1
|
Chen M, Cao X, Zheng R, Chen H, He R, Zhou H, Yang Z. The role of HDAC6 in enhancing macrophage autophagy via the autophagolysosomal pathway to alleviate legionella pneumophila-induced pneumonia. Virulence 2024; 15:2327096. [PMID: 38466143 PMCID: PMC10936600 DOI: 10.1080/21505594.2024.2327096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.
Collapse
Affiliation(s)
- Minjia Chen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiuqin Cao
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ronghui Zheng
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Haixia Chen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ruixia He
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Hao Zhou
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhiwei Yang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Xiong W, Su R, Han X, Zhu M, Tang H, Huang S, Wang P, Zhu G. Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:357. [PMID: 39425873 DOI: 10.1007/s11274-024-04169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Klebsiella pneumoniae and Legionella pneumophila are common Gram-negative bacteria that can cause lung infections. The multidrug resistance of K. pneumoniae presents a significant challenge for treatment. This study focuses on isocitrate dehydrogenase (IDH), a key enzyme in the oxidative metabolic pathway of these two bacteria. KpIDH and LpIDH were successfully overexpressed and purified, and their biochemical characteristics were thoroughly investigated. The study revealed that KpIDH and LpIDH are homodimeric enzymes with molecular weights of approximately 70 kDa. They are completely dependent on the coenzyme NADP+ and are inactive towards NAD+. KpIDH exhibits the highest catalytic activity at pH 8.0 in the presence of Mn2+ and at pH 7.8 in the presence of Mg2+. Its optimal catalytic performance is achieved with both ions at 55 °C. LpIDH exhibited its highest activity at pH 7.8 in the presence of Mn2+ and Mg2+, respectively, and exhibits optimal catalytic performance at 45 °C. Heat inactivation studies showed that KpIDH and LpIDH retained over 80% of their activity after being exposed to 45 °C for 20 min. Furthermore, we successfully altered the coenzyme specificity of KpIDH and LpIDH from NADP+ to NAD+ by replacing four key amino acid residues. This study provides a comprehensive biochemical characterization of two multidrug-resistant bacterial IDHs commonly found in hospital environments. It enhances our understanding of the characteristics of pathogenic bacteria and serves as a reference for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Wei Xiong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Rui Su
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xueyang Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Mengxiao Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hongyiru Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
3
|
Margot C, Rhoads W, Gabrielli M, Olive M, Hammes F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. NPJ Biofilms Microbiomes 2024; 10:101. [PMID: 39368992 PMCID: PMC11455961 DOI: 10.1038/s41522-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
Collapse
Affiliation(s)
- Céline Margot
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - William Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Margot Olive
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Moss CE, Roy CR. InSeq analysis of defined Legionella pneumophila libraries identifies a transporter-encoding gene cluster important for intracellular replication in mammalian hosts. mBio 2024:e0195524. [PMID: 39365064 DOI: 10.1128/mbio.01955-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates inside human alveolar macrophages to cause a severe pneumonia known as Legionnaires' disease. L. pneumophila requires the Dot/Icm Type IV secretion system to deliver hundreds of bacterial proteins to the host cytosol that manipulate cellular processes to establish a protected compartment for bacterial replication known as the Legionella-containing vacuole. To better understand mechanisms apart from the Dot/Icm system that support survival and replication in this vacuole, we used transposon insertion sequencing in combination with defined mutant sublibraries to identify L. pneumophila fitness determinants in primary mouse macrophages and the mouse lung. This approach validated that many previously identified genes important for intracellular replication were critical for infection of a mammalian host. Further, the screens uncovered additional genes contributing to L. pneumophila replication in mammalian infection models. This included a cluster of seven genes in which insertion mutations resulted in L. pneumophila fitness defects in mammalian hosts. Generation of isogenic deletion mutants and genetic complementation studies verified the importance of genes within this locus for infection of mammalian cells. Genes in this cluster are predicted to encode nucleotide-modifying enzymes, a protein of unknown function, and an atypical ATP-binding cassette (ABC) transporter with significant homology to multidrug efflux pumps that has been named Lit, for Legionella infectivity transporter. Overall, these data provide a comprehensive overview of the bacterial processes that support L. pneumophila replication in a mammalian host and offer insight into the unique challenges posed by the intravacuolar environment.IMPORTANCEIntracellular bacteria employ diverse mechanisms to survive and replicate inside the inhospitable environment of host cells. Legionella pneumophila is an opportunistic human pathogen and a model system for studying intracellular host-pathogen interactions. Transposon sequencing is an invaluable tool for identifying bacterial genes contributing to infection, but current animal models for L. pneumophila are suboptimal for conventional screens using saturated mutant libraries. This study employed a series of defined transposon mutant libraries to identify determinants of L. pneumophila fitness in mammalian hosts, which include a newly identified bacterial transporter called Lit. Understanding the requirements for survival and replication inside host cells informs us about the environment bacteria encounter during infection and the mechanisms they employ to make this environment habitable. Such knowledge will be key to addressing future challenges in treating infections caused by intracellular bacteria.
Collapse
Affiliation(s)
- Caitlin E Moss
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Schmidt S, Mondino S, Gomez-Valero L, Escoll P, Mascarenhas DPA, Gonçalves A, Camara PHM, Garcia Rodriguez FJ, Rusniok C, Sachse M, Moya-Nilges M, Fontaine T, Zamboni DS, Buchrieser C. The unique Legionella longbeachae capsule favors intracellular replication and immune evasion. PLoS Pathog 2024; 20:e1012534. [PMID: 39259722 PMCID: PMC11419355 DOI: 10.1371/journal.ppat.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/23/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | | | - Augusto Gonçalves
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Pedro H. M. Camara
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | | | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Martin Sachse
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Maryse Moya-Nilges
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Biologie et Pathogénicité fongiques, Institut Pasteur, Paris, France
| | - Dario S. Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| |
Collapse
|
8
|
Michaelis S, Chen T, Schmid C, Hilbi H. Nitric oxide signaling through three receptors regulates virulence, biofilm formation, and phenotypic heterogeneity of Legionella pneumophila. mBio 2024; 15:e0071024. [PMID: 38682908 PMCID: PMC11237717 DOI: 10.1128/mbio.00710-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is an environmental bacterium, that replicates in macrophages, parasitizes amoeba, and forms biofilms. L. pneumophila employs the Legionella quorum sensing (Lqs) system and the transcription factor LvbR to control various bacterial traits, including virulence and biofilm architecture. LvbR negatively regulates the nitric oxide (NO) receptor Hnox1, linking quorum sensing to NO signaling. Here, we assessed the response of L. pneumophila to NO and investigated bacterial receptors underlying this process. Chemical NO donors, such as dipropylenetriamine (DPTA) NONOate and sodium nitroprusside (SNP), delayed and reduced the expression of the promoters for flagellin (PflaA) and the 6S small regulatory RNA (P6SRNA). Marker-less L. pneumophila mutant strains lacking individual (Hnox1, Hnox2, or NosP) or all three NO receptors (triple knockout, TKO) grew like the parental strain in media. However, in the TKO strain, the reduction of PflaA expression by DPTA NONOate was less pronounced, suggesting that the NO receptors are implicated in NO signaling. In the ΔnosP mutant, the lvbR promoter was upregulated, indicating that NosP negatively regulates LvbR. The single and triple NO receptor mutant strains were impaired for growth in phagocytes, and phenotypic heterogeneity of non-growing/growing bacteria in amoebae was regulated by the NO receptors. The single NO receptor and TKO mutant strains showed altered biofilm architecture and lack of response of biofilms to NO. In summary, we provide evidence that L. pneumophila regulates virulence, intracellular phenotypic heterogeneity, and biofilm formation through NO and three functionally non-redundant NO receptors, Hnox1, Hnox2, and NosP. IMPORTANCE The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Au-Yeung C, Lam KL, Choi MH, Chan KW, Cheung YS, Tsui YL, Mo WY. Impact of Prophylactic Antibiotic Use in Ornamental Fish Tanks on Microbial Communities and Pathogen Selection in Carriage Water in Hong Kong Retail Shops. Microorganisms 2024; 12:1184. [PMID: 38930567 PMCID: PMC11205468 DOI: 10.3390/microorganisms12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotics are routinely added to ornamental fish tanks for treating bacterial infection or as a prophylactic measure. However, the overuse or subtherapeutical application of antibiotics could potentially facilitate the selection of antibiotic resistance in bacteria, yet no studies have investigated antibiotic use in the retail ornamental fish sector and its impact on microbial communities. The present study analyzed the concentrations of twenty antibiotics in the carriage water (which also originates from fish tanks in retail shops) collected monthly from ten local ornamental fish shops over a duration of three months. The antibiotic concentrations were correlated with the sequenced microbial community composition, and the risk of resistance selection in bacteria was assessed. Results revealed that the detected concentrations of tetracyclines were the highest among samples, followed by fluoroquinolones and macrolides. The concentrations of oxytetracycline (44.3 to 2,262,064.2 ng L-1) detected across three months demonstrated a high risk for resistance selection at most of the sampled shops. Zoonotic pathogens (species of Rhodococcus, Legionella, and Citrobacter) were positively correlated with the concentrations of oxytetracycline, tetracycline, chlortetracycline, and enrofloxacin. This suggests that antibiotic use in retail shops may increase the likelihood of selecting for zoonotic pathogens. These findings shed light on the potential for ornamental fish retail shops to create a favorable environment for the selection of pathogens with antibiotics, thereby highlighting the urgent need for enhanced antibiotic stewardship within the industry.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Yu-Sum Cheung
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| |
Collapse
|
10
|
Ma K, Shu R, Liu H, Ge J, Liu J, Lu Q, Fu J, Liu X, Qiu J. Legionella effectors SidC/SdcA ubiquitinate multiple small GTPases and SNARE proteins to promote phagosomal maturation. Cell Mol Life Sci 2024; 81:249. [PMID: 38836877 PMCID: PMC11335287 DOI: 10.1007/s00018-024-05271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Barbosa A, Azevedo NF, Goeres DM, Cerqueira L. Ecology of Legionella pneumophila biofilms: The link between transcriptional activity and the biphasic cycle. Biofilm 2024; 7:100196. [PMID: 38601816 PMCID: PMC11004079 DOI: 10.1016/j.bioflm.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Darla M. Goeres
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Laura Cerqueira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
12
|
Lehman SS, Williamson CD, Tucholski T, Ellis NA, Bouchard S, Jarnik M, Allen M, Nita-Lazar A, Machner MP. The Legionella pneumophila effector DenR hijacks the host NRas proto-oncoprotein to downregulate MAPK signaling. Cell Rep 2024; 43:114033. [PMID: 38568811 PMCID: PMC11141579 DOI: 10.1016/j.celrep.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.
Collapse
Affiliation(s)
- Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad D Williamson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trisha Tucholski
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Ellis
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Bouchard
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morgan Allen
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Costa D, Pereira-Silva P, Sousa P, Pinto V, Borges J, Vaz F, Minas G, Sampaio P. Critical Issues on the Surface Functionalization of Plasmonic Au-Ag/TiO 2 Thin Films with Thiolated Oligonucleotide-Based Biorecognition Elements. BIOSENSORS 2024; 14:159. [PMID: 38667152 PMCID: PMC11048063 DOI: 10.3390/bios14040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.
Collapse
Affiliation(s)
- Diogo Costa
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
| | - Patrícia Pereira-Silva
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Paulo Sousa
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Vânia Pinto
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania
| | - Graça Minas
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Paula Sampaio
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
| |
Collapse
|
14
|
Thizy G, Flahault A, Scemla A, Roux O, Jarraud S, Lebeaux D, Pouchot J, Gautier-Vargas G, Malvezzi P, Murris M, Vuotto F, Girerd S, Pansu N, Antonini T, Elkrief L, Barrou B, Besch C, Blot M, Boignard A, Brenier H, Coilly A, Gouezel C, Hannah K, Housssel-Debry P, Jouan J, Lecuyer H, Limelette A, Luyt CE, Melloni B, Pison C, Rafat C, Rebibou JM, Savier E, Schvartz B, Scatton O, Toure F, Varnous S, Vidal P, Savoye E, Ader F, Lortholary O, Lanternier F, Lafont E. Legionnaires Disease in Solid Organ Transplant Recipients: A Decade-Long Nationwide Study in France. Chest 2024; 165:507-520. [PMID: 37839586 DOI: 10.1016/j.chest.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Legionnaires disease (LD) is a rare, life-threatening opportunistic bacterial infection that poses a significant risk to patients with impaired cell-mediated immunity such as solid organ transplant recipients. However, the epidemiologic features, clinical presentation, and outcomes of LD in this population are poorly described. RESEARCH QUESTION What are the clinical manifestations, radiologic presentation, risk factors for severity, treatment, and outcome of LD in solid organ transplant recipients? STUDY DESIGN AND METHODS In this 10-year multicenter retrospective cohort study in France, where LD notification is mandatory, patients were identified by hospital discharge databases. Diagnosis of LD relied on positive culture findings from any respiratory sample, positive urinary antigen test (UAT) results, positive specific serologic findings, or a combination thereof. Severe LD was defined as admission to the ICU. RESULTS One hundred one patients from 51 transplantation centers were eligible; 64 patients (63.4%) were kidney transplant recipients. Median time between transplantation and LD was 5.6 years (interquartile range, 1.5-12 years). UAT results were positive in 92% of patients (89/97). Among 31 patients with positive culture findings in respiratory samples, Legionella pneumophila serogroup 1 was identified in 90%. Chest CT imaging showed alveolar consolidation in 98% of patients (54 of 57), ground-glass opacity in 63% of patients (36 of 57), macronodules in 21% of patients (12 of 57), and cavitation in 8.8% of patients (5 of 57). Fifty-seven patients (56%) were hospitalized in the ICU. In multivariate analysis, severe LD was associated with negative UAT findings at presentation (P = .047), lymphopenia (P = .014), respiratory symptoms (P = .010), and pleural effusion (P = .039). The 30-day and 12-month mortality rates were 8% (8 of 101) and 20% (19 of 97), respectively. In multivariate analysis, diabetes mellitus was the only factor associated with 12-month mortality (hazard ratio, 3.2; 95% OR, 1.19-8.64; P = .022). INTERPRETATION LD is a late and severe complication occurring in solid organ transplant recipients that may present as pulmonary nodules on which diabetes impacts its long-term prognosis.
Collapse
Affiliation(s)
- Guillaume Thizy
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrien Flahault
- Service de Néphrologie et Transplantation Rénale, CHRU Nancy-Brabois, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Anne Scemla
- Service de Transplantation Rénale, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Roux
- Service d'Hépatologie, Hôpital Beaujon, Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Sophie Jarraud
- Centre National de Référence des Légionelles, Institut des Agents Infectieux, Hospices Civils de Lyon, France; Centre International de Recherche en Infectiologie, Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, France
| | - David Lebeaux
- Unité Mobile d'Infectiologie, Service de Microbiologie, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacques Pouchot
- Service de Médecine Interne, Hôpital Européen Georges Pompidou, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriela Gautier-Vargas
- Service de Néphrologie et Transplantation, Hôpital Civil, CHRU Hautepierre, Université de Strasbourg, Strasbourg, France
| | - Paolo Malvezzi
- Service de Néphrologie, Dialyse, Aphérèses et Transplantation, CHU Grenoble Alpes, Université de Grenoble, la Tronche, France
| | - Marlene Murris
- Service de Pneumologie-Consultation Mucoviscidose, Pôle Voies Respiratoires, CHU de Toulouse-Hôpital Larrey, Université de Toulouse, Toulouse, France
| | - Fanny Vuotto
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Lille, Université de Lille, Lille, France
| | - Sophie Girerd
- Service de Néphrologie et Transplantation Rénale, CHRU Nancy-Brabois, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nathalie Pansu
- Service de Maladies Infectieuses et Tropicales, CHU Gui de Chauliac, Université de Montpellier, Montpellier, France
| | - Teresa Antonini
- Service d'Hépatologie, Hôpital Universitaire Croix-Rousse, Lyon, France; Cancer Research Center of Lyon, INSERM U1052, Lyon, France
| | - Laure Elkrief
- Service d'Hépatologie, CHRU de Tours, Hôpital Trousseau, Université de Tours, Chambray-lès-Tours, France
| | - Benoit Barrou
- Département d'Urologie, Néphrologie et Transplantation, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Camille Besch
- Service de Chirurgie Hépato-Bilio-Pancréatique et Transplantation Hépatique, CHRU Hautepierre, Université de Strasbourg, Strasbourg, France
| | - Mathieu Blot
- Département de Maladies Infectieuses, Centre Hospitalo-Universitaire de Dijon-Bourgogne, Université de Bourgogne, France
| | - Aude Boignard
- Service de Cardiologie, CHU de Grenoble, CHU Grenoble Alpes, Université de Grenoble, Grenoble, France
| | - Henri Brenier
- Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, Hôpital Universitaire de Pontchaillou, Université de Rennes, Rennes, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, AP-HP Hôpital Paul-Brousse, Université Paris-Saclay, Villejuif, France
| | - Corentin Gouezel
- Service d'Anesthésie et Réanimation de Chirurgie Cardiaque, Hôpital Bichat, Université Paris Cité, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Kaminski Hannah
- Service de Néphrologie, Transplantation Dialyse, Aphérèses, CHU de Bordeaux, Hôpital Pellegrin, Université de Bordeaux, Bordeaux, France
| | - Pauline Housssel-Debry
- Service d'Hépatologie et Transplantation Hépatique, Hôpital Universitaire de Pontchaillou, Université de Rennes, Rennes, France
| | - Jerome Jouan
- Service de Chirurgie Cardiaque, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Hervé Lecuyer
- Service de Microbiologie Clinique, Hôpital Necker Enfants-Malades, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne Limelette
- Laboratoire de Microbiologie, Hôpital Robert Debré, CHU de Reims, Université de Reims, Reims, France
| | - Charles Edouard Luyt
- Médecine Intensive Réanimation, Hôpital Pitié-Salpêtrière, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Christophe Pison
- Service de Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université de Grenoble, Grenoble, France
| | - Cédric Rafat
- Service de Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Rebibou
- Service de Néphrologie, Transplantation Hémodialyse, CHU, Université de Dijon, Dijon, France
| | - Eric Savier
- Service de Chirurgie Digestive et Hépato-Bilio-Pancréatique, Transplantation Hépatique, CHU Pitié-Salpêtriere, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Betoul Schvartz
- Service de Néphrologie, Hémodialyse, Transplantation Rénale, CHU de Reims, Université de Reims, Reims, France
| | - Olivier Scatton
- Service de Chirurgie Digestive Hépato-Bilio-Pancréatique et Transplantation Hépatique, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Fatouma Toure
- Service Néphrologie, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Shaida Varnous
- Service de Chirurgie Cardiaque et Thoracique, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pauline Vidal
- Laboratoire de Bactériologie-Hygiène, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emilie Savoye
- Organ and Tissue Procurement and Transplantation Department, French Biomedicine Agency, Saint Denis La Plaine, France
| | - Florence Ader
- Centre National de Référence des Légionelles, Institut des Agents Infectieux, Hospices Civils de Lyon, France; Centre International de Recherche en Infectiologie, Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, France; Service de Maladies Infectieuses et Tropicales, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Hôpital Universitaire Croix-Rousse, Lyon, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuel Lafont
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
15
|
El Sharu H, Ahmad S, Coore H. Legionella-induced dysarthria and rhabdomyolysis with acute renal failure achieving recovery. Clin Case Rep 2024; 12:e8628. [PMID: 38464574 PMCID: PMC10920313 DOI: 10.1002/ccr3.8628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Key Clinical Message Legionnaires' disease, often presenting as pneumonia, can uncommonly manifest with extrapulmonary symptoms such as cerebellar involvement and rhabdomyolysis. This case emphasizes the successful resolution of dysarthria and renal dysfunction with prompt Legionella treatment, underscoring the importance of vigilance for diverse manifestations in Legionella infections. Abstract Legionnaires' disease usually presents with pneumonia and a few extrapulmonary manifestations, such as neurological, musculoskeletal, and cutaneous manifestations. However, cerebellar involvement and rhabdomyolysis as an association with Legionella are not frequently encountered. We present a case of Legionella-induced rhabdomyolysis requiring hemodialysis and dysarthria that resolved with Legionella treatment.
Collapse
Affiliation(s)
- Husam El Sharu
- Internal MedicineEast Carolina University Health Medical CenterGreenvilleNorth CarolinaUSA
| | - Soban Ahmad
- Internal MedicineEast Carolina University Health Medical CenterGreenvilleNorth CarolinaUSA
| | - Hunter Coore
- Internal MedicineEast Carolina University Health Medical CenterGreenvilleNorth CarolinaUSA
| |
Collapse
|
16
|
Head BM, Trajtman A, Mao R, Bernard K, Vélez L, Marin D, López L, Rueda ZV, Keynan Y. Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections. Pathogens 2024; 13:173. [PMID: 38392911 PMCID: PMC10892575 DOI: 10.3390/pathogens13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Legionella infections have a propensity for occurring in HIV-infected individuals, with immunosuppressed individuals tending to present with more severe disease. However, understanding regarding the Legionella host response in immune compromised individuals is lacking. This study investigated the inflammatory profiles associated with Legionella infection in patients hospitalized with HIV and pneumonia in Medellín, Colombia from February 2007 to April 2014, and correlated these profiles with clinical outcomes. Sample aliquots from the Colombian cohort were shipped to Canada where Legionella infections and systemic cytokine profiles were determined using real-time PCR and bead-based technology, respectively. To determine the effect of Legionella coinfection on clinical outcome, a patient database was consulted, comparing laboratory results and outcomes between Legionella-positive and -negative individuals. Principal component analysis revealed higher plasma concentrations of eotaxin, IP-10 and MCP-1 (p = 0.0046) during Legionella infection. Individuals with this immune profile also had higher rates of intensive care unit admissions (adjusted relative risk 1.047 [95% confidence interval 1.027-1.066]). Results demonstrate that systemic markers of monocyte/macrophage activation and differentiation (eotaxin, MCP-1, and IP-10) are associated with Legionella infection and worse patient outcomes. Further investigations are warranted to determine how this cytokine profile may play a role in Legionella pneumonia pathogenesis or immunity.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (B.M.H.); (R.M.); (Z.V.R.)
| | - Adriana Trajtman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (B.M.H.); (R.M.); (Z.V.R.)
| | - Ruochen Mao
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (B.M.H.); (R.M.); (Z.V.R.)
| | - Kathryn Bernard
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3P6, Canada;
| | - Lázaro Vélez
- School of Medicine, Universidad de Antioquia, Medellin 050010, Colombia;
- Infectious Diseases Section, Hospital Universitario San Vicente Fundación, Medellin 050010, Colombia
| | - Diana Marin
- School of Medicine, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (D.M.); (L.L.)
| | - Lucelly López
- School of Medicine, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (D.M.); (L.L.)
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (B.M.H.); (R.M.); (Z.V.R.)
- School of Medicine, Universidad Pontificia Bolivariana, Medellin 050010, Colombia; (D.M.); (L.L.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (B.M.H.); (R.M.); (Z.V.R.)
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| |
Collapse
|
17
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Huang H, Wu B, Lin W. Characterising respiratory infections among hospitalised children during the COVID-19 pandemic in southeastern China: a cross-sectional study of pathogens and clinical association. BMJ Open 2024; 14:e076824. [PMID: 38199623 PMCID: PMC10807008 DOI: 10.1136/bmjopen-2023-076824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Children with acute respiratory tract infections (ARTIs) pose significantly burden on healthcare facilities due to high hospitalisation rates and mortality. However, limited epidemiological and clinical characteristics data on ARTIs in southeastern China during the COVID-19 pandemic exists. DESIGN Cross-sectional. SETTING Tertiary hospital associated with the First Affiliated Hospital, Fujian Medical University, China. PARTICIPANTS 1007 hospitalised children diagnosed with ARTIs, aged 30 days to 15 years, were enrolled in this study from 1 January 2020 to 31 December 2021. OUTCOME MEASURE The primary outcomes are the rate of pathogen infections in children with ARTIs. Secondary outcomes are the description of risk factors associated with ARTIs in children. RESULTS Of the 1007 enrolled children, 28.2%, 42.2%, 21.8% and 7.7% were diagnosed with upper respiratory tract infection, bronchopneumonia, bronchitis and pneumonia, respectively. Mycoplasma pneumoniae (MP) was the most prevalent pathogen (31.9%), followed by influenza B virus (IFVB; 29.1%) and influenza A virus (IFVA; 19.1%). The study found that children under 1 year old (older than 30 days: ORIFVB=12.50; ORMP=8.53), children aged 1-3 years (ORMP=1.62), the winter season (ORIFVA=1.36), the time from symptoms onset to hospitalisation (ORMP=1.10) and increased precipitation (ORLP=1.01) were high-risk factors for ARTIs. CONCLUSION This investigation offers significant insights into the prevalence and distribution of common pathogens among children experiencing ARTIs in the context of the COVID-19 pandemic. The discernment of high-risk factors linked to these pathogens enhances our understanding of the epidemiological characteristics of ARTIs in children.
Collapse
Affiliation(s)
- Huanhuan Huang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Wu
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Lin
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Ma K, Shu R, Liu H, Fu J, Luo ZQ, Qiu J. Ubiquitination of Sec22b by a novel Legionella pneumophila ubiquitin E3 ligase. mBio 2023; 14:e0238223. [PMID: 37882795 PMCID: PMC10746214 DOI: 10.1128/mbio.02382-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Protein ubiquitination is one of the most important post-translational modifications that plays critical roles in the regulation of a wide range of eukaryotic signaling pathways. Many successful intracellular bacterial pathogens can hijack host ubiquitination machinery through the action of effector proteins that are injected into host cells by secretion systems. Legionella pneumophila is the etiological agent of legionellosis that is able to survive and replicate in various host cells. The defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IV secretion system of L. pneumophila injects over 330 effectors into infected cells to create an optimal environment permissive for its intracellular proliferation. To date, at least 26 Dot/Icm substrates have been shown to manipulate ubiquitin signaling via diverse mechanisms. Among these, 14 are E3 ligases that either cooperate with host E1 and E2 enzymes or adopt E1/E2-independent catalytic mechanisms. In the present study, we demonstrate that the L. pneumophila effector Legionella ubiquitin ligase gene 15 (Lug15) is a novel ubiquitin E3 ligase. Lug15 is involved in the remodeling of LCV with polyubiquitinated species. Moreover, Lug15 catalyzes the ubiquitination of host SNARE protein Sec22b and mediates its recruitment to the LCV. Ubiquitination of Sec22b by Lug15 promotes its noncanonical pairing with plasma membrane-derived syntaxins (e.g., Stx3). Our study further reveals the complexity of strategies utilized by L. pneumophila to interfere with host functions by hijacking host ubiquitin signaling.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaqi Fu
- Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
20
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
21
|
Fan M, Kiefer P, Charki P, Hedberg C, Seibel J, Vorholt JA, Hilbi H. The Legionella autoinducer LAI-1 is delivered by outer membrane vesicles to promote interbacterial and interkingdom signaling. J Biol Chem 2023; 299:105376. [PMID: 37866633 PMCID: PMC10692735 DOI: 10.1016/j.jbc.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.
Collapse
Affiliation(s)
- Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Paul Charki
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Christian Hedberg
- Institute of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
23
|
Moorefield J, Konuk Y, Norman JO, Abendroth J, Edwards TE, Lorimer DD, Mayclin SJ, Staker BL, Craig JK, Barett KF, Barrett LK, Van Voorhis WC, Myler PJ, McLaughlin KJ. Characterization of a family I inorganic pyrophosphatase from Legionella pneumophila Philadelphia 1. Acta Crystallogr F Struct Biol Commun 2023; 79:257-266. [PMID: 37728609 PMCID: PMC10565794 DOI: 10.1107/s2053230x23008002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is generated as an intermediate or byproduct of many fundamental metabolic pathways, including DNA/RNA synthesis. The intracellular concentration of PPi must be regulated as buildup can inhibit many critical cellular processes. Inorganic pyrophosphatases (PPases) hydrolyze PPi into two orthophosphates (Pi), preventing the toxic accumulation of the PPi byproduct in cells and making Pi available for use in biosynthetic pathways. Here, the crystal structure of a family I inorganic pyrophosphatase from Legionella pneumophila is reported at 2.0 Å resolution. L. pneumophila PPase (LpPPase) adopts a homohexameric assembly and shares the oligonucleotide/oligosaccharide-binding (OB) β-barrel core fold common to many other bacterial family I PPases. LpPPase demonstrated hydrolytic activity against a general substrate, with Mg2+ being the preferred metal cofactor for catalysis. Legionnaires' disease is a severe respiratory infection caused primarily by L. pneumophila, and thus increased characterization of the L. pneumophila proteome is of interest.
Collapse
Affiliation(s)
- Julia Moorefield
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Yagmur Konuk
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jordan O. Norman
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Stephen J. Mayclin
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kayleigh F. Barett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lynn K. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
24
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
25
|
Ge J, Wang Y, Chen X, Yu K, Luo ZQ, Liu X, Qiu J. Phosphoribosyl-linked serine ubiquitination of USP14 by the SidE family effectors of Legionella excludes p62 from the bacterial phagosome. Cell Rep 2023; 42:112817. [PMID: 37471226 DOI: 10.1016/j.celrep.2023.112817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Xenophagy is an evolutionarily conserved host defensive mechanism to eliminate invading microorganisms through autophagic machinery. The intracellular bacterial pathogen Legionella pneumophila can avoid clearance by the xenophagy pathway via the actions of multiple Dot/Icm effector proteins. Previous studies have shown that p62, an adaptor protein involved in xenophagy signaling, is excluded from Legionella-containing vacuoles (LCVs). Such defects are attributed to the multifunctional SidE family effectors (SidEs) that exhibit classic deubiquitinase (DUB) and phosphoribosyl ubiquitination (PR-ubiquitination) activities, yet the mechanism remains elusive. In the present study, we demonstrate that the host DUB USP14 is PR-ubiquitinated by SidEs at multiple serine residues, which impairs its DUB activity and its interactions with p62. The exclusion of p62 from the bacterial phagosome requires the ubiquitin ligase but not the DUB activity of SidEs. These results reveal that PR-ubiquitination of USP14 by SidEs contributes to the evasion of xenophagic clearance by L. pneumophila.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xindi Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China
| | - Kaiwen Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130062, China.
| |
Collapse
|
26
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
27
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Frostadottir D, Wasserstrom L, Lundén K, Dahlin LB. Legionella longbeachae wound infection: case report and review of reported Legionella wound infections. Front Cell Infect Microbiol 2023; 13:1178130. [PMID: 37180442 PMCID: PMC10169826 DOI: 10.3389/fcimb.2023.1178130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Extrapulmonary manifestations of infection with Legionella species, of which 24 may cause disease in humans, are very rare. Here, we describe a case of a 61-year-old woman with no history of immunosuppression presenting with pain and swelling of her index finger after a prick by rose thorns during gardening. Clinical examination showed fusiform swelling of the finger with mild redness, warmth, and fever. The blood sample revealed a normal white blood cell count and a slight increase in C-reactive protein. Intraoperative observation showed extensive infectious destruction of the tendon sheath, while the flexor tendons were spared. Conventional cultures were negative, while 16S rRNA PCR analysis identified Legionella longbeachae that also could be isolated on buffered charcoal yeast extract media. The patient was treated with oral levofloxacin for 13 days, and the infection healed quickly. The present case report, with a review of the literature, indicates that Legionella species wound infections may be underdiagnosed due to the requirement for specific media and diagnostic methods. It emphasizes the need for heightened awareness of these infections during history taking and clinical examination of patients presenting with cutaneous infections.
Collapse
Affiliation(s)
- Drifa Frostadottir
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Lisa Wasserstrom
- Clinical Microbiology, Laboratory Medicine Skåne, Lund, Sweden
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Karolin Lundén
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
30
|
Legionella pneumophila and Free-Living Nematodes: Environmental Co-Occurrence and Trophic Link. Microorganisms 2023; 11:microorganisms11030738. [PMID: 36985310 PMCID: PMC10056204 DOI: 10.3390/microorganisms11030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic L. pneumophila, the causative agent of Legionnaires’ disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of L. pneumophila in cooling towers. Consequently, the nematode species Plectus similis and L. pneumophila were isolated from the same cooling tower biofilm and taken into a monoxenic culture. Using pharyngeal pumping assays, potential feeding relationships between P. similis and different L. pneumophila strains and mutants were examined and compared with Plectus sp., a species isolated from a L. pneumophila-positive thermal source biofilm. The assays showed that bacterial suspensions and supernatants of the L. pneumophila cooling tower isolate KV02 decreased pumping rate and feeding activity in nematodes. However, assays investigating the hypothesized negative impact of Legionella’s major secretory protein ProA on pumping rate revealed opposite effects on nematodes, which points to a species-specific response to ProA. To extend the food chain by a further trophic level, Acanthamoebae castellanii infected with L. pneumphila KV02 were offered to nematodes. The pumping rates of P. similis increased when fed with L. pneumophila-infected A. castellanii, while Plectus sp. pumping rates were similar when fed either infected or non-infected A. castellanii. This study revealed that cooling towers are the main water bodies where L. pneumophila and free-living nematodes coexist and is the first step in elucidating the trophic links between coexisting taxa from that habitat. Investigating the Legionella–nematode–amoebae interactions underlined the importance of amoebae as reservoirs and transmission vehicles of the pathogen for nematode predators.
Collapse
|
31
|
Vormittag S, Hüsler D, Haneburger I, Kroniger T, Anand A, Prantl M, Barisch C, Maaß S, Becher D, Letourneur F, Hilbi H. Legionella- and host-driven lipid flux at LCV-ER membrane contact sites promotes vacuole remodeling. EMBO Rep 2023; 24:e56007. [PMID: 36588479 PMCID: PMC9986823 DOI: 10.15252/embr.202256007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Legionella pneumophila replicates in macrophages and amoeba within a unique compartment, the Legionella-containing vacuole (LCV). Hallmarks of LCV formation are the phosphoinositide lipid conversion from PtdIns(3)P to PtdIns(4)P, fusion with ER-derived vesicles and a tight association with the ER. Proteomics of purified LCVs indicate the presence of membrane contact sites (MCS) proteins possibly implicated in lipid exchange. Using dually fluorescence-labeled Dictyostelium discoideum amoeba, we reveal that VAMP-associated protein (Vap) and the PtdIns(4)P 4-phosphatase Sac1 localize to the ER, and Vap also localizes to the LCV membrane. Furthermore, Vap as well as Sac1 promote intracellular replication of L. pneumophila and LCV remodeling. Oxysterol binding proteins (OSBPs) preferentially localize to the ER (OSBP8) or the LCV membrane (OSBP11), respectively, and restrict (OSBP8) or promote (OSBP11) bacterial replication and LCV expansion. The sterol probes GFP-D4H* and filipin indicate that sterols are rapidly depleted from LCVs, while PtdIns(4)P accumulates. In addition to Sac1, the PtdIns(4)P-subverting L. pneumophila effector proteins LepB and SidC also support LCV remodeling. Taken together, the Legionella- and host cell-driven PtdIns(4)P gradient at LCV-ER MCSs promotes Vap-, OSBP- and Sac1-dependent pathogen vacuole maturation.
Collapse
Affiliation(s)
- Simone Vormittag
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Dario Hüsler
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Ina Haneburger
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Tobias Kroniger
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Aby Anand
- Division of Molecular Infection Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückOsnabrückGermany
| | - Manuel Prantl
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| | - Caroline Barisch
- Division of Molecular Infection Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückOsnabrückGermany
| | - Sandra Maaß
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - Dörte Becher
- Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany
| | - François Letourneur
- Laboratory of Pathogen Host InteractionsUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Hubert Hilbi
- Institute of Medical MicrobiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
32
|
Fleischmann M, Jarnicki AG, Brown AS, Yang C, Anderson GP, Garbi N, Hartland EL, van Driel IR, Ng GZ. Cigarette smoke depletes alveolar macrophages and delays clearance of Legionella pneumophila. Am J Physiol Lung Cell Mol Physiol 2023; 324:L373-L384. [PMID: 36719079 PMCID: PMC10026984 DOI: 10.1152/ajplung.00268.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.
Collapse
Affiliation(s)
- Markus Fleischmann
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Institute for Experimental Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrew G Jarnicki
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew S Brown
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Yang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - Natalio Garbi
- Institute for Experimental Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ian R van Driel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Garrett Z Ng
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Shi Y, Liu H, Ma K, Luo ZQ, Qiu J. Legionella longbeachae Regulates the Association of Polyubiquitinated Proteins on Bacterial Phagosome with Multiple Deubiquitinases. Microbiol Spectr 2023; 11:e0417922. [PMID: 36790208 PMCID: PMC10100730 DOI: 10.1128/spectrum.04179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Legionella spp. are the causative agents of a severe pneumonia known as Legionnaires' disease. Upon being engulfed by host cells, these environmental bacteria replicate intracellularly in a plasma membrane-derived niche termed Legionella-containing vacuole (LCV) in a way that requires the defective in organelle trafficking/intracellular multiplication (Dot/Icm) protein transporter. Our understanding of interactions between Legionella and its hosts was mostly based on studies of Legionella pneumophila. In this study, we found that the LCVs created by virulent Legionella longbeachae are similarly decorated by polyubiquitinated proteins to those formed by L. pneumophila and that the ubiquitin-proteasome system (UPS) is required for optimal intracellular growth of L. longbeachae. Furthermore, we utilized bioinformatics methods and the ubiquitin-vinylmethyl ester probe to obtain potential deubiquitinases (DUBs) encoded by L. longbeachae. These efforts led to the identification of 9 L. longbeachae DUBs that displayed distinct specificity toward ubiquitin chain types. Among these, LLO_1014 and LLO_2238 are associated with the LCVs and impact the accumulation of polyubiquitinated species on the bacterial phagosome. Moreover, LLO_1014 and LLO_2238 could fully restore the phenotypes associated with Δceg23 (lotB) and Δlem27 (lotC) mutants of L. pneumophila, indicating that these DUBs have similar functions. Together, these results reveal that L. longbeachae uses multiple DUBs to construct an intracellular niche for its replication. IMPORTANCE Legionella spp. are opportunistic intracellular bacterial pathogens that cause Legionnaires' disease. Legionella utilizes the Dot/Icm type IV secretion system to deliver effector protein into host cells to modulate various cellular functions. At least 26 L. pneumophila effectors are known to hijack the host ubiquitin system via diverse mechanisms. L. longbeachae is the second leading cause of Legionnaires' disease worldwide. However, our knowledge about the interactions between L. longbeachae and its hosts is very limited. Here, we found that, similar to L. pneumophila infection, the host ubiquitin proteasome system is also important for the intracellular replication of L. longbeachae. In addition, the bacterial phagosomes harboring L. longbeachae are enriched with polyubiquitinated proteins in a Dot/Icm system-dependent manner. We further identified 9 L. longbeachae proteins that function as DUBs with distinct ubiquitin chain specificity. Of note, several of the phagosome-associated L. longbeachae DUBs regulate the recruitment of polyubiquitinated proteins to the LCV.
Collapse
Affiliation(s)
- Yunjia Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jiazhang Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Shi Y, Liu H, Ma K, Luo ZQ, Qiu J. Legionella longbeachae effector protein RavZ inhibits autophagy and regulates phagosome ubiquitination during infection. PLoS One 2023; 18:e0281587. [PMID: 36758031 PMCID: PMC9910735 DOI: 10.1371/journal.pone.0281587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Legionella organisms are ubiquitous environmental bacteria that are responsible for human Legionnaires' disease, a fatal form of severe pneumonia. These bacteria replicate intracellularly in a wide spectrum of host cells within a distinct compartment termed the Legionella-containing vacuole (LCV). Effector proteins translocated by the Dot/Icm apparatus extensively modulate host cellular functions to aid in the biogenesis of the LCV and intracellular proliferation. RavZ is an L. pneumophila effector that functions as a cysteine protease to hydrolyze lipidated LC3, thereby compromising the host autophagic response to bacterial infection. In this study, we characterized the RavZ (RavZLP) ortholog in L. longbeachae (RavZLLO), the second leading cause of Legionella infections in the world. RavZLLO and RavZLP share approximately 60% sequence identity and a conserved His-Asp-Cys catalytic triad. RavZLLO is recognized by the Dot/Icm systems of both L. pneumophila and L. longbeachae. Upon translocation into the host, it suppresses autophagy signaling in cells challenged with both species, indicating the functional redundancy of RavZLLO and RavZLP. Additionally, ectopic expression of RavZLLO but not RavZLP in mammalian cells reduces the levels of cellular polyubiquitinated and polyneddylated proteins. Consistent with this process, RavZLLO regulates the accumulation of polyubiquitinated species on the LCV during L. longbeachae infection.
Collapse
Affiliation(s)
- Yunjia Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (JQ); (ZQL)
| | - Jiazhang Qiu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (JQ); (ZQL)
| |
Collapse
|
35
|
Clinical and Laboratory Diagnosis of Legionella Pneumonia. Diagnostics (Basel) 2023; 13:diagnostics13020280. [PMID: 36673091 PMCID: PMC9858276 DOI: 10.3390/diagnostics13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumonia is a relatively rare but extremely progressive pulmonary infection with high mortality. Traditional cultural isolation remains the gold standard for the diagnosis of Legionella pneumonia. However, its harsh culture conditions, long turnaround time, and suboptimal sensitivity do not meet the clinical need for rapid and accurate diagnosis, especially for critically ill patients. So far, pathogenic detection techniques including serological assays, urinary antigen tests, and mass spectrometry, as well as nucleic acid amplification technique, have been developed, and each has its own advantages and limitations. This review summarizes the clinical characteristics and imaging findings of Legionella pneumonia, then discusses the advances, advantages, and limitations of the various pathogenetic detection techniques used for Legionella pneumonia diagnosis. The aim is to provide rapid and accurate guiding options for early identification and diagnosis of Legionella pneumonia in clinical practice, further easing healthcare burden.
Collapse
|
36
|
Tata A, Marzoli F, Cordovana M, Tiengo A, Zacometti C, Massaro A, Barco L, Belluco S, Piro R. A multi-center validation study on the discrimination of Legionella pneumophila sg.1, Legionella pneumophila sg. 2-15 and Legionella non- pneumophila isolates from water by FT-IR spectroscopy. Front Microbiol 2023; 14:1150942. [PMID: 37125166 PMCID: PMC10133462 DOI: 10.3389/fmicb.2023.1150942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
This study developed and validated a method, based on the coupling of Fourier-transform infrared spectroscopy (FT-IR) and machine learning, for the automated serotyping of Legionella pneumophila serogroup 1, Legionella pneumophila serogroups 2-15 as well as their successful discrimination from Legionella non-pneumophila. As Legionella presents significant intra- and inter-species heterogeneities, careful data validation strategies were applied to minimize late-stage performance variations of the method across a large microbial population. A total of 244 isolates were analyzed. In details, the method was validated with a multi-centric approach with isolates from Italian thermal and drinking water (n = 82) as well as with samples from German, Italian, French, and British collections (n = 162). Specifically, robustness of the method was verified over the time-span of 1 year with multiple operators and two different FT-IR instruments located in Italy and Germany. Moreover, different production procedures for the solid culture medium (in-house or commercial) and different culture conditions (with and without 2.5% CO2) were tested. The method achieved an overall accuracy of 100, 98.5, and 93.9% on the Italian test set of Legionella, an independent batch of Legionella from multiple European culture collections, and an extra set of rare Legionella non-pneumophila, respectively.
Collapse
Affiliation(s)
- Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
- *Correspondence: Alessandra Tata,
| | - Filippo Marzoli
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Alessia Tiengo
- OIE Italian Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Carmela Zacometti
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Andrea Massaro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Lisa Barco
- OIE Italian Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Simone Belluco
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| |
Collapse
|
37
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
38
|
Herbel SM, Moyon L, Christ M, Elsayed EM, Caffrey BE, Malmsheimer S, Grin I, Hoffmann K, Surmann K, Blankenburg S, Jung AL, Herkt CE, Borsò M, Bozdag B, Imhof A, Becker A, Wagner S, Bange G, Völker U, Bertrams W, Marsico A, Schmeck B. Screening for eukaryotic motifs in Legionella pneumophila reveals Smh1 as bacterial deacetylase of host histones. Virulence 2022; 13:2042-2058. [PMID: 36411449 PMCID: PMC9704406 DOI: 10.1080/21505594.2022.2149973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila (L.p.) is a bacterial pathogen which is a common causative agent of pneumonia. In humans, it infects alveolar macrophages and transfers hundreds of virulence factors that interfere with cellular signalling pathways and the transcriptomic landscape to sustain its own replication. By this interaction, it has acquired eukaryote-like protein motifs by gene transfer events that partake in the pathogenicity of Legionella. In a computational screening approach for eukaryotic motifs in the transcriptome of Legionella, we identified the L.p. strain Corby protein ABQ55614 as putative histone-deacetylase and named it "suppressing modifier of histones 1" (Smh1). During infection, Smh1 is translocated from the Legionella vacuole into the host cytosol. When expressed in human macrophage THP-1 cells, Smh1 was localized predominantly in the nucleus, leading to broad histone H3 and H4 deacetylation, blunted expression of a large number of genes (e.g. IL-1β and IL-8), and fostered intracellular bacterial replication. L.p. with a Smh1 knockdown grew normally in media but showed a slight growth defect inside the host cell. Furthermore, Smh1 showed a very potent histone deacetylation activity in vitro, e.g. at H3K14, that could be inhibited by targeted mutation of the putative catalytic center inferred by analogy with eukaryotic HDAC8, and with the deacetylase inhibitor trichostatin A. In summary, Smh1 displays functional homology with class I/II type HDACs. We identified Smh1 as a new Legionella virulence factor with a eukaryote-like histone-deacetylase activity that moderates host gene expression and might pave the way for further histone modifications.IMPORTANCELegionella pneumophila (L.p.) is a prominent bacterial pathogen, which is a common causative agent of pneumonia. In order to survive inside the host cell, the human macrophage, it profoundly interacts with host cell processes to advance its own replication. In this study, we identify a bacterial factor, Smh1, with yet unknown function as a host histone deacetylase. The activity of this factor in the host cell leads to attenuated gene expression and increased intracellular bacterial replication.
Collapse
Affiliation(s)
- Stefanie M. Herbel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Lambert Moyon
- Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marvin Christ
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Eslam M. Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany,Department of Biology, Philipps-Universität Marburg, Marburg, Germany,Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Brian E. Caffrey
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Silke Malmsheimer
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Iwan Grin
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Kerstin Hoffmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Christina E. Herkt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marco Borsò
- Zentrallabor für Proteinanalytik, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Planegg-Martinsried
| | - Beyza Bozdag
- Zentrallabor für Proteinanalytik, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Planegg-Martinsried
| | - Axel Imhof
- Zentrallabor für Proteinanalytik, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Planegg-Martinsried
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany,Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany,German Center for Infection Research (DZIF), Partner-site Tübingen, Tübingen, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Member of the German Center for Lung Research (DZL), Marburg, Germany,Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany,Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany,CONTACT Bernd Schmeck
| |
Collapse
|
39
|
Tomaskovic I, Gonzalez A, Dikic I. Ubiquitin and Legionella: From bench to bedside. Semin Cell Dev Biol 2022; 132:230-241. [PMID: 35177348 DOI: 10.1016/j.semcdb.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila, a Gram-negative intracellular bacterium, is one of the major causes of Legionnaires' disease, a specific type of atypical pneumonia. Despite intensive research efforts that elucidated many relevant structural, molecular and medical insights into Legionella's pathogenicity, Legionnaires' disease continues to present an ongoing public health concern. Legionella's virulence is based on its ability to simultaneously hijack multiple molecular pathways of the host cell to ensure its fast replication and dissemination. Legionella usurps the host ubiquitin system through multiple effector proteins, using the advantage of both conventional and unconventional (phosphoribosyl-linked) ubiquitination, thus providing optimal conditions for its replication. In this review, we summarize the current understanding of L. pneumophila from medical, biochemical and molecular perspectives. We describe the clinical disease presentation, its diagnostics and treatment, as well as host-pathogen interactions, with the emphasis on the ability of Legionella to target the host ubiquitin system upon infection. Furthermore, the interdisciplinary use of innovative technologies enables better insights into the pathogenesis of Legionnaires' disease and provides new opportunities for its treatment and prevention.
Collapse
Affiliation(s)
- Ines Tomaskovic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexis Gonzalez
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue Straße 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
41
|
Karim M, Singh G, Thakur S, Rana A, Rub A, Akhter Y. Evaluating complete surface-associated and secretory proteome of Leishmania donovani for discovering novel vaccines and diagnostic targets. Arch Microbiol 2022; 204:604. [PMID: 36069945 DOI: 10.1007/s00203-022-03219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Collapse
Affiliation(s)
- Munawwar Karim
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
42
|
Girolamini L, Pascale MR, Salaris S, Mazzotta M, Orsini M, Grottola A, Zini N, Cristino S. Legionella bononiensis sp. nov., isolated from a hotel water distribution system in northern Italy. Int J Syst Evol Microbiol 2022; 72. [PMID: 36173731 DOI: 10.1099/ijsem.0.005512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella-like isolates, strains 27fs60, 30fs61 and 30cs62T, were isolated from a hotel water distribution system in the Emilia-Romagna region, Italy. Isolates were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, with transitory flagella presence and able to grow at 32-37 °C (with an optimum at 32 °C) on buffered charcoal-yeast extract agar with l-cysteine, glycine-vancomycin-polymyxin B-cycloheximide agar and Wadowsky-Yee medium agar. The strains showed positive reactions for oxidase, hippurate and gelatinase and a weakly positive reaction for catalase. Based on the EUCAST cut-off, strain 30cs62T was resistant to ciprofloxacin (5 mg l-1). The mip and rpoB gene sequences of the three strains showed close matches to those of Legionella quateirensis ATCC 49507T with similarity values of 98.2 and 94.5 %, respectively. Whole genome sequencing of the three strains was performed, resulting in G+C contents of 39.0, 39.1 and 39.0 mol%, respectively. The identity percentage measured by average nucleotide identity between the three strains and their respective closest strains were: 91.32 % L. quateirensis NCTC 12376T, 91.45 % L. quateirensis ATCC 49507T and 91.45 % L. quateirensis ATCC 49507T, respectively. The digital DNA-DNA hybridization analysis demonstrated how the isolates were separated from the most related phylogenetic Legionella species (L. quateirensis ATCC 49507T, ≤40.10 % DNA-DNA relatedness). The concatenated phylogenetic tree based on 16S rRNA, mip, rpoB and rnpB genes, shows a close relationship with L. quateirensis ATCC 49507T. The results obtained confirm the status of an independent species. The name proposed for this species is Legionella bononiensis sp. nov. with 30cs62T (=ATCC TSD-262T=DSM 112526T) as the type strain.
Collapse
Affiliation(s)
- Luna Girolamini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna (BO), Italy.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Maria Rosaria Pascale
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna (BO), Italy
| | - Silvano Salaris
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna (BO), Italy
| | - Marta Mazzotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna (BO), Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics of Microorganisms, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Antonella Grottola
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland.,Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Unit of Molecular Virology and Microbiology, Modena University Hospital, Modena, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, Italy
| | - Sandra Cristino
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna (BO), Italy.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| |
Collapse
|
43
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
44
|
Yi X, Miao H, Lo JKY, Elsheikh MM, Lee TH, Jiang C, Zhang Y, Segelke BW, Overton KW, Bremer PT, Laurence TA. Tailored approach to study Legionella infection using a lattice light sheet microscope (LLSM). BIOMEDICAL OPTICS EXPRESS 2022; 13:4134-4159. [PMID: 36032581 PMCID: PMC9408256 DOI: 10.1364/boe.459012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Legionella is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of Legionella research has provided important insights into Legionella pathogenesis. Although standard commercial microscopes have led to significant advances in understanding Legionella pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner (RGS) module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study Legionella pneumophila infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that Legionella pneumophila infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.
Collapse
Affiliation(s)
- Xiyu Yi
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Haichao Miao
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jacky Kai-Yin Lo
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Maher M Elsheikh
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tek-Hyung Lee
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chenfanfu Jiang
- Department of Mathematics, University of California, Los Angeles, CA, 90095, USA
| | - Yuliang Zhang
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Brent W Segelke
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - K Wesley Overton
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ted A Laurence
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
45
|
Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proc Natl Acad Sci U S A 2022; 119:e2122872119. [PMID: 35653564 DOI: 10.1073/pnas.2122872119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMitochondria are organelles of the central metabolism that produce ATP and play fundamental roles in eukaryotic cell function and thereby become targets for pathogenic bacteria to manipulate. We found that the intracellular bacterial pathogen, Legionella pneumophila, targets mitochondrial ADP/ATP translocases (ANTs), the function of which is linked to the mitochondrial ATP synthesis. This is achieved by a pair of effector proteins, Lpg0080 and Lpg0081, which have opposing enzymatic activities as an ADP ribosyltransferase (ART) and an ADP ribosylhydrolase (ARH), respectively, coordinately regulating the chemical modification of ANTs upon infection. Our structural analyses indicate that Lpg0081 is an ARH with a noncanonical macrodomain, whose folding topology is distinct from that of the canonical macrodomain of known eukaryotic, archaeal, and bacterial proteins.
Collapse
|
46
|
Monteiro IP, Sousa S, Borges V, Gonçalves P, Gomes JP, Mota LJ, Franco IS. A Search for Novel Legionella pneumophila Effector Proteins Reveals a Strain Specific Nucleotropic Effector. Front Cell Infect Microbiol 2022; 12:864626. [PMID: 35711665 PMCID: PMC9195298 DOI: 10.3389/fcimb.2022.864626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila is an accidental human pathogen that causes the potentially fatal Legionnaires’ disease, a severe type of pneumonia. The main virulence mechanism of L. pneumophila is a Type 4B Secretion System (T4SS) named Icm/Dot that transports effector proteins into the host cell cytosol. The concerted action of effectors on several host cell processes leads to the formation of an intracellular Legionella-containing vacuole that is replication competent and avoids phagolysosomal degradation. To date over 300 Icm/Dot substrates have been identified. In this study, we searched the genome of a L. pneumophila strain (Pt/VFX2014) responsible for the second largest L. pneumophila outbreak worldwide (in Vila Franca de Xira, Portugal, in 2014) for genes encoding potential novel Icm/Dot substrates. This strain Pt/VFX2014 belongs to serogroup 1 but phylogenetically segregates from all other serogroup 1 strains previously sequenced, displaying a unique mosaic genetic backbone. The ability of the selected putative effectors to be delivered into host cells by the T4SS was confirmed using the TEM-1 β-lactamase reporter assay. Two previously unknown Icm/Dot effectors were identified, VFX05045 and VFX10045, whose homologs Lpp1450 and Lpp3070 in clinical strain L. pneumophila Paris were also confirmed as T4SS substrates. After delivery into the host cell cytosol, homologs VFX05045/Lpp1450 remained diffused in the cell, similarly to Lpp3070. In contrast, VFX10045 localized to the host cell nucleus. To understand how VFX10045 and Lpp3070 (94% of identity at amino acid level) are directed to distinct sites, we carried out a comprehensive site-directed mutagenesis followed by analyses of the subcellular localization of the mutant proteins. This led to the delineation of region in the C-terminal part (residues 380 to 534) of the 583 amino acid-long VFX10045 as necessary and sufficient for nuclear targeting and highlighted the fundamental function of the VFX10045-specific R440 and I441 residues in this process. These studies revealed a strain-specific nucleotropism for new effector VFX10045/Lpp3070, which anticipates distinct functions between these homologs.
Collapse
Affiliation(s)
- Inês P. Monteiro
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sofia Sousa
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Vítor Borges
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paulo Gonçalves
- Laboratório Nacional de Referência de Legionella, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - João Paulo Gomes
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Luís Jaime Mota
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Irina S. Franco
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- *Correspondence: Irina S. Franco,
| |
Collapse
|
47
|
Haridi M, Hutcheson A, De Faria B, Saleh M. Atypical Legionnaires' Disease in the Setting of Suspected Recurrent Lung Cancer. Cureus 2022; 14:e24760. [PMID: 35686263 PMCID: PMC9170362 DOI: 10.7759/cureus.24760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
Legionnaires’ disease is a type of pneumonia caused by Legionella bacteria. This type of bacteria can be found anywhere across the world, mostly in moist environments (e.g., ground soil, rivers, lakes). More importantly, Legionella can multiply in water systems such as air conditioners, which is a common source of outbreaks nationwide, particularly during the summer months. We present a unique clinical course of Legionnaires’ disease with suspected underlying recurrent lung cancer in a 77-year-old man during an outbreak that originated in a small city near our hospital. The patient presented to Urgent Care and after initial assessment, was admitted to the Internal Medicine Unit. He underwent supportive treatment with antibiotic therapy and oxygen, and was discharged one week after admission with improvement. The patient returned to Urgent Care a few weeks later with worsening dyspnea, where he was then transferred to another hospital for admission to the Intensive Care Unit (ICU), and later died. We report this special case to bring awareness to physicians of the possibility and importance of early detection and prompt management of Legionnaires’ disease in lung cancer and critically ill patients with possible environmental risk factors. Prompt detection and management of Legionella pneumophila allows for a greater chance of a favorable prognosis, particularly in the immunocompromised.
Collapse
|
48
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
49
|
Shen Y, Xu J, Zhi S, Wu W, Chen Y, Zhang Q, Zhou Y, Deng Z, Li W. MIP From Legionella pneumophila Influences the Phagocytosis and Chemotaxis of RAW264.7 Macrophages by Regulating the lncRNA GAS5/miR-21/SOCS6 Axis. Front Cell Infect Microbiol 2022; 12:810865. [PMID: 35573783 PMCID: PMC9105720 DOI: 10.3389/fcimb.2022.810865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Background The intracellular pathogen Legionella pneumophila (L. pneumophila) is a causative agent of pneumonia and does great harm to human health. These bacteria are phagocytosed by alveolar macrophages and survive to replicate within the macrophages. Despite macrophage infectivity potentiator (MIP) protein serving as an essential virulence factor during the invasion process of L. pneumophila, the regulatory mechanism of MIP protein in the process of bacterial infection to host cells is not yet completely understood. This research thus aims to explore the interaction between MIP and macrophage phagocytosis. Methods Through the experiment of the co-culture of RAW264.7 macrophages with different concentrations of MIP, the chemotactic activity of macrophages was detected and the phagocytosis was determined by a neutral red uptake assay. The expression of long noncoding RNA (lncRNA) GAS5, microRNA-21 (miR-21), and suppressor of cytokine signaling (SOCS)6 was determined by qRT-PCR. Target genes were detected by dual luciferase assay. Results MIP could reduce the phagocytosis and improve the chemotaxis of RAW264.7 macrophages. The expression of both lncRNA GAS5 and SOCS6 was increased whereas the expression of miR-21 was decreased when macrophages were treated with MIP. Dual luciferase assay revealed that lncRNA GAS5 could interact with miR-21, and SOCS6 served as the target of miR-21. After GAS5 overexpression, the phagocytosis of RAW264.7 treated with MIP was increased whereas the chemotaxis was decreased. In contrast, the opposite results were found in RAW264.7 following GAS5 interference. Conclusions The present results revealed that MIP could influence RAW264.7 macrophages on phagocytic and chemotactic activities through the axis of lncRNA GAS5/miR-21/SOCS6.
Collapse
Affiliation(s)
- Youfeng Shen
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Jian Xu
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Shenshen Zhi
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Li
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Wei Li,
| |
Collapse
|
50
|
Pascale MR, Bisognin F, Mazzotta M, Girolamini L, Marino F, Dal Monte P, Cordovana M, Scaturro M, Ricci ML, Cristino S. Use of Fourier-Transform Infrared Spectroscopy With IR Biotyper® System for Legionella pneumophila Serogroups Identification. Front Microbiol 2022; 13:866426. [PMID: 35558114 PMCID: PMC9090449 DOI: 10.3389/fmicb.2022.866426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Legionella spp. are Gram-negative bacteria that inhabit freshwater environments representing a serious risk for human health. Legionella pneumophila (Lp) is the species most frequently responsible for a severe pneumonia known as Legionnaires' disease. Lp consists of 15 serogroups (Sgs), usually identified by monoclonal or polyclonal antibodies. With regard to Lp serogrouping, it is well known that phenotyping methods do not have a sufficiently high discriminating power, while genotypic methods although very effective, are expensive and laborious. Recently, mass spectrometry and infrared spectroscopy have proved to be rapid and successful approaches for the microbial identification and typing. Different biomolecules (e.g., lipopolysaccharides) adsorb infrared radiation originating from a specific microbial fingerprint. The development of a classification system based on the intra-species identification features allows a rapid and reliable typing of strains for diagnostic and epidemiological purposes. The aim of the study was the evaluation of Fourier Transform Infrared Spectroscopy using the IR Biotyper® system (Bruker Daltonik, Germany) for the identification of Lp at the serogroup (Sg) level for diagnostic purposes as well as in outbreak events. A large dataset of Lp isolates (n = 133) and ATCC reference strains representing the 15 Lp serogroups were included. The discriminatory power of the instrument's classifier, was tested by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). All isolates were classified as follows: 12/133 (9.0%) as Lp Sg1 and 115/133 (86.5%) as Lp Sg 2-15 (including both ATCC and environmental Lp serogroup). Moreover, a mis-classification for 2/133 (1.5%) isolates of Lp Sg 2-15 that returned as Lp Sg1 was observed, and 4/133 (3.0%) isolates were not classified. An accuracy of 95.49% and an error rate of 4.51% were calculated. IR Biotyper® is able provide a quick and cost-effective reliable Lp classification with advantages compared with agglutination tests that show ambiguous and unspecific results. Further studies including a larger number of isolates could be useful to implement the classifier obtaining a robust and reliable tool for the routine Lp serogrouping. IR Biotyper® could be a powerful and easy-to-use tool to identify Lp Sgs, especially during cluster/outbreak investigations, to trace the source of the infection and promptly adopt preventive and control strategies.
Collapse
Affiliation(s)
- Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Francesco Bisognin
- Microbiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paola Dal Monte
- Microbiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Maria Scaturro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Luisa Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|