1
|
Yang J, Lu Y, Yu J, Cai X, Wang C, Lv L, Moran RA, Zhao X, Hu Z, Deng M, Liu JH. Comprehensive analysis of Enterobacteriaceae IncX plasmids reveals robust conjugation regulators PrfaH, H-NS, and conjugation-fitness tradeoff. Commun Biol 2025; 8:363. [PMID: 40038536 DOI: 10.1038/s42003-025-07782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative IncX plasmids are vital for spreading clinically significant antibiotic resistance genes. We identified key factors governing the conjugative process of IncX plasmids, the plasmid encoded activator PrfaH and inhibitor H-NS. Deletion of prfaH completely abolishes conjugative transfer, and the PrfaH binding site is an ops-like sequence located downstream of the prfaH promoter. We solved the crystal structure of PrfaH and identified the residues that likely mediate interactions with its target. The IncX3 plasmid-encoded H-NS inhibits conjugation by directly repressing PrfaH expression, while simultaneously enhancing host fitness. This tradeoff between plasmid conjugation and fitness is indispensable for plasmid persistence in nutrient-deprived environments. The presence of PrfaH paralogs in various antibiotic resistance plasmids suggests its fundamental role in regulating plasmid transfer. Our study not only elucidates the regulatory mechanisms behind the horizontal transfer of IncX plasmids but also highlights PrfaH as a potential target for strategies aimed at combating antimicrobial resistance.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| | - Yaoyao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Jingjing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Xinhong Cai
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China
| | - Zhengyi Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Mingzhen Deng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
2
|
Peirano G, Pitout JDD. Rapidly spreading Enterobacterales with OXA-48-like carbapenemases. J Clin Microbiol 2025; 63:e0151524. [PMID: 39760498 PMCID: PMC11837536 DOI: 10.1128/jcm.01515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Enterobacterales (mostly Klebsiella pneumoniae, Escherichia coli) with OXA-48-like carbapenemases (e.g., OXA-48, -181, -232, -244) are undermining the global efficiency of carbapenem therapy. In the Middle East, North Africa, and some European countries, OXA-48-like carbapenemases are the most common types of carbapenemases among Enterobacterales. Currently, OXA-48 is endemic in the Middle East, North Africa, Spain, France, and Belgium; OXA-181 is endemic in Sub-Saharan Africa and the Indian Subcontinent, while OXA-232 has been increasing in the Indian Subcontinent. European countries (e.g., Germany, Denmark, Switzerland, France) are experiencing community outbreaks with E. coli ST38 that produce OXA-244, and these strains have been introduced into Norwegian, Polish, and Czech hospitals. The global ascendancy of OXA-48-like genes is due to the combination of carbapenemases with horizontal spread through promiscuous plasmids (e.g., IncL, IncX3, ColE2) and vertical spread with certain high-risk multidrug-resistant clones (e.g., K. pneumoniae ST14, ST15, ST147, ST307; E. coli ST38, ST410). This is a powerful "gene survival strategy" that has assisted with the survival of OXA-48-like genes in different environments including the community setting. The laboratory diagnosis is complex; therefore, bacteria with "difficult to detect" variants (e.g., OXA-244, OXA-484) are likely underreported and are spreading silently "beneath the radar" in hospital and community settings. K. pneumoniae and E. coli with OXA-48-like carbapenemases are forces to be reckoned with.
Collapse
Affiliation(s)
- Gisele Peirano
- Division of Microbiology, Alberta Precision Laboratories, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Johann D. D. Pitout
- Division of Microbiology, Alberta Precision Laboratories, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Rahman MK, Rodriguez-Mori H, Loneragan G, Awosile B. One Health distribution of beta-lactamases in Enterobacterales in the United States: A systematic review and meta-analysis. Int J Antimicrob Agents 2025; 65:107422. [PMID: 39734050 DOI: 10.1016/j.ijantimicag.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The study aimed to review the beta-lactamase resistance genes detected in Enterobacterales from humans, animals, and the environment in the United States. METHODS We conducted a comprehensive search on PubMed, Web of Science, and Google Scholar for articles reporting beta-lactamase genes in the United States from 1981 to 22 April 2022, following the PRISMA protocol. Studies were evaluated based on predefined eligibility criteria, and both qualitative and quantitative analyses were conducted on the selected studies. RESULTS Of the 335 articles, a total of 169 different beta-lactamase genes, including narrow-spectrum, extended-spectrum, AmpC, and carbapenemase have been detected and reported in the United States, with human (137), animal (53), and environment (47). 22 genes (blaCMY-2, blaCTX-M-(1, 2, 9, 14, 15, 27, 32, 65), blaFOX-5, blaIMP-27, blaKPC-2, blaNDM-(1, 5), blaOXA-(1, 48), blaPSE-1, blaSHV-(1, 12), blaTEM-(1, 1A, 1B)) have been reported across animals, humans, and environment. Notably, blaCTX-M-15 was prevalent in E. coli isolates, with an overall pooled proportion of 10.7 %, varying between animals (8.6 %), humans (13.1 %), and the environment (0.8 %). Similarly, blaCMY-2 in E. coli isolates had an overall pooled proportion of 10.6 %, with distinctions in proportion among animals (1.6 %), humans (41.3 %), and the environment (16.2 %). The sequence type (ST131) was detected as the predominant, mainly associated with the blaCTX-M-15, with a pooled proportion of 56.9 %, varying from 14.3 % to 90 % across studies. CONCLUSION This study highlights the distribution of beta-lactamases in the United States, essential for understanding One Health and the molecular epidemiology of key beta-lactamases, especially extended-spectrum beta-lactamases and carbapenemases.
Collapse
Affiliation(s)
- Md Kaisar Rahman
- Texas Tech University School of Veterinary Medicine, Amarillo, TX, USA
| | | | - Guy Loneragan
- Texas Tech University School of Veterinary Medicine, Amarillo, TX, USA
| | - Babafela Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, TX, USA.
| |
Collapse
|
4
|
Robert M, Corvec S, Andreo A, Gallou FL, Marquot G, Mangeant R, Bourigault C, Lepelletier D. Epidemiological and bacteriological trends from 2013 to 2023 of carbapenemase-producing enterobacterales (CPE) in a French university hospital: A permanent risk of outbreak. Infect Dis Now 2025; 55:105021. [PMID: 39736467 DOI: 10.1016/j.idnow.2024.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
AIM The aim of this study was to describe the epidemiology and bacteriological trends of carbapenemase-producing Enterobacteriaceae (CPE) at Nantes University Hospital from 2013 to 2023. METHODS Potential CPE carriers were prospectively detected, and their contacts were systematically screened for CPE digestive colonization. A retrospective study was conducted from 2013 to 2023 (on patient characteristics) and from 2016 to 2023 (on CPE characteristics). An outbreak was defined as at least one secondary case occurring among contact patients during the same hospitalization, in the same unit, and with the same staff. RESULTS All in all, 553 CPE-positive carriers were identified during the study period. Among them, 178 (32 %) were sporadic cases and 100 (18 %) were incidentally detected. Fifty-seven outbreaks were investigated comprising 305 (55 %) secondary cases. The most commonly identified CPE species in outbreaks were Klebsiella pneumonia OXA-48. CONCLUSION CPE detection in the hospital was associated mainly with epidemic spread involving a variable number of secondary cases. CPE patients detected incidentally (without specific infection control measures) several days after hospital admission, repatriates and patients with a history of hospitalization abroad are at high risk of in-hospital CPE spread. The number of outbreaks did not decrease during the study period, and more generally, the number of secondary cases tends in some uncontrolled situations to increase, particular when CPE- positive patients are transferred or rehospitalized.
Collapse
Affiliation(s)
- Manon Robert
- Service de Bactériologie et des Contrôles Microbiologiques, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Stéphane Corvec
- Service de Bactériologie et des Contrôles Microbiologiques, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France; Nantes Université, INSERM, INCIT U1302 Lab, Nantes FR-44000, France
| | - Anaïs Andreo
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Florence Le Gallou
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Géraldine Marquot
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Reynald Mangeant
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Céline Bourigault
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France
| | - Didier Lepelletier
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Nantes, Nantes, R-44093, France; Nantes Université, UR 1155 IICiMED Lab, Institut de Recherche en Santé IRS2, Nantes, FR-44035, France.
| |
Collapse
|
5
|
Alvisi G, Curtoni A, Fonnesu R, Piazza A, Signoretto C, Piccinini G, Sassera D, Gaibani P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics (Basel) 2025; 14:141. [PMID: 40001385 PMCID: PMC11852015 DOI: 10.3390/antibiotics14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) represent an important threat to global health, resulting in an urgent issue in clinical settings. CPE often exhibit a multidrug-resistant (MDR) phenotype, thus reducing the antimicrobial armamentarium, with few antibiotics retaining residual antimicrobial activity against these pathogens. Carbapenemases are divided into three classes (A, B, and D) according to the Ambler classification system. Among these, KPC (class A), NDM, VIM, IMP (class B), and OXA-48-like (class D) represent the most important carbapenemases in terms of diffusion and clinical impact. CPE diffusion has been observed worldwide, with current endemicity in multiple territories around the world. In this context, the clonal spread and plasmid-mediated transmission of carbapenemases have contributed to the global spread of CPE worldwide and to the diffusion of carbapenemases among different Enterobacterales species. In recent years, novel molecules showing excellent in vitro and in vivo activity have been developed against CPE. However, the recent emergence of novel traits of resistance to these molecules has already been reported in several cases, mitigating the initial promising results. This review aims to provide an updated description of the major classes of carbapenemases, their global distribution, and future perspectives to limit the diffusion of CPEs.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35135 Padova, Italy;
| | - Antonio Curtoni
- Department of Public Health and Paediatrics, University of Turin, 10100 Turin, Italy; (A.C.); (G.P.)
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10100 Turin, Italy
| | - Rossella Fonnesu
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy; (R.F.); (C.S.)
| | - Aurora Piazza
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Caterina Signoretto
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy; (R.F.); (C.S.)
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Giorgia Piccinini
- Department of Public Health and Paediatrics, University of Turin, 10100 Turin, Italy; (A.C.); (G.P.)
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Gaibani
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| |
Collapse
|
6
|
Sehra GE, Azam S, Ahmad S, Ali A, Khan I, Ullah A, Waqas M, Rehman N, Absar M, Alshammari A, Albekairi NA, Wei DQ. Elucidating the resistance mechanisms and binding pattern of novel Oxa-48-like carbapenemases covalent inhibitors: A hybrid experimental and in silico approach. J Mol Struct 2025; 1321:140073. [DOI: 10.1016/j.molstruc.2024.140073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
|
7
|
Cheon DH, Jang H, Choi YK, Oh WS, Hwang S, Park JR, Kim H, Park Y, Lee S, Yang WS, Kim MJ, Lee SH, Baek JH. Clinical evaluation of advanced MALDI-TOF MS for carbapenemase subtyping in Gram-negative isolates. J Clin Microbiol 2025; 63:e0147524. [PMID: 39611795 PMCID: PMC11784181 DOI: 10.1128/jcm.01475-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
The spread of carbapenemase-producing Enterobacterales (CPE) is emerging as a significant clinical concern in tertiary hospitals and, in particular, long-term care facilities with deficiencies in infection control. This study aims to evaluate an advanced matrix-assisted laser desorption/ionization (A-MALDI) mass spectrometry method for the identification of carbapenemases and further discrimination of their subtypes in clinical isolates. The A-MALDI method was employed to detect CPE target proteins. Enhancements were made to improve detectability and mass accuracy through the optimization of MALDI-TOF settings and internal mass calibration. A total of 581 clinical isolates were analyzed, including 469 CPE isolates (388 Klebsiella pneumoniae carbapenemases [KPC], 51 NDM, 40 OXA, and 2 GES) and 112 carbapenemase-negative isolates. Clinical evaluation of the A-MALDI demonstrated 100% accuracy and precision in identifying all the collected CPE isolates. Additionally, A-MALDI successfully discriminated individual carbapenemase subtypes (KPC-2 or KPC-3/KPC-4, OXA-48 or OXA-181 or OXA-232, GES-5 or GES-24) and also differentiated co-producing carbapenemase strains (KPC and NDM, KPC and OXA, KPC and GES, and NDM and OXA), attributed to its high mass accuracy and simultaneous detection capability. A-MALDI is considered a valuable diagnostic tool for accurately identifying CPE and carbapenemase's subtypes in clinical isolates. It may also aid in selecting appropriate antibiotics for each carbapenemase subtype. Ultimately, we expect that the A-MALDI method will contribute to preventing the spread of antibiotic resistance and improving human public health. IMPORTANCE A-MALDI clearly demonstrated excellent ability to identify CPEs such as KPC, NDM, OXA, and GES when carbapenemase is present in the strain (100% accuracy and precision). The method also successfully discriminated carbapenemase subtypes and simultaneous detection of co-producing multiple carbapenemases in a single strain. This is the first report for simultaneous and multiple detection of intact carbapenemases of KPC, NDM, OXA, and GES using matrix-assisted laser desorption/ionization mass spectrometry in a clinical isolate.
Collapse
Affiliation(s)
- Dong Huey Cheon
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Heejung Jang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Won Seok Oh
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Seohyun Hwang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Ju-Ri Park
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hyojin Kim
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Yoonha Park
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Saeyoung Lee
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Won Suk Yang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Min Jin Kim
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Sun Hwa Lee
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
8
|
Vedani T, Pot M, Garrigos T, Sababadichetty L, Daniel M, Wilkinson D, Benoit-Cattin T, Belmonte O, Mavingui P, Dortet L, Miltgen G. Emergence and polyclonal dissemination of NDM-5/OXA-181 carbapenemase-producing Escherichia coli in the French Indian Ocean territories. Ann Clin Microbiol Antimicrob 2025; 24:8. [PMID: 39881330 PMCID: PMC11780878 DOI: 10.1186/s12941-025-00778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
AIM Located in the Southwest Indian Ocean area (SIOA), the two French overseas territories (FOTs) of Reunion and Mayotte islands are heavily impacted by antimicrobial resistance. The aim of this study was to investigate all cases of NDM-5 and OXA-181 carbapenemase-producing Escherichia coli (CPEc) in these two FOTs between 2015 and 2020, to better understand the regional spread of these last-line treatment resistant bacteria. METHODS All E. coli isolates not susceptible to ertapenem from various public and private hospitals on Reunion and Mayotte islands were screened for carbapenemase production. Clinical and microbiological data were collected for each case. Genotypic analysis of the isolates was carried out using WGS to determine the clonality relationship between the isolates and the genetic support of the carbapenemase-encoding genes. RESULTS A total of 92 isolates of NDM-5 (n = 67) and OXA-181 (n = 25) CPEc was collected from Reunion (n = 55) and Mayotte (n = 37) islands. Whole-genome sequencing identified 4 majors STs (ST58, ST167, ST405 and ST410). Genotypic analysis demonstrated numerous intra-ST possible cross transmission events, including strains isolated in both islands. Finally, all isolates (100%) carried the blaNDM-5 or blaOXA-181 genes on plasmids (IncF2, IncX3), most of which were conserved and identified in various STs. CONCLUSION We highlighted the dual dissemination of successful plasmids and the worrying circulation of high-risk clones via patients transfer between these two FOTs. It is therefore essential to effectively screen these patients for CPEc carriage on admission and to take these plasmids into account when investigating intra- or inter-hospital CPEc outbreaks.
Collapse
Affiliation(s)
- Thibaut Vedani
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Matthieu Pot
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Thomas Garrigos
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Loïk Sababadichetty
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Marion Daniel
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - David Wilkinson
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | | | - Olivier Belmonte
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Patrick Mavingui
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Laurent Dortet
- Laboratoire de Bactériologie, CHU de Bicêtre, Assistance Publique des Hôpitaux de Paris, Centre national de référence de la Résistance aux antibiotiques, laboratoire associé "Entérobactéries productrices de carbapénèmases", Le Kremlin-Bicêtre, France
| | - Guillaume Miltgen
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France.
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France.
- Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France.
- Department of Biology, National University of Ireland, Maynooth (Dublin), Ireland.
| |
Collapse
|
9
|
Rodríguez-Pallares S, Mateo-Vargas MA, Rodríguez-Iglesias MA, Arca-Suárez J, Galán-Sánchez F. Evolution of ceftazidime/avibactam resistance and plasmid dynamics in OXA-48-producing Klebsiella spp. during long-term patient colonization. Eur J Clin Microbiol Infect Dis 2025:10.1007/s10096-024-05034-z. [PMID: 39838141 DOI: 10.1007/s10096-024-05034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE To prospectively monitor the evolution of the resistome of OXA-48-producing Klebsiella species in a patient with long-term colonization, with a particular focus into the plasmid dynamics and the evolution of ceftazidime/avibactam resistance. METHODS All OXA-48-producing Klebsiella spp. isolates from a single patient admitted to a hospital during seven months were prospectively collected. MICs were determined through reference broth microdilution. Multilocus sequence types, SNPs analysis, resistance mechanisms, genetic context of β-lactamases and plasmid dynamics were determined by WGS and bioinformatic analysis. The impact of β-lactamase variant obtained after ceftazidime/avibactam exposure was determined via cloning experiments. RESULTS Four isolates, two before (one OXA-48-producing K. pneumoniae and one CTX-M-15-like-producing K. pneumoniae) and two after treatment with ceftazidime/avibactam (one OXA-48- and CTX-M-15-like-producing K. pneumoniae and one OXA-48- and CTX-M-15-like-producing K. aerogenes) were collected. The plasmid dynamics analysis demonstrated that the IncL and IncFIIK plasmids, in which blaOXA-48 and blaCTX-M-15-like genes were located, respectively, exhibited a high degree of conservation indicating a potential for both intra- and interspecies transmission. The K. pneumoniae isolate obtained after treatment, which differed from the previous isolate by just six SNPs, exhibited resistance to ceftazidime/avibactam through P167S substitution in CTX-M-15, which is now designated CTX-M-273. Cloning experiments demonstrated enhanced resistance to ceftazidime/avibactam. CONCLUSION The transfer of plasmid-borne β-lactamase resistance genes between intra- and interspecies bacterial populations enables the rapid diversification of the bacterial genome. The emergence of ceftazidime/avibactam resistance through the modification of CTX-M-enzymes represents a mechanism by which OXA-48-producing Enterobacterales may evolve toward ceftazidime/avibactam resistance in vivo.
Collapse
Affiliation(s)
- Salud Rodríguez-Pallares
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain.
| | | | - Manuel Antonio Rodríguez-Iglesias
- Universidad de Cádiz, Cádiz, Spain
- UGC Microbiología and Instituto de Investigación E Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Galán-Sánchez
- UGC Microbiología and Instituto de Investigación E Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| |
Collapse
|
10
|
Martel N, Conquet G, Sababadichetty L, Benavides JA, Godreuil S, Miltgen G, Dupont C. Neglected class A carbapenemases: Systematic review of IMI/NmcA and FRI from a One Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178300. [PMID: 39754943 DOI: 10.1016/j.scitotenv.2024.178300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia. Their increasing detection in wild fauna and natural environments confirms their ubiquitous nature. Indeed, they have been especially found in aquatic ecosystems and in many animals living in close association with them. Therefore, the hydric compartment is suspected to be the main reservoir of IMI carbapenemases. Although they are almost confined to Enterobacter cloacae complex species, some variants are plasmid-encoded and may diffuse to other bacterial species that are more virulent or more adapted to humans. Furthermore, their association with other resistance mechanisms, such as Extended Spectrum Beta-Lactamases, leaves only few therapeutic options and raises concerns about the environmental spread of Multi-Drug-Resistant bacteria. These carbapenemase might be responsible of "mixed" outbreaks of CPE with a community origin and a possible secondary nosocomial spread. Therefore, more studies from a One Health perspective are needed to identify as many primary environmental (aquatic) reservoirs as possible, as well as secondary distribution routes (directly from the environment, via the food chain or animals…) which may also become secondary reservoirs for these carbapenemases, in order to implement measures to combat this potential emerging threat to humans. This review summarizes the main characteristics of the IMI, NmcA, and FRI carbapenemases, covering their detection, epidemiology, genetic environment, and associated resistance genes using a One Health approach.
Collapse
Affiliation(s)
- Nicolas Martel
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Loïk Sababadichetty
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Guillaume Miltgen
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France; Biology Department, Maynooth National University of Ireland, Maynooth, Ireland; Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France; Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
11
|
Martínez-Álvarez S, Höfle U, Châtre P, Alonso CA, Asencio-Egea MÁ, François P, Cardona-Cabrera T, Zarazaga M, Madec JY, Haenni M, Torres C. One Health bottom-up analysis of the dissemination pathways concerning critical priority carbapenemase- and ESBL-producing Enterobacterales from storks and beyond. J Antimicrob Chemother 2025; 80:68-78. [PMID: 39526970 DOI: 10.1093/jac/dkae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 'One Health' initiatives to tackle the rising risk of antimicrobial resistance (AMR) have flourished due to increasing detection of Enterobacterales producing extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CPs). OBJECTIVES This study aimed to conduct an in-depth holistic analysis of Escherichia coli (Ec) and Klebsiella pneumoniae (Kp) isolates recovered from landfill-foraging white stork faecal samples and clinical isolates from a nearby hospital. METHODS Faecal samples (n = 211) were collected from storks foraging at two landfills in Spain. Ec/Kp stork isolates were recovered on selective media and whole-genome sequencing (WGS), together with isolates obtained from the nearby hospital. These genomic data were compared with public genomes from different contexts (clinical, environmental, or animal hubs) to understand global transmission dynamics. RESULTS A wide range of blaESBL/blapAmpC (blaCTX-M/blaSHV-12/blaDHA) were detected in 71 stork samples (33.6%), while blaCP (blaKPC/blaNDM/blaOXA-48/blaVIM) were identified in 28 (13.3%) samples. Clonal and plasmid transmissions were evidenced inside and between both landfills. Mapping against 10 624 public Ec/Kp genomes and from those of nearby hospital revealed that identical strains (<10 allelic differences with Ec-ST38/ST131 and Kp-ST512 lineages) and epidemic plasmids (full identity/coverage with IncN/blaKPC-2, IncF/blaKPC-3, IncX3/blaNDM-7, IncL/blaOXA-48) were found from clinical isolates in countries located along the storks' migration routes. CONCLUSIONS Storks may be contaminated by bacterial isolates from a likely human origin and become non-human reservoirs of critical genes, which can be dispersed over long distances. Identifying strains/plasmids along the stork's routes that are identical or closely related to those described here opens new perspectives for large-scale research to understand the AMR transmission dynamics.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pierre Châtre
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carla Andrea Alonso
- Department of Biomedical Diagnostics, Microbiology Laboratory, Hospital San Pedro, Logroño, Spain
| | | | - Pauline François
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
12
|
Temkin E, Bechor M, Lurie-Weinberger MN, Keren-Paz A, Chen D, Lugassy C, Solter E, Schwaber MJ, Carmeli Y. Population-Based Study of Emergence and Spread of Escherichia coli Producing OXA-48-Like Carbapenemases, Israel, 2007-2023. Emerg Infect Dis 2025; 31:66-74. [PMID: 39714269 PMCID: PMC11682801 DOI: 10.3201/eid3101.240722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Escherichia coli producing OXA-48-like carbapenemases (OXA-EC) is considered a high-risk pathogen spread primarily in the community in low- and middle-income countries and nosocomially in high-income countries. We investigated the emergence and spread of OXA-EC in Israel, a high-income country with strong carbapenemase-directed infection control in healthcare institutions, by conducting a population-based study using data and isolates from the national surveillance system. A total of 3,510 incident cases of OXA-EC occurred during 2007-2023. During 2016-2023, annual cases rose from 41 to 1,524 and nonnosocomial cases rose from 39% to 57%. Sixty-three sequenced isolates belonged to 20 sequence types (STs) and had 3 blaOXA alleles (blaOXA-244, blaOXA-48, and blaOXA-181); 71% were chromosomally encoded, and 29% were plasmid-encoded. Nosocomially and non-nosocomially acquired isolates belonged to the same STs and alleles. Most outbreaks involved multiple STs and could only partially be explained by plasmid dissemination. Measures for confronting OXA-EC might need reconsideration.
Collapse
|
13
|
Mamishi S, Sadeghi RH, Moghaddam SS, Pourakbari B, Poormohammadi S, Anvari MS, Mahmoudi S. Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. Clin Exp Pediatr 2025; 68:65-72. [PMID: 39483044 PMCID: PMC11725618 DOI: 10.3345/cep.2023.01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs.
Collapse
Affiliation(s)
- Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sadaf Sajedi Moghaddam
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poormohammadi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sotoudeh Anvari
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mahmoudi
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Smit PW, van Tienen C, Landman F, Zagers S, den Drijver M, Burggraaf A, Notermans DW, Damen M, Hendrickx AP, Jamin C. Diversification of bla OXA-48-harbouring plasmids among carbapenemase-producing Enterobacterales, 11 years after a large outbreak in a general hospital in the Netherlands. Microb Genom 2025; 11:001335. [PMID: 39792439 PMCID: PMC11722570 DOI: 10.1099/mgen.0.001335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction. Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing Enterobacterales (CPE) worldwide. After a large bla OXA-48 plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated bla OXA-48 plasmid among CPE collected from 2011 to 2021.Methods. A selection of 86 bla OXA-48-carrying CPE isolates was made from 374 isolates collected over an 11-year study period. Species included Escherichia coli (Eco), Klebsiella pneumoniae (Kpn), Enterobacter cloacae complex (Ecl), Citrobacter freundii (Cfr), Citrobacter koseri (Cko) and Morganella morgani (Mmo). Short-read sequencing was combined with long-read sequencing for all isolates to reconstruct bla OXA-48-like plasmids and chromosomes of CPE. MASH, MOBsuite, ResFinder, PlasmidFinder and SNP analyses were performed to study diversity. pOXA-48 plasmids were compared to plasmid sequences that were sequenced for the Dutch CPE surveillance in the same time period.Results. In total for the 86 CPE, 2 failed genomic assemblies and 78 bla OXA-48-encoding plasmids were reconstructed, and six bla OXA-48 genes were located chromosomally. The 2011 outbreak-associated bla OXA-48 plasmid of 63.6 kb with IncL replicon was found in Cfr, Ecl, Eco, Kpn and Mmo and primarily between 2011 and 2014 and indicated as LR025105 as MASH nearest neighbour. From 2014 onwards, 11 other types of bla OXA-48-carrying plasmids with different antibiotic-resistant genes and replicons were discovered, representing the earlier defined distinct pOXA-48 plasmid groups found in the Netherlands. Furthermore, on a national level, the LR025105 plasmid was found after 2015 in many different bacterial backgrounds, highlighting the promiscuous nature of this pOXA-48 plasmid.Conclusion. After a large bla OXA-48 outbreak in a large hospital in the Netherlands, the composition of the bla OXA-48 plasmid population in this hospital diversified over time and is in line with national surveillance data. Plasmid sequencing provided valuable insight into the transmission dynamics of bla OXA-48-encoding plasmids and showed no indication of the persistence of the 2011 bla OXA-48 plasmid in the hospital environment.
Collapse
Affiliation(s)
- Pieter W. Smit
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Carla van Tienen
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Fabian Landman
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabrina Zagers
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Marije den Drijver
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Arjan Burggraaf
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Daan W. Notermans
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marjolein Damen
- Maasstad Laboratories, Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Antoni P.A. Hendrickx
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Casper Jamin
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
15
|
Yang H, Xiong Z, Cao K, He Y, Song S, Lan F, Yang K, Liu X, Duan C, Zhou Z. Risk factors and molecular epidemiology of colonizing carbapenem-resistant Enterobacterales in pediatric inpatient in Shenzhen, China. J Infect Public Health 2025; 18:102614. [PMID: 39642772 DOI: 10.1016/j.jiph.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVES The spread of CRE has been rapid on a global scale and represents a significant challenge in nosocomial infections worldwide. The aim is to evaluate the risk factors for CRE colonization and to describe the molecular and clinical characteristics of CRE colonization in pediatric inpatients in Shenzhen, China. METHODS We collected stool specimens from 2474 randomly selected pediatric inpatient hospitalized in 2 pediatric hospitals in Shenzhen between January 2023 and December 2023 for subsequent microbiological analysis, including microbial culture, species identification, antimicrobial sensitivity testing, genetic characterization and multilocus sequence typing (MLST). In addition, we conducted a case-control study to identify potential risk factors for gastrointestinal CRE colonization. RESULTS Of the 2474 non-replicating pediatric stool specimens collected, 3.6 % (n = 90) test positive for CRE. The most dominant CRE species were Escherichia coli (n = 67, 74.5 %), and Klebsiella pneumoniae (n = 17, 19.0 %). Multidrug resistance and carbapenemase production were observed in most CRE isolates. In CR E. coli and CR K. pneumoniae, the blaNDM was the predominant resistance gene, accounting for 95.5 % and 76.5 %, respectively. MLST showed considerable clonal diversity among the CR E. coli and CR K. pneumoniae isolates and the most common ST in CR E. coli was ST48 (n = 6, 9.0 %) and ST35 in CR K. pneumoniae (n = 4, 23.5 %). CONCLUSIONS This study once again shows that pediatric inpatients in South China were colonized by a diversity of CRE strains, increasing the likelihood of difficult-to-treat infections. Hospitals and competent authorities should take appropriate public health measures, to prevent the further spread of CRE.
Collapse
Affiliation(s)
- Hongmei Yang
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China; Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Zhile Xiong
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt, Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ke Cao
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Yunxing He
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan Province, China; Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Songhong Song
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China
| | - Fangjun Lan
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China
| | - Kaiyue Yang
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China
| | - Xiaochun Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China
| | - Chaohui Duan
- Guangdong Medical University, Zhanjiang, Guangdong Province, China; Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Zhenwen Zhou
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
16
|
Toribio-Celestino L, Calvo-Villamañán A, Herencias C, Alonso-Del Valle A, Sastre-Dominguez J, Quesada S, Mazel D, Rocha EPC, Fernández-Calvet A, San Millan A. A plasmid-chromosome crosstalk in multidrug resistant enterobacteria. Nat Commun 2024; 15:10859. [PMID: 39738078 DOI: 10.1038/s41467-024-55169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria. Although pOXA-48 produces mostly strain-specific transcriptional alterations, it also leads to the common overexpression of a small chromosomal operon present in Klebsiella spp. and Citrobacter freundii strains. This operon includes two genes coding for a pirin and an isochorismatase family proteins (pfp and ifp), and shows evidence of horizontal mobilization across Proteobacteria species. Combining genetic engineering, transcriptomics, and CRISPRi gene silencing, we show that a pOXA-48-encoded LysR regulator is responsible for the plasmid-chromosome crosstalk. Crucially, the operon overexpression produces a fitness benefit in a pOXA-48-carrying MDR K. pneumoniae strain, suggesting that this crosstalk promotes the dissemination of carbapenem resistance in clinical settings.
Collapse
Affiliation(s)
| | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Susana Quesada
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | | | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
de Mendieta JM, De Belder D, Tijet N, Ghiglione B, Melano RG, Rapoport M, Power P, Di Bella A, Biondi E, Pasterán F, Corso A, Gomez SA. Novel allelic variants of bla OXA-48-like carried on IncN 2 and IncC 2 plasmids isolated from clinical cases in Argentina: In vivo emergence of bla OXA-567. J Glob Antimicrob Resist 2024; 41:88-95. [PMID: 39725323 DOI: 10.1016/j.jgar.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The OXA-48-like enzymes have the capacity to hydrolyse carbapenems and are members of class D β-lactamases that are primarily detected in Enterobacterales. The allelic variant blaOXA-163, which has low hydrolytic activity towards carbapenems, was detected in Argentina in 2011 and has spread successfully since then, giving sporadic origin to novel local variants. The aim of this study was to analyse the phenotypic profile and dissemination strategies of two novel OXA enzymes, blaOXA-438 and blaOXA-567, located in Escherichia coli M17224 and Klebsiella pneumoniae M21014, respectively, isolated from two paediatric patients. METHODS Minimum inhibitory concentration measurements were performed to determine the phenotypic profile of the clinical isolates, transconjugants and transformant cells. Biparental conjugation, PCR, Sanger and whole-genome sequencing were performed to determine the complete genetic characteristics of the plasmids. RESULTS Both isolates were found to be resistant to carbapenems and susceptible to ceftriaxone. blaOXA-438 was located on a 69-kb IncN2 plasmid, while blaOXA-567 was found on a 175-Kb IncC2 plasmid, both transferable by biparental conjugation. The close genetic environment of the blaOXA genes suggests a common origin likely involving mobile genetic elements. Finally, the clinical case of M21014 revealed that the patient had previous infections with two genetically related K. pneumoniae ST6838 that carried blaOXA-163 on an IncC2 plasmid with equal size and genetic hallmarks to that of M21014, providing strong evidence for the intra-patient emergence of blaOXA-567. CONCLUSIONS: This research underscores the need for ongoing surveillance and integral studies to understand the emergence, biochemistry and dissemination capacity of OXA enzymes with the overarching aim to halt their spread.
Collapse
Affiliation(s)
- Juan Manuel de Mendieta
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina
| | - Nathalie Tijet
- Public Health Ontario Laboratories, Toronto, Ontario, Canada
| | - Barbara Ghiglione
- Universidad de Buenos Aires, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | - Melina Rapoport
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina
| | - Pablo Power
- Universidad de Buenos Aires, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Adriana Di Bella
- Children's Hospital Sor María Ludovica, La Plata, Prov. of Buenos Aires, Argentina
| | - Estefanía Biondi
- Hospital General de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Fernando Pasterán
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina
| | - Sonia A Gomez
- Servicio Antimicrobianos, INEI-ANLIS 'Dr. Carlos G. Malbrán', National and Regional Reference Laboratory for Antimicrobial Resistance (NRRLAR), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
18
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
20
|
Jean SS, Ko WC, Liu IM, Hsieh PC, Hsueh PR. Geographic differences in susceptibility profiles of potential non-class B carbapenemase-producing Enterobacterales isolates against ceftazidime-avibactam, meropenem-vaborbactam, colistin, amikacin, gentamicin, and tigecycline: Data from the Antimicrobial Testing Leadership and Surveillance, 2018-2022. Int J Antimicrob Agents 2024; 64:107363. [PMID: 39455015 DOI: 10.1016/j.ijantimicag.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
To evaluate the susceptibility profiles of regional meropenem-resistant potential non-class B carbapenemase-producing Enterobacterales (CPE) isolates (without confirmation by phenotypic tests) against important antibiotics, we extracted data from the 2018-2022 Antimicrobial Testing Leadership and Surveillance. This data included susceptibility information of meropenem-resistant potential non-class B CPE isolates against indicated antibiotics - amikacin, gentamicin, ceftazidime-avibactam, colistin, meropenem-vaborbactam, and tigecycline - from sepsis patients hospitalized in intensive care units across six major regions. Carbapenemase-encoding genes of the tested CPE isolates, determined by multiplex PCR and Sanger sequencing, were also analyzed. Susceptibility breakpoints recommended by Clinical and Laboratory Standards Institute 2024 and US FDA criteria (for tigecycline only) against Enterobacterales were employed. A total of 1500 potential non-class B CPE isolates (89% of which were Klebsiella pneumoniae) were tested globally. Resistance rates to amikacin and gentamicin against the evaluated isolates were statistically higher in Africa/the Middle East, Europe, and India compared to other regions. A similar pattern was observed in the susceptibility of these potential CPE isolates to ceftazidime-avibactam and meropenem-vaborbactam. High colistin resistance rates were noted in Asia, Latin America, and Europe (29%-35%). Furthermore, the proportions of potential CPE isolates carrying genes encoding blaOXA variants were notably higher among the tested CPE isolates in India, Europe, and Africa/the Middle East regions (99.2%, 53.3%, and 96.7%, respectively) compared to other regions. Trends in resistance to important antibiotics among potential non-class B CPE isolates warrant close monitoring.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan; Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
21
|
Lee CE, Park Y, Park H, Kwak K, Lee H, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from Pseudomonas aeruginosa by single amino acid substitutions. Emerg Microbes Infect 2024; 13:2412631. [PMID: 39361442 PMCID: PMC11497580 DOI: 10.1080/22221751.2024.2412631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.
Collapse
Affiliation(s)
- Chae-eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoonsik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
22
|
Tsui CKM, Ben Abid F, McElheny CL, Hamed MM, Perez-Lopez A, Omrani AS, Doi Y. Characterization of bla NDM in two Escherichia coli ST1193 clinical isolates in the Gulf region. JAC Antimicrob Resist 2024; 6:dlae166. [PMID: 39507943 PMCID: PMC11538964 DOI: 10.1093/jacamr/dlae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Escherichia coli ST1193 is an emerging high-risk clone associated with the production of plasmid-mediated CTX-type extended-spectrum β-lactamases. However, this clone has seldom been found to contain plasmids carrying carbapenemase genes. We report two epidemiologically unlinked multidrug-resistant (MDR) clinical isolates of E. coli ST1193 with plasmids harbouring NDM-type carbapenemase genes from the Gulf region. Methods The isolates were identified by MALDI-TOF MS and antibiotic susceptibility testing was performed using the VITEK 2/Phoenix system. A conjugation experiment was performed to assess the transferability of the resistance plasmids. Genomic DNA of both isolates was subject to Illumina sequencing; one isolate was also sequenced using Oxford Nanopore technology. Bioinformatics analyses were performed to detect antimicrobial resistance genes, and to annotate the genetic context of the NDM genes. Results and Conclusions Both isolates were resistant to carbapenems using phenotypic tests. Conjugation experiment confirmed that NDM-5-encoding plasmids of both strains could be transferred to the recipient cells. The completed NDM-5-encoding plasmid of E. coli isolate FQ71 was highly similar to several plasmids from ST410 isolates in the NCBI database. Genomic analysis revealed the presence of transposase genes and transposons in the flanking regions of the NDM genes in the plasmids. Since carbapenems constitute first-line agents for the treatment of serious infections caused by ESBL producers, E. coli ST1193 isolates co-producing ESBL and NDM-type carbapenemases represent a serious challenge for antimicrobial stewardship and infection control programmes.
Collapse
Affiliation(s)
- Clement Kin-Ming Tsui
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, Singapore 308442, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Fatma Ben Abid
- Department of Medicine, Weill Cornell Medicine—Qatar, Doha, Qatar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Christi Lee McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Manal M Hamed
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Andres Perez-Lopez
- Department of Medicine, Weill Cornell Medicine—Qatar, Doha, Qatar
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
23
|
Shen Z, Qin J, Xiang G, Chen T, Nurxat N, Gao Q, Wang C, Zhang H, Liu Y, Li M. Outer membrane vesicles mediating horizontal transfer of the epidemic blaOXA-232 carbapenemase gene among Enterobacterales. Emerg Microbes Infect 2024; 13:2290840. [PMID: 38044873 PMCID: PMC10810626 DOI: 10.1080/22221751.2023.2290840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
OXA-232 is one of the most common OXA-48-like carbapenemase derivatives and is widely disseminated in nosocomial settings across countries. The blaOXA-232 gene is located on a 6-kb non-conjugative ColKP3-type plasmid, while the dissemination of blaOXA-232 into different Enterobacterales species and the polyclonal dissemination of OXA-232-producing K. pneumoniae revealed the horizontal transfer of blaOXA-232. However, it's still unclear how this non-conjugative ColKP3 plasmid could facilitate the mobilization of blaOXA-232. Here, we observed the in vivo intraspecies transfer of blaOXA-232 during a nosocomial outbreak of OXA-232-producing K. pneumoniae. We demonstrated the presence of ColKP3 OXA-232 plasmid in the outer membrane vesicles (OMVs) derived from clinical isolates, and OMVs could facilitate the horizontal transfer of blaOXA-232 among Enterobacterales. In contrast, for the most prevalent carbapenemase genes, including blaKPC-2 and blaNDM-1, though the presence of carbapenemase genes and plasmid backbones in the vesicular lumen was observed, OMVs couldn't promote effective transformation, probably due to the low copy number of plasmids in clinical isolates and the low number of plasmids loaded into vesicles. Conjugation assay revealed that the epidemic IncX3 NDM-1 and IncFII(pHN7A8)/IncR KPC-2 plasmids were conjugative and could be horizontally transferred via independent conjugation or with the help of a co-existent conjugative plasmid. For the large-size and low-copy number conjugative plasmids carrying carbapenemase genes, OMVs-mediated gene exchange may only serve as an alternative pathway for horizontal transfer. In conclusion, diverse mobilization strategies were employed by plasmids harbouring carbapenemase genes, and plasmids display a proper choice of mobility pathway due to their individual properties.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianchi Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yao Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Cameron H, Bazaes J, Sepúlveda C, Riquelme C. Rapid detection of enterobacteria in wastewater treated by microalgal consortia using loop-mediated isothermal amplification (LAMP). PeerJ 2024; 12:e18305. [PMID: 39559337 PMCID: PMC11572355 DOI: 10.7717/peerj.18305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
In the present study, nine Enterobacteriaceae species present in wastewater were isolated and identified, and loop-mediated isothermal amplification (LAMP) was developed for the detection of Enterobacteriaceae by designing primers based on the mcr-1, KPC, OXA-23, and VIM genes, which are recognized markers of antimicrobial resistance (AMR) transmission during microalgal bioremediation treatment. The developed assays successfully detected four strains positive for mcr-1 gene-asociated resistance (Acinetobacter baylyi, Klebsiella pneumoniae, Morganella morganii, and Serratia liquefaciens), three strains for KPC gene-associated resistance (Acinetobacter sp., Escherichia coli 15499, and Morganella morganii), seven strains for OXA-23 gene-associated resistance (Acinetobacter baylyi, Enterobacter hormaechi, Enterobacter cloacae, Escherichia coli 15922, Escherichia coli 51446, Morganella morganii, and Serratia liquefaciens), and three strains for resistance to the VIM gene-associated resistance (Acinetobacter baylyi, Acinetobacter sp., and Enterobacter hormaechi) from a single colony. A reduction in microbiological load of 93.6% was achieved at 15 colony-forming units (CFU) mL-1, utilizing EMB agar and LAMP values of 0.142 ± 0.011 for the mcr-1 gene, 0.212 ± 0.02 for the KPC gene, 0.233 ± 0.006 for the OXA-23 gene, and 0.219 ± 0.035 for the VIM gene. Furthermore, bioremediation efficiency values of 71.6% and 75% for total nitrogen and phosphorus, respectively, were observed at 72 h of treatment in open pond microalgal remediation systems (MRS). This study demonstrated that the LAMP technique is faster and more sensitive than traditional detection methods, such as CFU, for Enterobacteriaceae. Consequently, this method may be considered for the detection of microbiological quality indicators within the water treatment industry.
Collapse
Affiliation(s)
- Henry Cameron
- Centro de Bioinnovación Antofagasta (CBIA)/Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jazmín Bazaes
- Centro de Bioinnovación Antofagasta (CBIA)/Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Sepúlveda
- Centro de Bioinnovación Antofagasta (CBIA)/Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Riquelme
- Centro de Bioinnovación Antofagasta (CBIA)/Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
25
|
Salvador-Oke KT, Pitout JDD, Peirano G, Strydom KA, Kingsburgh C, Ehlers MM, Ismail A, Takawira FT, Kock MM. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in Gauteng South Africa. Sci Rep 2024; 14:27337. [PMID: 39521758 PMCID: PMC11550437 DOI: 10.1038/s41598-024-70910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Klebsiella pneumoniae multidrug-resistant (MDR) high-risk clones drive the spread of antimicrobial resistance (AMR) associated infections, resulting in limited therapeutic options. This study described the genomic characteristics of K. pneumoniae MDR high-risk clones in Gauteng, South Africa. Representative carbapenem-resistant [K. pneumoniae carbapenemase (KPC)-2, New-Delhi metallo-beta (β)-lactamase (NDM)-1, oxacillinase (OXA)-181, OXA-232, OXA-48, Verona integron-encoded metallo-β-lactamase (VIM)-1] K. pneumoniae isolates (n = 22) obtained from inpatient and outpatient's urine (n = 9) and inpatients rectal carriage (n = 13) were selected for short-read whole genome sequencing. Klebsiella pneumoniae population include sequence type (ST)-307 (n = 3), ST2497 (n = 5) and ST17 (n = 4). The ST17 strains were exclusively obtained from rectal screening. Ten isolates co-harboured carbapenemase genes including β-lactamase gene encoding KPC-2 + OXA-181, NDM-1 + OXA-48 and NDM-1 + OXA-181. One ST307 isolate (UP-KT-73CKP) co-harboured three carbapenemase genes (blaNDM-1 + blaOXA-48 + blaOXA-181), while all the ST2497 strains co-harboured (blaNDM-1 + blaOXA-232). Phenotypically, hypermucoviscosity was observed in a single ST307 isolate. The ST307 isolate UP-KT-151UKP harboured colibactin genotoxins. The following mobile genetic elements were detected: plasmids [incompatibility group (Inc)-FIB(K), IncX3], and bacteriophages [e.g. Klebsi_ST16_OXA48phi5.4_NC_049450, Klebsi_3LV2017_NC_047817(36)]. The study highlights the importance of local genomic surveillance systems to characterise K. pneumoniae MDR high-risk clones. This data will aid in designing infection and prevention measures for limiting the spread of carbapenemase-producing K. pneumoniae in Gauteng, South Africa.
Collapse
Affiliation(s)
- Kafilat T Salvador-Oke
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Pathology and Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
| | - Gisele Peirano
- Department of Pathology and Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Kathy-Anne Strydom
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
- National Reference Laboratory, Ampath, Centurion, South Africa
| | - Chanel Kingsburgh
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
- National Reference Laboratory, Ampath, Centurion, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Faustinos T Takawira
- Research Circle Trust, Harare, Zimbabwe
- National Microbiology Reference Laboratory, Harare, Zimbabwe
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
26
|
Mojica MF, Zeiser ET, Becka SA, Six DA, Moeck G, Papp-Wallace KM. Cefepime-taniborbactam demonstrates potent in vitro activity vs Enterobacterales with blaOXA-48. Microbiol Spectr 2024; 12:e0114424. [PMID: 39315842 PMCID: PMC11537129 DOI: 10.1128/spectrum.01144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Taniborbactam (formerly VNRX-5133) is a novel, investigational boronic acid β-lactamase inhibitor. The combination of cefepime (FEP) with taniborbactam is active against Enterobacterales carrying class A, B, C, and/or D enzymes. We assessed the activity of FEP-taniborbactam against Enterobacterales clinical strains carrying blaOXA-48 (N = 50, 100%), of which 78% harbored at least one extended-spectrum β-lactamase (ESBL). CLSI-based agar dilution susceptibility testing was conducted using FEP-taniborbactam and comparators FEP, meropenem-vaborbactam (MVB), and ceftazidime-avibactam (CZA). The addition of taniborbactam lowered FEP MICs to the provisionally susceptible range of ≤16 µg/mL; the MIC90 value decreased from ≥64 µg/mL for FEP to 4 µg/mL for FEP-taniborbactam. Notably, FEP-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were lower than those for MVB (1/16 µg/mL) and comparable to those for CZA (0.5/1 µg/mL). Time-kill assays with E. coli clinical strains DOV (blaOXA-48, blaCTX-M-15, blaTEM-1, and blaOXA-1) and MLI (blaOXA-48, blaVEB, blaTEM-1, and blaCMY-2) revealed that FEP-taniborbactam at concentrations 1×, 2×, and 4× MIC displayed time-dependent reductions in the number of CFU/mL from 0 to 6 h, and at 4× MIC demonstrated bactericidal activity (3 log10 reduction in CFU/mL at 24 h). Therefore, taniborbactam in combination with FEP was highly active against this diverse panel of Enterobacterales with blaOXA-48 and represents a potential addition to our antibiotic arsenal.IMPORTANCEOXA-48-like β-lactamases are class D carbapenemases widespread in Klebsiella pneumoniae and other Enterobacterales and are associated with carbapenem treatment failures. As up to 80% of OXA-48-like positive isolates coproduce extended-spectrum β-lactamases, a combination of β-lactams with broad-spectrum β-lactamase inhibitors is required to counteract all OXA-48-producing strains effectively. Herein, we evaluated the activity of cefepime-taniborbactam against 50 clinical strains producing OXA-48. We report that adding taniborbactam shifted the minimum inhibitory concentration (MIC) toward cefepime's susceptible range, restoring its antimicrobial activity. Notably, cefepime-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were comparable to ceftazidime-avibactam (0.5/1 µg/mL). Finally, time-kill assays revealed sustained bactericidal activity of cefepime-taniborbactam for up to 24 h. In conclusion, cefepime-taniborbactam will be a welcome addition to the antibiotic arsenal to combat Enterobacterales producing OXA-48.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Elise T. Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Scott A. Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Kubicskó A, Kamotsay K, Szabó D, Kocsis B. Analysis of molecular mechanisms of delafloxacin resistance in Escherichia coli. Sci Rep 2024; 14:26423. [PMID: 39488602 PMCID: PMC11531523 DOI: 10.1038/s41598-024-78124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
In this study delafloxacin resistance mechanisms in Escherichia coli strains were analyzed. Delafloxacin is a new fluoroquinolone, that is approved for clinical application however, resistance against this agent is scarcely reported. In our study 37 E. coli strains were included and antimicrobial susceptibility testing was performed for ciprofloxacin, delafloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, imipenem. Six delafloxacin resistant E. coli strains were selected for whole-genome sequencing and all of them exhibited resistance to other fluoroquinonlones and showed an extended-spectrum beta-lactamase phenotype. The six delafloxacin resistant E. coli strains belonged to different sequence types (STs) namely, ST131 (2 strains), ST57 (2 strains), ST162 and ST15840. Each delafloxacin resistant strain possessed multiple mutations in quinolone resistance-determining regions (QRDRs). Notably, three mutations in gyrA Ser83Leu, Asp87Asn and parC Ser80Ile were in strains of ST162, ST57 and ST15840. However, the two strains of ST131 carried five combined mutations namely, gyrA Ser83Leu, Asp87Asn, parC Ser80Ile, Glu84Val, parE Ile549Leu. Association of delafloxacin resistance and production of CTX-M-15 in ST131, CMY-2 in ST162 and ST15840 was detected. In this study a new ST, ST15840 of clonal complex 69 was identified. Our results demonstrate, that at least three mutations in QRDRs are required for delafloxacin resistance in E. coli.
Collapse
Affiliation(s)
- András Kubicskó
- Institute of Medical Microbiology, Semmelweis University, 1089, Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, 1089, Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083, Budapest, Hungary
| | - Béla Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089, Budapest, Hungary.
| |
Collapse
|
28
|
Car H, Dobrić M, Pospišil M, Nađ M, Luxner J, Zarfel G, Grisold A, Nikić-Hecer A, Vraneš J, Bedenić B. Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms 2024; 12:2224. [PMID: 39597613 PMCID: PMC11596078 DOI: 10.3390/microorganisms12112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
K. pneumoniae harbors various antibiotic resistance determinants like extended-spectrum and plasmid-mediated AmpC β-lactamases and carbapenemases. In the last three years, in the period of intense population aging, migrations and climate changes in Europe and Croatia as well, we observed changes in antibiotic resistance patters of carbapenem-resistant K. pneumoniae (CRKP) isolates obtained routinely in community and inpatient setting. The aim was to compare and subsequently analyze CRKP hospital and community isolates resistance mechanisms, traits and molecular epidemiology, in order to analyze the dynamic of resistance trends, carbapenemase types and plasmid epidemiology. Disk diffusion and broth dilution method were the methods of choice to determine antibiotic susceptibility. β-lactamases were screened by phenotypic methods and confirmed with PCR. In total 113 isolates were analysed. Resistance to amoxicillin-clavulanate and ertapenem was confirmed in all strains. High resistance rates (over 90%) were observed for extended-spectrum cephalosporins, and ciprofloxacin. OKNV (OXA-48, KPC, NDM, VIM) testing and PCR detected OXA-48 in 106, NDM in 7 and KPC in only one isolate. ESBLs accompanied carbapenemases in 103 isolates. IncL, associated with OXA-48, was the dominant plasmid type. No significant differences in the resistance profile and resistance determinants were found between hospital and community isolates plasmid type. The predominance of OXA-48 carbapenemase is in line with the reports from the neigbouring countries.
Collapse
Affiliation(s)
- Haris Car
- Zagreb Health School, 10000 Zagreb, Croatia;
| | - Mirela Dobrić
- Department of Anesthesiology, Intensive Medicine and Pain Management, University Hospital Centre Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Mladen Pospišil
- Department of Emergency Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Marina Nađ
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Josefa Luxner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Gernot Zarfel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Andrea Grisold
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Ana Nikić-Hecer
- Department of Microbiology and Hospital Infections, University Hospital Centre Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Jasmina Vraneš
- Department of Microbiology and Parasitology, University of Zagreb School of Medicine, Teaching Institute of Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia;
| | - Branka Bedenić
- Biomedical Research Center Šalata, University of Zagreb School of Medicine, Department for Clinical Microbiology and Infection Prevention and Control, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Zongo PD, Glaser P, Rosinski-Chupin I. [An antiplasmid defense system favored the emergence of carbapenem-resistant Escherichia coli clones]. Med Sci (Paris) 2024; 40:822-824. [PMID: 39656978 DOI: 10.1051/medsci/2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Unité Écologie et évolution de la résistance aux antibiotiques, Institut Pasteur, Paris, France - Sorbonne Université, Paris, France - Université Paris Cité, Paris, France
| | - Philippe Glaser
- Unité Écologie et évolution de la résistance aux antibiotiques, Institut Pasteur, Paris, France - Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et évolution de la résistance aux antibiotiques, Institut Pasteur, Paris, France - Université Paris Cité, Paris, France
| |
Collapse
|
30
|
Salvador-Oke KT, Pitout JDD, Peirano G, Strydom KA, Kingsburgh C, Ehlers MM, Kock MM. Klebsiella pneumoniae with carbapenemases: high prevalence of sequence type 307 with bla OXA181 in South African community hospitals. Eur J Clin Microbiol Infect Dis 2024; 43:2239-2244. [PMID: 39289248 PMCID: PMC11534848 DOI: 10.1007/s10096-024-04947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This study investigated the molecular characteristics of urinary carbapenemase-producing Klebsiella pneumoniae isolates (n = 194) in Gauteng, South Africa, using simple, cost-effective PCR methodologies. Extensively drug resistant (XDR) ST307 with blaOXA-181 on IncX3 plasmids was endemic in Gauteng community hospitals leaving limited options for treating in- and outpatient urinary tract infections. High-level ceftazidime/avibactam resistance was detected among isolates harbouring blaOXA-48-like including blaOXA-181. These findings highlighted the need for genomic methodologies suitable for lower- and middle-income countries to track XDR clones and plasmids in community hospitals. Such results will aid with treatment and stewardship strategies.
Collapse
Affiliation(s)
- Kafilat Taiwo Salvador-Oke
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Gisele Peirano
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Kathy-Anne Strydom
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
- Ampath National Reference Laboratory, Centurion, Pretoria, South Africa
| | - Chanel Kingsburgh
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
- Ampath National Reference Laboratory, Centurion, Pretoria, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
31
|
Sastre-Dominguez J, DelaFuente J, Toribio-Celestino L, Herencias C, Herrador-Gómez P, Costas C, Hernández-García M, Cantón R, Rodríguez-Beltrán J, Santos-Lopez A, San Millan A. Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria. Nat Ecol Evol 2024; 8:2097-2112. [PMID: 39198572 PMCID: PMC7616626 DOI: 10.1038/s41559-024-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation.
Collapse
Affiliation(s)
| | | | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coloma Costas
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
32
|
Brkic S, Cirkovic I. Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics (Basel) 2024; 13:895. [PMID: 39335068 PMCID: PMC11428970 DOI: 10.3390/antibiotics13090895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
In the context of global efforts to combat antimicrobial resistance (AMR), the importance of comprehensive AMR data is more crucial than ever. AMR surveillance networks, such as the European Antimicrobial Resistance Surveillance Network (EARS-Net) and the Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR), support member states in obtaining high-quality AMR data. Nevertheless, data gaps persist in some countries, including those in the Western Balkans (WBs), a region with high AMR rates. This review analyzed existing research on carbapenem-resistant Enterobacterales (CRE) to better understand the AMR landscape in the WB countries. The most prevalent CRE was Klebsiella pneumoniae, followed by Escherichia coli, Enterobacter cloacae, and Proteus mirabilis, with sporadic cases of Morganella morganii, Providencia spp., Klebsiella oxytoca, and Citrobacter sedlakii. Carbapenemase production was identified as the most common mechanism of carbapenem resistance, but other resistance mechanisms were not investigated. An increasing trend in carbapenem resistance has been observed over the last decade, alongside a shift in carbapenemase epidemiology from the NDM type in 2013-2014 to the OXA-48 type in recent years. Few studies have applied whole-genome sequencing for CRE analysis, which has demonstrated the spread of resistance determinants across different niches and over time, emphasizing the importance of molecular-based research. The overall low number of studies in the WB countries can be attributed to limited resources, highlighting the need for enhanced support in education, training, technology, and equipment to improve data collection and evaluation.
Collapse
Affiliation(s)
- Snezana Brkic
- Institute for Laboratory Diagnostics "Konzilijum", 11000 Belgrade, Serbia
| | - Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
33
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
34
|
Raro OHF, Nordmann P, Poirel L. Complete genome sequence of the OXA-48-producing Klebsiella pneumoniae strain 11978. Microbiol Resour Announc 2024; 13:e0034124. [PMID: 39162464 PMCID: PMC11390037 DOI: 10.1128/mra.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
We announce the complete genome sequence of Klebsiella pneumoniae strain 11978 isolated from a patient hospitalized in Turkey in 2001. The genome belongs to sequence type 14 and includes three plasmids. Notably, it presents an IncL plasmid carrying blaOXA-48, which demonstrated global success in terms of dissemination.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Canabal R, González-Bello C. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics. Bioorg Chem 2024; 150:107528. [PMID: 38852309 DOI: 10.1016/j.bioorg.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
β-Lactamases are bacterial enzymes that inactivate β-lactam antibiotics and, as such, are the most prevalent cause of antibiotic resistance in Gram-negative bacteria. The ever-increasing production and worldwide dissemination of bacterial strains producing carbapenemases is currently a global health concern. These enzymes catalyze the hydrolysis of carbapenems - the β-lactam antibiotics with the broadest spectrum of activity that are often considered as drugs of last resort. The incidence of carbapenem-resistant pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and carbapenemase or extended spectrum beta-lactamase (ESBL)-producing Enterobacterales, which are frequent in clinical settings, is worrisome since, in some cases, no therapies are available. These include all metallo-β-lactamases (VIM, IMP, NDM, SMP, and L1), and serine-carbapenemases of classes A (KPC, SME, IMI, and GES), and of classes D (OXA-23, OXA-24/40, OXA-48 and OXA-58). Consequently, the early diagnosis of bacterial strains harboring carbapenemases is a pivotal task in clinical microbiology in order to track antibiotic bacterial resistance and to improve the worldwide management of infectious diseases. Recent research efforts on the development of chromogenic and fluorescent chemical sensors for the specific and sensitive detection and quantification of β-lactamase production in multidrug-resistant pathogens are summarized herein. Studies to circumvent the main limitations of the phenotypic and molecular methods are discussed. Recently reported chromogenic and fluorogenic cephalosporin- and carbapenem-based β-lactamase substrates will be reviewed as alternative options to the currently available nitrocefin and related compounds, a chromogenic cephalosporin-based reagent widely used in clinical microbiology laboratories. The scope of these new chemical sensors, along with the synthetic approaches to synthesize them, is also summarized.
Collapse
Affiliation(s)
- Rafael Canabal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Sun L, Meng N, Wang H, Wang Z, Jiao X, Wang J. Occurrence and characteristics of bla OXA-181-carrying Klebsiella aerogenes from swine in China. J Glob Antimicrob Resist 2024; 38:35-41. [PMID: 38763331 DOI: 10.1016/j.jgar.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Nan Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanyun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Paudel R, Shrestha E, Chapagain B, Tiwari BR. Carbapenemase producing Gram negative bacteria: Review of resistance and detection methods. Diagn Microbiol Infect Dis 2024; 110:116370. [PMID: 38924837 DOI: 10.1016/j.diagmicrobio.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Gram negative bacilli that are carbapenem resistant have emerged and are spreading worldwide. Infections caused by carbapenem resistant isolates posses a significant threat due to their high morbidity and mortality rates. Carbapenemases production by multi-drug resistant pathogens severely restricts treatment choices for illnesses caused by bacteria that are resistant to both carbapenems and majority of β-lactam antibiotics. Various phenotypic and genotypic methods for identification can distinguish between different classes of carbapenemase and identify pathogens that are resistant to carbapenems. The establishment of a quick, accurate and reliable test for identifying the clinical strains that produce the carbapenemase enzyme is essential for optimum diagnosis of microbial pathogens and management of the global rise in the prevalence of carbapenemase producing bacterial strains. The aim of this review was to summarize the mechanisms of carbapenem resistance and to provide an overview of different carbapenemase detection methods for carbapenem resistant Gram negative bacilli.
Collapse
Affiliation(s)
- Rajan Paudel
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal.
| | - Elina Shrestha
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bipin Chapagain
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bishnu Raj Tiwari
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| |
Collapse
|
38
|
D'Achille G, Nunzi I, Fioriti S, Cirioni O, Brescini L, Giacometti A, Teodori L, Brenciani A, Giovanetti E, Mingoia M, Morroni G. Clonal dissemination of Klebsiella pneumoniae carrying bla OXA-48 gene in a central Italy hospital. J Glob Antimicrob Resist 2024; 38:339-340. [PMID: 39032696 DOI: 10.1016/j.jgar.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Affiliation(s)
- Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria Nunzi
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Simona Fioriti
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Teodori
- Clinical Microbiology Laboratory, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Andrea Brenciani
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Microbiology Unit, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marina Mingoia
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
39
|
Al-Madboly LA, El-Salam MAA, Bastos JK, Aboukhatwa S, El-Morsi RM. Characterization of GQA as a novel β-lactamase inhibitor of CTX-M-15 and KPC-2 enzymes. Microb Cell Fact 2024; 23:221. [PMID: 39118086 PMCID: PMC11308155 DOI: 10.1186/s12934-024-02421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 08/10/2024] Open
Abstract
β-lactam resistance is a significant global public health issue. Outbreaks of bacteria resistant to extended-spectrum β-lactams and carbapenems are serious health concerns that not only complicate medical care but also impact patient outcomes. The primary objective of this work was to express and purify two soluble recombinant representative serine β‑lactamases using Escherichia coli strain as an expression host and pET101/D as a cloning vector. Furthermore, a second objective was to evaluate the potential, innovative, and safe use of galloylquinic acid (GQA) from Copaifera lucens as a potential β-lactamase inhibitor.In the present study, blaCTX-M-15 and blaKPC-2 represented genes encoding for serine β-lactamases that were cloned from parent isolates of E. coli and K. pneumoniae, respectively, and expression as well as purification were performed. Moreover, susceptibility results demonstrated that recombinant cells became resistant to all test carbapenems (MICs; 64-128 µg/mL) and cephalosporins (MICs; 128-512 µg/mL). The MICs of the tested β-lactam antibiotics were determined in combination with 4 µg/mL of GQA, clavulanic acid, or tazobactam against E. coli strains expressing CTX-M-15 or KPC-2-β-lactamases. Interestingly, the combination with GQA resulted in an important reduction in the MIC values by 64-512-fold to the susceptible range with comparable results for other reference inhibitors. Additionally, the half-maximal inhibitory concentration of GQA was determined using nitrocefin as a β-lactamase substrate. Data showed that the test agent was similar to tazobactam as an efficient inhibitors of the test enzymes, recording smaller IC50 values (CTX-M-15; 17.51 for tazobactam, 28.16 µg/mL for GQA however, KPC-2; 20.91 for tazobactam, 24.76 µg/mL for GQA) compared to clavulanic acid. Our work introduces GQA as a novel non-β-lactam inhibitor, which interacts with the crucial residues involved in β-lactam recognition and hydrolysis by non-covalent interactions, complementing the enzyme's active site. GQA markedly enhanced the potency of β-lactams against carbapenemase and extended-spectrum β-lactamase-producing strains, reducing the MICs of β-lactams to the susceptible range. The β-lactamase inhibitory activity of GQA makes it a promising lead molecule for the development of more potent β-lactamase inhibitors.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mohamed A Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Jairo K Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, SP, 14040-903, Brazil
| | - Shaimaa Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
40
|
Bustamante M, Koopman F, Martens J, Brons JK, DelaFuente J, Hackl T, Kuipers OP, van Doorn GS, de Vos MGJ. Community context influences the conjugation efficiency of Escherichia coli. FEMS MICROBES 2024; 5:xtae023. [PMID: 39170752 PMCID: PMC11338288 DOI: 10.1093/femsmc/xtae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In urinary tract infections (UTIs), different bacteria can live in a polymicrobial community consisting of different species. It is unknown how community members affect the conjugation efficiency of uropathogenic Escherichia coli. We investigated the influence of individual species often coisolated from urinary infections (UTI) on the conjugation efficiency of E. coli isolates in artificial urine medium. Pairwise conjugation rate experiments were conducted between a donor E. coli strain containing the pOXA-48 plasmid and six uropathogenic E. coli isolates, in the presence and absence of five different species commonly coisolated in polymicrobial UTIs to elucidate their effect on the conjugation efficiency of E. coli. We found that the basal conjugation rates of pOXA-48, in the absence of other species, are dependent on the bacterial host genetic background. Additionally, we found that bacterial interactions have an overall positive effect on the conjugation rate of pOXA-48. Particularly, Gram-positive enterococcal species were found to enhance the conjugation rates towards uropathogenic E. coli isolates. We hypothesize that the nature of the coculture and physical interactions are important for these increased conjugation rates in an artificial urine medium environment.
Collapse
Affiliation(s)
| | - Floor Koopman
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jesper Martens
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jolanda K Brons
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Thomas Hackl
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Oscar P Kuipers
- GBB, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Marjon G J de Vos
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Novazzi F, Arcari G, Drago Ferrante F, Boutahar S, Genoni AP, Carcione D, Cassani G, Gigante P, Carbotti M, Capuano R, Pasciuta R, Mancini N. Combined Use of Phenotypic Screening and of a Novel Commercial Assay (REALQUALITY Carba-Screen) for the Rapid Molecular Detection of Carbapenemases: A Single-Center Experience. Diagnostics (Basel) 2024; 14:1599. [PMID: 39125475 PMCID: PMC11311838 DOI: 10.3390/diagnostics14151599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carbapenem resistance is a serious public health threat, causing numerous deaths annually primarily due to healthcare-associated infections. To face this menace, surveillance programs in high-risk patients are becoming a widespread practice. Here we report the performance of the combined use of a recently approved commercial multiplex real-time PCR assay (REALQUALITY Carba-Screen kit) with conventional phenotypic screening. In this three-month study, 479 rectal swabs from 309 patients across high-risk units were evaluated by combining the two approaches. Although the molecular assay showed a higher positivity rate than phenotypic screening (7.1% vs. 5%), it should be noted that the molecular method alone would have missed eight carbapenem-resistant isolates, while using only phenotypic screening would not have detected sixteen isolates. This demonstrates the complementary strengths of each method. Our study confirms the need for a combined approach to maximize the possible clinical impact of this kind of screening, ensuring a more comprehensive detection of resistant strains.
Collapse
Affiliation(s)
- Federica Novazzi
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Gabriele Arcari
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Francesca Drago Ferrante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Sara Boutahar
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Angelo Paolo Genoni
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Davide Carcione
- Laboratory of Clinical Microbiology and Virology, ASST Valle Olona, 21013 Gallarate, Italy
| | - Gianluca Cassani
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Paolo Gigante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Mattia Carbotti
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Riccardo Capuano
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Renée Pasciuta
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
42
|
Markovska R, Stankova P, Popivanov G, Gergova I, Mihova K, Mutafchiyski V, Boyanova L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics (Basel) 2024; 13:677. [PMID: 39061359 PMCID: PMC11274196 DOI: 10.3390/antibiotics13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid spread of carbapenemase-producing strains has led to increased levels of resistance among Gram-negative bacteria, especially enterobacteria. The current study aimed to collect and genetically characterize the colistin- and carbapenem-resistant isolates, obtained in one of the biggest hospitals (Military Medical Academy) in Sofia, Bulgaria. Clonal relatedness was detected by RAPD and MLST. Carbapenemases, ESBLs, and mgrB were investigated by PCR amplification and sequencing, replicon typing, and 16S rRNA methyltransferases with PCRs. Fourteen colistin- and carbapenem-resistant K. pneumoniae isolates were detected over five months. Six carbapenem-resistant and colistin-susceptible isolates were also included. The current work revealed a complete change in the spectrum of carbapenemases in Bulgaria. blaNDM-5 was the only NDM variant, and it was always combined with blaOXA-232. The coexistence of blaOXA-232 and blaNDM-5 was observed in 10/14 (72%) of colistin- and carbapenem-resistant K. pneumoniae isolates and three colistin-susceptible isolates. All blaNDM-5- and blaOXA-232-positive isolates belonged to the ST6260 (ST101-like) MLST type. They showed great mgrB variability and had a higher mortality rate. In addition, we observed blaOXA-232 ST14 isolates and KPC-2-producing ST101, ST16, and ST258 isolates. The colistin- and carbapenem-resistant isolates were susceptible only to cefiderocol for blaNDM-5- and blaOXA-232-positive isolates and to cefiderocol and ceftazidime/avibactam for blaOXA-232- or blaKPC-2-positive isolates. All blaOXA-232-positive isolates carried rmtB methylase and the colE replicon type. The extremely limited choice of appropriate treatment for patients infected with such isolates and their faster distribution highlight the need for urgent measures to control this situation.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (G.P.); (V.M.)
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | | | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
43
|
Gonzalez C, Oueslati S, Rima M, Nermont R, Dortet L, Hopkins KL, Iorga BI, Bonnin RA, Naas T. Molecular, Genetic, and Biochemical Characterization of OXA-484 Carbapenemase, a Difficult-to-Detect R214G Variant of OXA-181. Microorganisms 2024; 12:1391. [PMID: 39065158 PMCID: PMC11278660 DOI: 10.3390/microorganisms12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.
Collapse
Affiliation(s)
- Camille Gonzalez
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Mariam Rima
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Réva Nermont
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Laurent Dortet
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Katie L. Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK;
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France;
| | - Rémy A. Bonnin
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
Yuan PB, Dai LT, Zhang QK, Zhong YX, Liu WT, Yang L, Chen DQ. Global emergence of double and multi-carbapenemase producing organisms: epidemiology, clinical significance, and evolutionary benefits on antimicrobial resistance and virulence. Microbiol Spectr 2024; 12:e0000824. [PMID: 38860788 PMCID: PMC11218513 DOI: 10.1128/spectrum.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Redundant carbapenemase-producing (RCP) bacteria, which carry double or multiple carbapenemases, represent a new and concerning phenomenon. The objective of this study is to conduct a comprehensive analysis of the epidemiology and genetic mechanisms of RCP strains to support targeted surveillance and control measures. A retrospective analysis was conducted using surveillance data from 277 articles. Statistical analysis was performed to determine and evaluate species prevalence, proportions of carbapenemases, antibiotic susceptibility profiles, sample information, and patient outcomes. Complete plasmid sequencing data were utilized to investigate potential antimicrobial resistance or virulence advantages that strains may gain from acquiring redundant carbapenemases. RCP bacteria are widely distributed globally, and their prevalence is increasing over time. Several countries, including China, India, Iran, Turkey, and South Korea, have reported more than 100 RCP strains. The most commonly reported RCP species are Klebsiella pneumoniae and Acinetobacter baumannii, which exhibit varying proportions of carbapenemase combinations. Certain species-carbapenemase combinations, such as K. pneumoniae carrying New Delhi metallo-β-lactamase (NDM) + oxacillinase (OXA) (56.76%) and K. pneumoniae carbapenemase (KPC) + Verona integron-encoded metallo-β-lactamase (VIM) (50.00%) carbapenemases, are associated with high mortality rates. In patients with RCP strains isolated from the bloodstream and respiratory system, the mortality rates are 58.70% and 69.23%, respectively. Analysis of plasmids from RCP strains suggests that they may acquire additional antibiotic resistance phenotypes and virulence factors. Carbapenem-resistant bacteria carrying redundant carbapenemases pose a significant global health threat. This study provides valuable insights into the epidemiology and genetic mechanisms of these bacteria, supporting the development of effective control and prevention strategies to mitigate their transmission.IMPORTANCEThis study examined the global distribution patterns of 1,780 bacteria with double or multiple carbapenemases from 277 articles and assessed their clinical impact. The presence of multiple carbapenemases increases the chances of co-resistance to other classes of antibiotics and more virulence factors, further complicating the clinical management of infections.
Collapse
Affiliation(s)
- Pei-Bo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Ting Dai
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Ke Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Xia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Ting Liu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Hou B, Zhou Y, Wang W, Shen W, Yu Q, Mao M, Wang S, Ai W, Yu F, Shao P. Characterization of ST15-KL112 Klebsiella pneumoniae Co-Harboring Bla oxa-232 and rmtF in China. Infect Drug Resist 2024; 17:2719-2732. [PMID: 38974316 PMCID: PMC11227325 DOI: 10.2147/idr.s462158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction This study aimed to investigate the emergence and characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains that demonstrate resistance to multiple antibiotics, including aminoglycosides and tigecycline, in a Chinese hospital. Methods A group of ten CRKP strains were collected from the nine patients in a Chinese hospital. Antimicrobial Susceptibility Testing (AST) and phenotypic inhibition assays precisely assess bacterial antibiotic resistance. Real-time quantitative PCR (RT-qPCR) was used to analyze the mRNA levels of efflux pump genes (acrA/acrB and oqxA/oqxB) and the regulatory gene (ramA). The core-genome tree and PFGE patterns were analyzed to assess the clonal and horizontal transfer expansion of the strains. Whole-genome sequencing was performed on a clinical isolate of K. pneumoniae named Kpn20 to identify key resistance genes and antimicrobial resistance islands (ARI). Results The CRKP strains showed high resistance to carbapenems, aminoglycosides (CLSI, 2024), and tigecycline (EUCAST, 2024). The mRNA expression levels of efflux pump genes and regulatory genes were detected by RT-qPCR. All 10 isolates had significant differences compared to the control group of ATCC13883. The core-genome tree and PFGE patterns revealed five clusters, indicating clonal and horizontal transfer expansion. Three key resistance genes (blaoxa-232, blaCTX-M-15 , and rmtF) were observed in the K. pneumoniae clinical isolate Kpn20. Mobile antibiotic resistance islands were identified containing bla CTX-M-15 and rmtF, with multiple insertion sequences and transposons present. The coexistence of bla oxa-232 and rmtF in a high-risk K. pneumoniae strain was reported. Conjugation assay was utilized to investigate the transferability of bla oxa-232-encoding plasmids horizontally. Conclusion The study highlights the emergence of ST15-KL112 high-risk CRKP strains with multidrug resistance, including to aminoglycosides and tigecycline. The presence of mobile ARI and clonal and horizontal transfer expansion of strains indicate the threat of transmission of these strains. Future research is needed to assess the prevalence of such isolates and develop effective control measures.
Collapse
Affiliation(s)
- Bailong Hou
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
| | - Wei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Weifeng Shen
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Qinlong Yu
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Minjie Mao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Siheng Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Wenxiu Ai
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Pingyang Shao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| |
Collapse
|
46
|
Lee YL, Wang WY, Ko WC, Hsueh PR. Global epidemiology and antimicrobial resistance of Enterobacterales harbouring genes encoding OXA-48-like carbapenemases: insights from the results of the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme 2018-2021. J Antimicrob Chemother 2024; 79:1581-1589. [PMID: 38758189 DOI: 10.1093/jac/dkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES The recent emergence of carbapenem-resistant Enterobacterales poses a major and escalating threat to global public health. This study aimed to analyse the global distribution and antimicrobial resistance of Enterobacterales harbouring variant OXA-48-like carbapenemase-related genes. METHODS Enterobacterales isolates were collected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme during 2018-2021. Comprehensive antimicrobial susceptibility testing and β-lactamase gene detection were also conducted, along with statistical analysis of the collected data. RESULTS Among the 72 244 isolates, 1934 Enterobacterales isolates were identified to harbour blaOXA-48-like genes, predominantly Klebsiella spp. (86.9%). High rates of multidrug resistance were observed, with only ceftazidime/avibactam and tigecycline showing favourable susceptibility. A discrepancy between the genotype and phenotype of carbapenem resistance was evident: 16.8% (233 out of 1384) of the Enterobacterales isolates with blaOXA-48-like genes exhibited susceptibility to meropenem. Specifically, 37.4% (64/95) of Escherichia coli strains with blaOXA-48-like genes displayed meropenem susceptibility, while the corresponding percentages for Klebsiella pneumoniae and Enterobacter cloacae complex were 25.2% (160/1184) and 0% (0/36), respectively (P < 0.05). Geographical analysis revealed that the highest prevalence of blaOXA-48-like genes occurred in Asia, the Middle East and Eastern Europe. The proportion of K. pneumoniae isolates harbouring blaOXA-232 increased from 23.9% in 2018 to 56.0% in 2021. By contrast, the proportion of blaOXA-48 decreased among K. pneumoniae isolates during 2018-2021. CONCLUSIONS This study underscores the widespread and increasing prevalence of blaOXA-48-like genes in Enterobacterales and emphasizes the need for enhanced surveillance, improved diagnostic methods and tailored antibiotic stewardship to combat the spread of these resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- PhD Program in Medical Biotechnology, Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Yao Wang
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Chin Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
47
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
48
|
Wu J, Liu M, Zhao J, Xi Y, Yang H, Chen S, Long J, Duan G. Global distribution and genetic characterization of bla OXA-positive plasmids in Escherichia coli. World J Microbiol Biotechnol 2024; 40:244. [PMID: 38871847 DOI: 10.1007/s11274-024-04051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In recent years, the emergence of blaOXA-encoding Escherichia coli (E. coli) poses a significant threat to human health. Here, we systematically analyzed the global geographic distribution and genetic characteristics of 328 blaOXA-positive E. coli plasmids based on NCBI database. Twelve blaOXA variants have been discovered, with blaOXA-1 (57.93%) being the most common, followed by blaOXA-10 (11.28%) and blaOXA-48 (10.67%). Our results suggested that blaOXA-positive E. coli plasmids were widespread in 40 countries, mainly in China, the United States, and Spain. MLST analysis showed that ST2, ST43, and ST471 were the top three host STs for blaOXA-positive plasmids, deserving continuing attention in future surveillance program. Network analysis revealed a correlation between different blaOXA variants and specific antibiotic resistance genes, such as blaOXA-1 and aac (6')-Ib-cr (95.79%), blaOXA-181 and qnrS1 (87.88%). The frequent detection of aminoglycosides-, carbapenems- and even colistin-related resistance genes in blaOXA-positive plasmids highlights their multidrug-resistant potential. Additionally, blaOXA-positive plasmids were further divided into eight clades, clade I-VIII. Each clade displayed specificity in replicon types and conjugative transfer elements. Different blaOXA variants were associated with specific plasmid lineages, such as blaOXA-1 and IncFII plasmids in clade II, and blaOXA-48 and IncL plasmids in clade I. Overall, our findings provide a comprehensive insight into blaOXA-positive plasmids in E. coli, highlighting the role of plasmids in blaOXA dissemination in E. coli.
Collapse
Affiliation(s)
- Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
49
|
Hajizadeh Y, Badmasti F, Oloomi M. Inhibition of the bla OXA-48 gene expression in Klebsiella pneumoniae by a plasmid carrying CRISPRi-Cas9 system. Gene 2024; 910:148332. [PMID: 38431235 DOI: 10.1016/j.gene.2024.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance is an increasing concern that threatens the effectiveness of treating bacterial infections. The spread of carbapenem resistant Klebsiella pneumoniae poses a significant threat to global public health. To combat this issue, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system is being developed. This system includes a single guide RNA (sgRNA) and a nuclease dead Cas9 (dCas9), which work together to downregulate gene expression. Our project involved the use of the CRISPRi system to reduce gene expression of the beta-lactamase oxacillin-48 (blaOXA-48) gene in K. pneumoniae. We designed a sgRNA and cloned it into pJMP1363 plasmid harboring the CRISPRi system. The pJMP1363-sgRNA construct was transformed in K. pneumoniae harboring the blaOXA-48 gene. The MIC test was used to evaluate the antimicrobial resistance, and quantitative real-time RT-PCR was used to confirm the inhibition of the OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA construct expression. The Galleria mellonella larvae model was also utilized for in vivo assay. Following the transformation, the MIC test indicated a 4-fold reduction in meropenem resistance, and qRT-PCR analysis revealed a 60-fold decrease in the mRNA OXA-48 harboring the pJMP1363-sgRNA construct expression. Additionally, G. mellonella larvae infected with OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA showed higher survival rates. Based on the findings, it can be concluded that the CRISPR interference technique has successfully reduced antibiotic resistance and virulence in the K. pneumoniae harboring the blaOXA-48 gene.
Collapse
Affiliation(s)
- Yeganeh Hajizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
50
|
Takei S, Tabe Y, Miida T, Hishinuma T, Khasawneh A, Kirikae T, Sherchand JB, Tada T. Multidrug-resistant Klebsiella pneumoniae clinical isolates producing NDM- and OXA-type carbapenemase in Nepal. J Glob Antimicrob Resist 2024; 37:233-243. [PMID: 38759919 DOI: 10.1016/j.jgar.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES The emergence of multidrug-resistant Klebsiella pneumoniae has become a serious problem in medical settings worldwide. METHODS A total of 46 isolates of multidrug-resistant K. pneumoniae were obtained from 2 hospitals in Nepal from October 2018 to April 2019. RESULTS Most of these isolates were highly resistant to carbapenems, aminoglycosides, and fluoroquinolones with the minimum inhibitory concentrations (MICs) of more than 64 µg/mL. These isolates harboured carbapenemase-encoding genes, including blaNDM-1, blaNDM-5, blaOXA-181 and blaOXA-232, and 16S rRNA methyltransferase-encoding genes, including armA, rmtB, rmtC, and rmtF. Multilocus sequence typing revealed that 44 of 46 isolates were high-risk clones such as ST11 (2%), ST14 (4%), ST15 (11%), ST37 (2%), ST101 (2%), ST147 (28%), ST231 (13%), ST340 (4%), and ST395 (28%). In particular, ST395 isolates, which spread across medical settings in Nepal, co-harboured blaNDM-5 and rmtB on IncFII plasmids and co-harboured blaOXA-181/-232 and rmtF on ColKP3 plasmids. Several isolates harboured blaOXA-181 or blaNDM-5 on their chromosomes and multi-copies of blaNDM-1 or genes encoding 16S rRNA methyltransferases on their plasmids. CONCLUSIONS The presented study demonstrates that the high-risk clones of multidrug-resistant K. pneumoniae spread in a clonal manner across hospitals in Nepal.
Collapse
Affiliation(s)
- Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Abdullah Khasawneh
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeevan B Sherchand
- Department of Medical Microbiology, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|