1
|
Lima MIS, Corrêa MBC, Moraes ECDS, Oliveira JDDD, de Souza Santos P, de Souza AG, Goulart IMB, Goulart LR. HSP60 mimetic peptides from Mycobacterium leprae as new antigens for immunodiagnosis of Leprosy. AMB Express 2023; 13:120. [PMID: 37891336 PMCID: PMC10611693 DOI: 10.1186/s13568-023-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The early diagnosis of leprosy serves as an important tool to reduce the incidence of this disease in the world. Phage display (PD) technology can be used for mapping new antigens to the development of immunodiagnostic platforms. Our objective was to identify peptides that mimic Mycobacterium leprae proteins as serological markers using phage display technology. The phages were obtained in the biopanning using negative and positive serum from household contacts and leprosy patients, respectively. Then, the peptides were synthesized and validated in silico and in vitro for detection of IgG from patients and contacts. To characterize the native protein of M. leprae, scFv antibodies were selected against the synthetic peptides by PD. The scFv binding protein was obtained by immunocapture and confirmed using mass spectrometry. We selected two phase-fused peptides, MPML12 and MPML14, which mimic the HSP60 protein from M. leprae. The peptides MPML12 and MPML14 obtained 100% and 92.85% positivity in lepromatous patients. MPML12 and MPM14 detect IgG, especially in the multibacillary forms. The MPML12 and MPML14 peptides had positivity of 11.1% and 16.6% in household contacts, respectively. There was no cross-reaction in patient's samples with visceral leishmaniasis, tuberculosis and other mycobacteriosis for both peptides. Given these results and the easy obtainment of mimetic antigens, our peptides are promising markers for application in the diagnosis of leprosy, especially in endemic and hyperendemic regions.
Collapse
Affiliation(s)
- Mayara Ingrid Sousa Lima
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, MA, Brazil.
- Postgraduate Program on Health and Environment and Postgraduate Program on Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| | | | | | | | - Paula de Souza Santos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Isabela Maria Bernardes Goulart
- National Reference Center in Sanitary Dermatology and Leprosy, School of Medicine, Clinics' Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Chen F, Di T, Yang CT, Zhang T, Thierry B, Zhou X. Naked-Eye Enumeration of Single Chlamydia pneumoniae Based on Light Scattering of Gold Nanoparticle Probe. ACS Sens 2020; 5:1140-1148. [PMID: 32207302 DOI: 10.1021/acssensors.0c00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydia pneumoniae is a spherical zoonotic pathogen with a diameter of ∼200 nm, which can lead to a wide range of acute and chronic diseases in human body. Early and reliable on-site detection of C. pneumoniae is the key step to control the spread of the pathogen. However, the lack of a current technology with advantages of rapidity, ultrasensitivity, and convenience limits the implementation of traditional techniques for on-site detection of C. pneumoniae. Herein, we developed a naked-eye counting of C. pneumoniae based on the light scattering properties of gold nanoparticle (GNP) under dark-field microscopy (termed "GNP-labeled dark-field counting strategy"). The recognition of single C. pneumoniae by anti-C. pneumoniae antibodies-functionalized GNP probes with size of 15 nm leads to the formation of wreath-like structure due to the strong scattered light resulted from hundreds of GNP probes binding on one C. pneumoniae under dark-field microscopy. Hundreds of GNP probes can bind to the surface of C. pneumoniae due to the high stability and specificity of the nucleic acid immuno-GNP probes, which generates by the hybridization of DNA-modified GNP with DNA-functionalized antibodies. The limit of detection (LOD) of the GNP-labeled dark-field counting strategy for C. pneumoniae detection in spiked samples or real samples is down to four C. pneumoniae per microliter, which is about 4 times more sensitive than that of quantitative polymerase chain reaction (qPCR). Together with the advantages of the strong light scattering characteristic of aggregated GNPs under dark-field microscopy and the specific identification of functionalized GNP probes, we can detect C. pneumoniae in less than 30 min using a cheap and portable microscope even if the sample contains only a few targets of interest and other species at high concentration. The GNP-labeled dark-field counting strategy meets the demands of rapid detection, low cost, easy to operate, and on-site detection, which paves the way for early and on-site detection of infectious pathogens.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Di
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Tianyu Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Xin Zhou
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Subtractive phage display selection from canine visceral leishmaniasis identifies novel epitopes that mimic Leishmania infantum antigens with potential serodiagnosis applications. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:96-106. [PMID: 24256622 DOI: 10.1128/cvi.00583-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy and Trypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected with Leishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n = 31) compared to those from vaccinated dogs (n = 21), experimentally infected dogs with cross-reactive parasites (n = 23), and healthy controls (n = 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity with T. cruzi- or Ehrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes of L. infantum antigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.
Collapse
|
4
|
Comparison of real-time PCR and a microimmunofluorescence serological assay for detection of chlamydophila pneumoniae infection in an outbreak investigation. J Clin Microbiol 2011; 50:151-3. [PMID: 22031704 DOI: 10.1128/jcm.05357-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the performance of a recently validated real-time PCR assay and a commercially available microimmunofluorescence serologic test for the detection of Chlamydophila pneumoniae infection during an outbreak. Evaluation of specimens from 137 individuals suggests that real-time PCR holds greater utility as a diagnostic tool for early C. pneumoniae detection.
Collapse
|
5
|
Li Y, Ning Y, Wang Y, Peng D, Jiang Y, Zhang L, Long M, Luo J, Li M. Mimotopes selected with a neutralizing antibody against urease B from Helicobacter pylori induce enzyme inhibitory antibodies in mice upon vaccination. BMC Biotechnol 2010; 10:84. [PMID: 21118490 PMCID: PMC3012656 DOI: 10.1186/1472-6750-10-84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 11/30/2010] [Indexed: 01/14/2023] Open
Abstract
Background Urease B is an important virulence factor that is required for Helicobacter pylori to colonise the gastric mucosa. Mouse monoclonal antibodies (mAbs) that inhibit urease B enzymatic activity will be useful as vaccines for the prevention and treatment of H. pylori infection. Here, we produced murine mAbs against urease B that neutralize the enzyme's activity. We mapped their epitopes by phage display libraries and investigated the immunogenicity of the selected mimotopes in vivo. Results The urease B gene was obtained (GenBank accession No. DQ141576) and the recombinant pGEX-4T-1/UreaseB protein was expressed in Escherichia coli as a 92-kDa recombinant fusion protein with glutathione-S-transferase (GST). Five mAbs U001-U005 were produced by a hybridoma-based technique with urease B-GST as an immunogen. Only U001 could inhibit urease B enzymatic activity. Immunoscreening via phage display libraries revealed two different mimotopes of urease B protein; EXXXHDM from ph.D.12-library and EXXXHSM from ph.D.C7C that matched the urease B proteins at 347-353 aa. The antiserum induced by selected phage clones clearly recognised the urease B protein and inhibited its enzymatic activity, which indicated that the phagotope-induced immune responses were antigen specific. Conclusions The present work demonstrated that phage-displayed mimotopes were accessible to the mouse immune system and triggered a humoral response. The urease B mimotope could provide a novel and promising approach for the development of a vaccine for the diagnosis and treatment of H. pylori infection.
Collapse
Affiliation(s)
- Yan Li
- School of Biotechnology, Southern Medical University, Guangzhou Dadaobei No,1838, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Portig I, Goodall JC, Bailey RL, Gaston JSH. Characterization of the humoral immune response to Chlamydia outer membrane protein 2 in chlamydial infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:103-7. [PMID: 12522047 PMCID: PMC145281 DOI: 10.1128/cdli.10.1.103-107.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Detection of antibodies to an outer membrane protein 2 (OMP2) by enzyme-linked immunosorbent assay (ELISA) by using either the Chlamydia trachomatis- or the Chlamydia pneumoniae-specific protein was investigated. OMP2 is an immunodominant antigen giving rise to antibody responses in humans infected with different C. trachomatis serovars (A to C and D to K) or with C. pneumoniae, which could be detected by OMP2 ELISA. OMP2 ELISA is not species specific, but antibody titers were usually higher on the homologous protein. The sensitivity of this assay was high but varied according to the "gold standard" applied. Levels of antibody to C. pneumoniae OMP2 as detected by ELISA seem to return to background or near-background values within a shorter period of time compared to antibodies to C. pneumoniae detected by microimmunofluorescence (MIF), making it more likely that positive results in ELISA reflect recent infection. Thus, OMP2 ELISA has distinct advantages over MIF and commercially available ELISAs and might be a useful tool for the serodiagnosis of chlamydial infection.
Collapse
Affiliation(s)
- I Portig
- Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | | | |
Collapse
|