of it by C57BL/6J mice was examined. Although ProPS4 was activated to PS4 in the mouse digestive tract, any serious health hazard was not observed and there was no significant difference in body weight change.
Collapse
Affiliation(s)
- Shiro Okumura
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | - Kuniyo Inouye
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Eiichi Mizuki
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| |
Collapse
|
41
|
Chai PF, Rathinam X, Solayappan M, Ahmad Ghazali AH, Subramaniam S. Microscopic analysis of a native Bacillus thuringiensis strain from Malaysia that produces exosporium-enclosed parasporal inclusion. Microscopy (Oxf) 2014; 63:371-5. [PMID: 24943903 DOI: 10.1093/jmicro/dfu022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current study focused on the microscopic studies of a native Bacillus thuringiensis strain isolated from Malaysia, Bt-S84-13a, that produced an unusual crystal type. Primary detection of parasporal inclusions using a phase contrast microscope presented one to two small crystal proteins in the sporulating cells of Bt-S84-13a. Compound light microscopic examination of autolysed Bt-S84-13a cells stained with 0.133% Coomassie Brilliant Blue showed two types of crystal morphology: small crystals independent of spores and spore-associated crystals. Surface structure analysis with a scanning electron microscope revealed spherical-like, coarse and wrinkled-looking crystal in Bt-S84-13a. A close-up observation of the crystal morphology using a transmission electron microscope also demonstrated two parasporal inclusions in Bt-S84-13a. One inclusion was deposited against the forespore and was in a shape of incomplete rectangular. Another smaller inclusion was developed within the exosporium and was rectangular in shape. However, the latter inclusion was found lack in another bacterial cell which was still in the early stages of sporulation. This unique crystal morphology may imply some biological potential in Bt-S84-13a.
Collapse
Affiliation(s)
- Pui Fun Chai
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Xavier Rathinam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | | | | |
Collapse
|
42
|
Ekino K, Okumura S, Ishikawa T, Kitada S, Saitoh H, Akao T, Oka T, Nomura Y, Ohba M, Shin T, Mizuki E. Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis A1100 strain. Toxins (Basel) 2014; 6:1882-95. [PMID: 24945755 PMCID: PMC4073135 DOI: 10.3390/toxins6061882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5). PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4). The 50% effective concentration (EC₅₀) of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs). The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.
Collapse
Affiliation(s)
- Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Shiro Okumura
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Tomoyuki Ishikawa
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Sakae Kitada
- Department of Bioscience and Bioinfomatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Saitoh
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Tetsuyuki Akao
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Michio Ohba
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| | - Takashi Shin
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| | - Eiichi Mizuki
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861, Japan.
| |
Collapse
|
43
|
Amano H, Yamagiwa M, Akao T, Mizuki E, Ohba M, Sakai H. A Novel 29-kDa Crystal Protein fromBacillus thuringiensisInduces Caspase Activation and Cell Death of Jurkat T Cells. Biosci Biotechnol Biochem 2014; 69:2063-72. [PMID: 16306686 DOI: 10.1271/bbb.69.2063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus thuringiensis, the most successful and most widely used microbial insecticide, produces crystal proteins. The physiological significance of the crystal proteins is poorly understood except for the potent insecticidal activity. In this paper, we report a novel biological activity of the crystal protein. A 29-kDa crystal protein, p29, produced by B. thuringiensis subsp. coreanensis A1519, was toxic to Jurkat, a cell line from human leukemic T cells. Upon treatment of the Jurkat cells with p29 at a lower concentration, translocation of phosphatidylserine to the external cell surface, release of cytochrome c and Smac/DIABLO from the mitochondria, and activation of caspase-9 were induced. These cellular events were followed by activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and chromatin condensation. Peak activation of caspase-9 was prominent and preceded that of caspase-8. Depletion of Bax from the cytosol was observed as the progress of p29-induced cell death. At a higher concentration of p29, the cells showed similar and accelerated morphological change, but neither externalized phosphatidylserine nor caspase-3 activation was observed. These results suggest that p29 at the lower concentration induced cell death of Jurkat accompanied by apotosis-like cellular events, and that mitochondria played a major role in p29-induced cell death.
Collapse
Affiliation(s)
- Hiromi Amano
- Graduate School of Natural Science and Technology, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
45
|
Identification of a second cytotoxic protein produced by Bacillus thuringiensis A1470. Biotechnol Lett 2013; 35:1889-94. [PMID: 23801126 DOI: 10.1007/s10529-013-1275-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Bacillus thuringiensis A1470 produces multiple proteins with similar molecular masses (~30 kDa) with cytotoxicity against human cell lines. One that was previously identified, parasporin-4, is a β-pore-forming toxin. The N-terminal sequence of a second cytotoxic protein was identical to a partial sequence of parasporin-2 produced by B. thuringiensis A1547. PCR was performed on total plasmid DNA from A1470 by using primers for parasporin-2 to amplify a gene which was then cloned. The cloned gene differed from A1547 parasporin-2 by 8 bp and the predicted protein differed by four amino acids. The gene was expressed in Escherichia coli, and the cytotoxic activities of the recombinant protein against four human cell lines (MOLT-4, Jurkat, HeLa, and HepG2) were similar to those of A1547 parasporin-2. We then confirmed that the A1470 strain simultaneously produces parasporin-2 and parasporin-4.
Collapse
|
46
|
Parasporin 1Ac2, a novel cytotoxic crystal protein isolated from Bacillus thuringiensis B0462 strain. Curr Microbiol 2013; 66:475-80. [PMID: 23306354 DOI: 10.1007/s00284-013-0301-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Two novel parasporin (PS) genes were cloned from Bacillus thuringiensis B0462 strain. One was 100 % identical even in nucleotide sequence level with that of parasporin-1Aa (PS1Aa1) from B. thuringiensis A1190 strain. The other (PS1Ac2) showed significant homology (99 % identity) to that of PS1Ac1 from B. thuringiensis 87-29 strain. The 15 kDa (S(113)-R(250)) and 60 kDa (I(251)-S(777)) fragments consisting of an active form of PS1Ac2 were expressed as His-tag fusion. Upon purification under denaturing condition and refolding, the recombinant polypeptides were applied to cancer cells to analyze their cytotoxicities. 3-(4,5-Dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay revealed that either of 15 or 60 kDa polypeptide exhibited no cytotoxicity to HeLa cells, but they became cytotoxic upon mixed together. Our results suggested that PS1Ac2 was responsible for the cytotoxicity of B. thuringiensis B0462 strain, and that the formation of hetero-dimer of 15 and 60 kDa polypeptide was required for their cytotoxicity.
Collapse
|
47
|
Teixeira Corrêa RF, Ardisson-Araújo DMP, Monnerat RG, Ribeiro BM. Cytotoxicity analysis of three Bacillus thuringiensis subsp. israelensis δ-endotoxins towards insect and mammalian cells. PLoS One 2012; 7:e46121. [PMID: 23029407 PMCID: PMC3448730 DOI: 10.1371/journal.pone.0046121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/29/2012] [Indexed: 11/27/2022] Open
Abstract
Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ), resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7) when tested at 20 µg/mL.
Collapse
Affiliation(s)
| | | | - Rose Gomes Monnerat
- Embrapa – Recursos Genéticos e Biotecnologia, C.P. 02373, Brasília, Distrito Federal, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
48
|
Ibrahim MA, Griko N, Junker M, Bulla LA. Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 2011; 1:31-50. [PMID: 21327125 DOI: 10.4161/bbug.1.1.10519] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/03/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture.This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010.
Collapse
|
49
|
Okumura S, Saitoh H, Ishikawa T, Inouye K, Mizuki E. Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1476-82. [DOI: 10.1016/j.bbamem.2010.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022]
|
50
|
|