1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Szymczak M, Golec P. Long-Term Effectiveness of Engineered T7 Phages Armed with Silver Nanoparticles Against Escherichia coli Biofilm. Int J Nanomedicine 2024; 19:10097-10105. [PMID: 39381027 PMCID: PMC11460280 DOI: 10.2147/ijn.s479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The escalating threat of antibiotic-resistant bacteria, particularly those forming biofilm structures, underscores the urgent need for alternative treatment strategies. Bacteriophages have emerged as promising agents for combating bacterial infections, especially those associated with biofilm formation. However, the efficacy of phage therapy can be limited by the development of bacterial resistance and biofilm regrowth. Interestingly, phages could be combined with other agents, such as metal nanoparticles, to enhance their antibacterial effectiveness. Since the therapeutic strategy of using phages and metal nanoparticles has been developed relatively recently, evaluating its efficacy under various conditions is essential, with a particular focus on the duration of activity. This study tested the hypothesis that a novel approach to combating bacterial biofilms, based on phages armed with silver nanoparticles (AgNPs), would exhibit enhanced activity over an extended period after application. In this work, we investigated the potential of engineered T7 phages armed with AgNPs for eradicating Escherichia coli biofilm. We demonstrated that such biomaterial exhibits sustained antimicrobial activity even after prolonged exposure. Compared to phages alone or AgNPs alone, the biomaterial significantly enhances biofilm eradication, particularly after 48 hours of treatment. These findings highlight the potential of synergistic phage-nanoparticle strategies for combatting biofilm-associated infections.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Islam MS, Fan J, Suzauddula M, Nime I, Pan F. Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo. Biomedicines 2024; 12:2036. [PMID: 39335549 PMCID: PMC11428821 DOI: 10.3390/biomedicines12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Fan
- Department of Pathology, School of Basic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, China
| | - Md Suzauddula
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Geng H, Yang X, Zou C, Zhang W, Xiang J, Yang K, Shu Y, Luan G, Jia X, Lu M. Isolation of the novel phage SAP71 and its potential use against Staphylococcus aureus in an atopic dermatitis mouse model. Virus Genes 2024:10.1007/s11262-024-02106-2. [PMID: 39235696 DOI: 10.1007/s11262-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Atopic dermatitis (AD) is accompanied by changes in skin microbiota, in which abnormal colonization of Staphylococcus aureus is particularly common. The antibiotic treatment is prone to destroy the commensal bacterial community, further exacerbating the microbiome dysbiosis. Elimination of S. aureus through phage-targeted therapies presents a promising method in the treatment strategy of AD. In this study, we isolated a novel phage SAP71, which specifically lysed S. aureus. Genome sequencing showed that SAP71 contained no virulence, lysogenic, or antimicrobial resistance genes, making this lytic phage a potential agent for phage therapy. Moreover, we demonstrated that phage SAP71 was able to significantly improve the skin lesions, reduce the bacterial loads in the skin, and prevent the development of AD-like skin pathological changes in an AD model. In short, phage SAP71 was demonstrated to effectively treat S. aureus infection in AD, which provided a theoretical basis for the clinical phage therapy of AD.
Collapse
Affiliation(s)
- Huaixin Geng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xin Yang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenghui Zou
- Department of Dermatovenereology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Wen Zhang
- Department of Dermatovenereology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jingheng Xiang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Kailang Yang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yi Shu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Mao Lu
- Department of Dermatovenereology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Luo J, Liu M, Ai W, Zheng X, Liu S, Huang K, Zhang C, Li Q, Luo C. Synergy of lytic phage pB23 and meropenem combination against carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2024:e0044824. [PMID: 38742904 DOI: 10.1128/aac.00448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Phage-antibiotic combination treatment is a novel noteworthy drug delivery method in anti-infection. In the current study, we have isolated a new phage, pB23, against carbapenem-resistant Acinetobacter baumannii 2023. Synergistic antibacterial effect between phage pB23 and meropenem combination could be more stable, using moderate doses of phage (multiplicity of infection ranging from 0.1 to 1,000) based on results of in vitro antibacterial activity. Phage pB23 and meropenem combination could effectively clear mature biofilms and prevent biofilm formation of carbapenem-resistant Acinetobacter baumannii in vitro. Phage pB23 and meropenem combination also has good synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii in different growth phases under static culture conditions. The pig skin explant model shows that phage pB23 and meropenem combination has a synergistic effect to remove bacteria from wounds ex vivo. Phage pB23 and meropenem combination also exhibited a synergistic antibacterial effect in vivo using a zebrafish infection mode. The potential promotion of phage proliferation by meropenem and the sensitivity recovery of phage-resistant bacteria to meropenem might elucidate the mechanism of the synergistic antimicrobial activity. In summary, our study illustrates that phage pB23 and meropenem combination could produce synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii under static growth conditions. This study also demonstrates that phage-antibiotic combination will become an effective strategy to enhance antibacterial activity of individual drug and provide a new idea of the drug development for the treatment of infections due to carbapenem-resistant Acinetobacter baumannii and other multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jun Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Min Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wen Ai
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xiaoling Zheng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Shaowei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Kuo Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Changlin Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Qianyuan Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Chunhua Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
6
|
Tatum B, Murray P, Bicknell C, Webb SA, Kanak A. Genome sequence and annotation of Arthrobacter globiformis phage Ruchi (AS1) isolated from soil in Lumpkin County, Georgia. Microbiol Resour Announc 2024; 13:e0122423. [PMID: 38466103 PMCID: PMC11008183 DOI: 10.1128/mra.01224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Ruchi, a temperate, AS1 subcluster bacteriophage isolated in Lumpkin County, Georgia using host Arthrobacter globiformis, possesses a genome of 38,571 bp and 67.7% GC. Annotation of this virus revealed 64 predicted reading frames, no predicted tRNA genes, and a close evolutionary relationship to AS1 phage Basilisk.
Collapse
Affiliation(s)
- Brooke Tatum
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Payton Murray
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Claire Bicknell
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Shane A. Webb
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Alison Kanak
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| |
Collapse
|
7
|
Chuhran L, Whitlow C, Teems C, Kanak A, Webb SA. Genome sequence and annotation of Arthrobacter globiformis phage Vulpecula (AS1) isolated from soil in Dahlonega, Georgia. Microbiol Resour Announc 2024; 13:e0009024. [PMID: 38385671 DOI: 10.1128/mra.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Vulpecula, a temperate bacteriophage collected from soil in Dahlonega, Georgia using host Arthrobacter globiformis, is an AS1 subcluster virus of 37,766 bp (67.7% GC). Genome annotation suggests 64 open reading frames, no predicted tRNA genes, and ~98% sequence similarity to AS1 phages Ruchi (from GA) and Jamun (New Hampshire).
Collapse
Affiliation(s)
- Lily Chuhran
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Chase Whitlow
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Carson Teems
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Alison Kanak
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Shane A Webb
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| |
Collapse
|
8
|
Wang M, Wei J, Jiang L, Jiang L, Zhang J, He X, Ren Y, Wang Z, Sun Y, Wang Z. Coevolutionary phage training and Joint application delays the emergence of phage resistance in Pseudomonas aeruginosa. Virus Evol 2023; 9:vead067. [PMID: 38089014 PMCID: PMC10712906 DOI: 10.1093/ve/vead067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 10/16/2024] Open
Abstract
Antibiotic-resistant bacteria are current threats to available antibiotic therapies, and this has renewed interest in the therapeutic use of phage as an alternative. However, development of phage resistance has led to unsuccessful therapeutic outcomes. In the current study, we applied phage training to minimize bacterial phage resistance and to improve treatment outcome by adapting the phage to their target hosts during co-evolution. We isolated and characterized a novel Pseudomonas aeruginosa N4-like lytic phage (PWJ) from wastewater in Yangzhou, China. PWJ is a double-stranded DNA podovirus that can efficiently lyse the model strain ATCC 27,853 and opportunistic pathogen PAO1. Genome sequencing of PWJ revealed features similar to those of the N4-like P. aeruginosa phage YH6. We used PWJ to screen for an evolved trained phage (WJ_Ev14) that restored infectivity to PWJ phage bacterial resisters. BLASTN analysis revealed that WJ_Ev14 is identical to its ancestor PWJ except for the amino acid substitution R1051S in its tail fiber protein. Moreover, phage adsorption tests and transmission electron microscopy of resistant bacteria demonstrated that the R1051S substitution was most likely the reason WJ_Ev14 could re-adsorb and regain infectivity. Furthermore, phage therapy assays in vitro and in a mouse P. aeruginosa lung infection model demonstrated that PWJ treatment resulted in improved clinical results and a reduction in lung bacterial load whereas the joint phage cocktail (PWJ+ WJ_Ev14) was better able to delay the emergence of resister bacteria. The phage cocktail (PWJ +WJ_Ev14) represents a promising candidate for inclusion in phage cocktails developed for clinical applications.
Collapse
Affiliation(s)
| | - Jingyi Wei
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Lei Jiang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Li Jiang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Junxuan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Xiaolu He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Yiwen Ren
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Zixuan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Yongxue Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
9
|
Zhao M, Tan X, Liu ZQ, Dou L, Liu D, Pan YJ, Ma YF, Yu JL. Engineered phage with cell-penetrating peptides for intracellular bacterial infections. mSystems 2023; 8:e0064623. [PMID: 37594262 PMCID: PMC10654057 DOI: 10.1128/msystems.00646-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
IMPORTANCE Salmonella infection is a significant threat to global public health, and the increasing prevalence of antibiotic resistance exacerbates the situation. Therefore, finding new and effective ways to combat this pathogen is essential. Phages are natural predators of bacteria and can be used as an alternative to antibiotics to kill specific bacteria, including drug-resistant strains. One significant limitation of using phages as antimicrobial agents is their low cellular uptake, which limits their effectiveness against intracellular bacterial infections. Therefore, finding ways to enhance phage uptake is crucial. Our study provides a straightforward strategy for displaying cell-penetrating peptides on non-model phages, offering a promising novel and effective therapeutic approach for treating intracellular and drug-resistant bacteria. This approach has the potential to address the global challenge of antibiotic resistance and improve public health outcomes.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xin Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zi-qiang Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Dou
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Dong Liu
- Department of Neonatology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yong-jun Pan
- Department of Critical Care Medicine, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Ying-fei Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia-lin Yu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
10
|
Binte Mohamed Yakob Adil SS, Kabwe M, Cianciarulo C, Nguyen TH, Irving H, Tucci J. IRAK3 Knockout and Wildtype THP-1 Monocytes as Models for Endotoxin Detection Assays and Fusobacterium nucleatum Bacteriophage FNU1 Cytokine Induction. Int J Mol Sci 2023; 24:15108. [PMID: 37894788 PMCID: PMC10606876 DOI: 10.3390/ijms242015108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Microbial resistance to antibiotics poses a tremendous challenge. Bacteriophages may provide a useful alternative or adjunct to traditional antibiotics. To be used in therapy, bacteriophages need to be purified from endotoxins and tested for their effects on human immune cells. Interleukin-1 Receptor Associated Kinase-3 (IRAK3) is a negative regulator of inflammation and may play a role in the modulation of immune signalling upon bacteriophage exposure to immune cells. This study aimed to investigate the immune effects of crude and purified bacteriophage FNU1, a bacteriophage that targets the oral pathobiont Fusobacterium nucleatum, on wildtype and IRAK3 knockout THP-1 monocytic cell lines. The IRAK3 knockout cell line was also used to develop a novel endotoxin detection assay. Exposure to crude FNU1 increased the production of pro-inflammatory cytokines (Tumour necrosis factor - alpha (TNF-α) and Interleukin 6 (IL-6)) compared to purified FNU1 in wildtype and IRAK3 knockout THP-1 monocytes. In the IRAK3 knockout THP-1 cells, exposure to crude FNU1 induced a higher immune response than the wildtype monocytes, supporting the suggestion that the inhibitory protein IRAK3 regulates reactions to endotoxins and impurities in bacteriophage preparations. Finally, the novel endotoxin detection assay generated here provides a robust and accurate method for determining endotoxin concentrations.
Collapse
Affiliation(s)
- Siti Saleha Binte Mohamed Yakob Adil
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Cassandra Cianciarulo
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Trang Hong Nguyen
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| |
Collapse
|
11
|
Cui X, Du B, Feng J, Feng Y, Fan Z, Chen J, Cui J, Gan L, Fu T, Tian Z, Zhang R, Yan C, Zhao H, Xu W, Xu Z, Yu Z, Ding Z, Li Z, Chen Y, Xue G, Yuan J. A novel phage carrying capsule depolymerase effectively relieves pneumonia caused by multidrug-resistant Klebsiella aerogenes. J Biomed Sci 2023; 30:75. [PMID: 37653407 PMCID: PMC10470133 DOI: 10.1186/s12929-023-00946-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Klebsiella aerogenes can cause ventilator-associated pneumonia by forming biofilms, and it is frequently associated with multidrug resistance. Phages are good antibiotic alternatives with unique advantages. There has been a lack of phage therapeutic explorations, kinetic studies, and interaction mechanism research targeting K. aerogenes. METHODS Plaque assay, transmission electron microscopy and whole-genome sequencing were used to determine the biology, morphology, and genomic characteristics of the phage. A mouse pneumonia model was constructed by intratracheal/endobronchial delivery of K. aerogenes to assess the therapeutic effect of phage in vivo. Bioinformatics analysis and a prokaryotic protein expression system were used to predict and identify a novel capsule depolymerase. Confocal laser scanning microscopy, Galleria mellonella larvae infection models and other experiments were performed to clarify the function of the capsule depolymerase. RESULTS A novel lytic phage (pK4-26) was isolated from hospital sewage. It was typical of the Podoviridae family and exhibited serotype specificity, high lytic activity, and high environmental adaptability. The whole genome is 40,234 bp in length and contains 49 coding domain sequences. Genomic data show that the phage does not carry antibiotic resistance, virulence, or lysogenic genes. The phage effectively lysed K. aerogenes in vivo, reducing mortality and alleviating pneumonia without promoting obvious side effects. A novel phage-derived depolymerase was predicted and proven to be able to digest the capsule, remove biofilms, reduce bacterial virulence, and sensitize the bacteria to serum killing. CONCLUSIONS The phage pK4-26 is a good antibiotic alternative and can effectively relieve pneumonia caused by multidrug-resistant K. aerogenes. It carries a depolymerase that removes biofilms, reduces virulence, and improves intrinsic immune sensitivity.
Collapse
Affiliation(s)
- Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinfeng Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Wenjian Xu
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zanbo Ding
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yujie Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
12
|
Levêque M, Cassir N, Mathias F, Fevre C, Daviet F, Bermudez J, Brioude G, Peyron F, Reynaud-Gaubert M, Coiffard B. Refractory Pseudomonas aeruginosa Bronchopulmonary Infection After Lung Transplantation for Common Variable Immunodeficiency Despite Maximal Treatment Including IgM/IgA-Enriched Immunoglobulins and Bacteriophage Therapy. Infect Drug Resist 2023; 16:4265-4271. [PMID: 37409241 PMCID: PMC10319284 DOI: 10.2147/idr.s413900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Recipients transplanted for bronchiectasis in the context of a primary immune deficiency, such as common variable immunodeficiency, are at a high risk of severe infection in post-transplantation leading to poorer long-term outcomes than other transplant indications. In this report, we present a fatal case due to chronic Pseudomonas aeruginosa bronchopulmonary infection in a lung transplant recipient with common variable immunodeficiency despite successful eradication of an extensively drug-resistant (XDR) strain with IgM/IgA-enriched immunoglobulins and bacteriophage therapy. The fatal evolution despite a drastic adaptation of the immunosuppressive regimen and the maximal antibiotic therapy strategy raises the question of the contraindication of lung transplantation in such a context of primary immunodeficiency.
Collapse
Affiliation(s)
- Manon Levêque
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Nadim Cassir
- Department of Infectious Disease, APHM, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Fanny Mathias
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Cindy Fevre
- Research and Development, Pherecydes Pharma, Romainville, France
| | - Florence Daviet
- Intensive Care Medicine, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Julien Bermudez
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Geoffrey Brioude
- Department of Thoracic Surgery and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Florence Peyron
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| |
Collapse
|
13
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
14
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
15
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
16
|
Plunder S, Burkard M, Lauer UM, Venturelli S, Marongiu L. Determination of phage load and administration time in simulated occurrences of antibacterial treatments. Front Med (Lausanne) 2022; 9:1040457. [PMID: 36388928 PMCID: PMC9650209 DOI: 10.3389/fmed.2022.1040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 03/19/2024] Open
Abstract
The use of phages as antibacterials is becoming more and more common in Western countries. However, a successful phage-derived antibacterial treatment needs to account for additional features such as the loss of infective virions and the multiplication of the hosts. The parameters critical inoculation size (V F ) and failure threshold time (T F ) have been introduced to assure that the viral dose (V ϕ) and administration time (T ϕ) would lead to the extinction of the targeted bacteria. The problem with the definition of V F and T F is that they are non-linear equations with two unknowns; thus, obtaining their explicit values is cumbersome and not unique. The current study used machine learning to determine V F and T F for an effective antibacterial treatment. Within these ranges, a Pareto optimal solution of a multi-criterial optimization problem (MCOP) provided a pair of V ϕ and T ϕ to facilitate the user's work. The algorithm was tested on a series of in silico microbial consortia that described the outgrowth of a species at high cell density by another species initially present at low concentration. The results demonstrated that the MCOP-derived pairs of V ϕ and T ϕ could effectively wipe out the bacterial target within the context of the simulation. The present study also introduced the concept of mediated phage therapy, where targeting booster bacteria might decrease the virulence of a pathogen immune to phagial infection and highlighted the importance of microbial competition in attaining a successful antibacterial treatment. In summary, the present work developed a novel method for investigating phage/bacteria interactions that can help increase the effectiveness of the application of phages as antibacterials and ease the work of microbiologists.
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tübingen, Tübingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|