1
|
Lee CE, Park Y, Park H, Kwak K, Lee H, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from Pseudomonas aeruginosa by single amino acid substitutions. Emerg Microbes Infect 2024; 13:2412631. [PMID: 39361442 PMCID: PMC11497580 DOI: 10.1080/22221751.2024.2412631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.
Collapse
Affiliation(s)
- Chae-eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoonsik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
2
|
Jean SS, Ko WC, Liu IM, Hsieh PC, Hsueh PR. Geographic differences in susceptibility profiles of potential non-class B carbapenemase-producing Enterobacterales isolates against ceftazidime-avibactam, meropenem-vaborbactam, colistin, amikacin, gentamicin, and tigecycline: Data from the Antimicrobial Testing Leadership and Surveillance, 2018-2022. Int J Antimicrob Agents 2024:107363. [PMID: 39455015 DOI: 10.1016/j.ijantimicag.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
To evaluate the susceptibility profiles of regional meropenem-resistant (MEM-R) potential non-class B carbapenemase-producing Enterobacterales (CPE) isolates (without confirmation by phenotypic tests) against important antibiotics, we extracted data from the 2018-2022 Antimicrobial Testing Leadership and Surveillance. This data included susceptibility information of MEM-R potential non-class B CPE isolates against indicated antibiotics - amikacin [AMK], gentamicin [GM], ceftazidime-avibactam [CZA], colistin [CST], meropenem-vaborbactam [MVB], and tigecycline [TGC] - from sepsis patients hospitalized in ICUs across six major regions. Carbapenemase-encoding genes of the tested CPE isolates, determined by multiplex PCR and Sanger sequencing, were also analyzed. Susceptibility breakpoints recommended by CLSI 2024 and US FDA criteria (for TGC only) against Enterobacterales were employed. A total of 1,500 potential non-class B CPE isolates (89% of which were Klebsiella pneumoniae) were tested globally. Resistance rates to AMK and GM against the evaluated isolates were statistically higher in Africa/the Middle East, Europe, and India compared to other regions. A similar pattern was observed in the susceptibility of these potential CPE isolates to CZA and MVB. High CST resistance rates were noted in Asia, Latin America, and Europe (29%-35%). Furthermore, the proportions of potential CPE isolates carrying genes encoding blaOXA variants were notably higher among the tested CPE isolates in India, Europe, and Africa/the Middle East regions (99.2%, 53.3%, and 96.7%, respectively) compared to other regions. Trends in resistance to important antibiotics among potential non-class B CPE isolates warrant close monitoring.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan; Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Mojica MF, Zeiser ET, Becka SA, Six DA, Moeck G, Papp-Wallace KM. Cefepime-taniborbactam demonstrates potent in vitro activity vs Enterobacterales with blaOXA-48. Microbiol Spectr 2024:e0114424. [PMID: 39315842 DOI: 10.1128/spectrum.01144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Taniborbactam (formerly VNRX-5133) is a novel, investigational boronic acid β-lactamase inhibitor. The combination of cefepime (FEP) with taniborbactam is active against Enterobacterales carrying class A, B, C, and/or D enzymes. We assessed the activity of FEP-taniborbactam against Enterobacterales clinical strains carrying blaOXA-48 (N = 50, 100%), of which 78% harbored at least one extended-spectrum β-lactamase (ESBL). CLSI-based agar dilution susceptibility testing was conducted using FEP-taniborbactam and comparators FEP, meropenem-vaborbactam (MVB), and ceftazidime-avibactam (CZA). The addition of taniborbactam lowered FEP MICs to the provisionally susceptible range of ≤16 µg/mL; the MIC90 value decreased from ≥64 µg/mL for FEP to 4 µg/mL for FEP-taniborbactam. Notably, FEP-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were lower than those for MVB (1/16 µg/mL) and comparable to those for CZA (0.5/1 µg/mL). Time-kill assays with E. coli clinical strains DOV (blaOXA-48, blaCTX-M-15, blaTEM-1, and blaOXA-1) and MLI (blaOXA-48, blaVEB, blaTEM-1, and blaCMY-2) revealed that FEP-taniborbactam at concentrations 1×, 2×, and 4× MIC displayed time-dependent reductions in the number of CFU/mL from 0 to 6 h, and at 4× MIC demonstrated bactericidal activity (3 log10 reduction in CFU/mL at 24 h). Therefore, taniborbactam in combination with FEP was highly active against this diverse panel of Enterobacterales with blaOXA-48 and represents a potential addition to our antibiotic arsenal.IMPORTANCEOXA-48-like β-lactamases are class D carbapenemases widespread in Klebsiella pneumoniae and other Enterobacterales and are associated with carbapenem treatment failures. As up to 80% of OXA-48-like positive isolates coproduce extended-spectrum β-lactamases, a combination of β-lactams with broad-spectrum β-lactamase inhibitors is required to counteract all OXA-48-producing strains effectively. Herein, we evaluated the activity of cefepime-taniborbactam against 50 clinical strains producing OXA-48. We report that adding taniborbactam shifted the minimum inhibitory concentration (MIC) toward cefepime's susceptible range, restoring its antimicrobial activity. Notably, cefepime-taniborbactam MIC50/MIC90 values (0.5/4 µg/mL) were comparable to ceftazidime-avibactam (0.5/1 µg/mL). Finally, time-kill assays revealed sustained bactericidal activity of cefepime-taniborbactam for up to 24 h. In conclusion, cefepime-taniborbactam will be a welcome addition to the antibiotic arsenal to combat Enterobacterales producing OXA-48.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Elise T Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Scott A Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - David A Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Krisztina M Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Brkic S, Cirkovic I. Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics (Basel) 2024; 13:895. [PMID: 39335068 PMCID: PMC11428970 DOI: 10.3390/antibiotics13090895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
In the context of global efforts to combat antimicrobial resistance (AMR), the importance of comprehensive AMR data is more crucial than ever. AMR surveillance networks, such as the European Antimicrobial Resistance Surveillance Network (EARS-Net) and the Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR), support member states in obtaining high-quality AMR data. Nevertheless, data gaps persist in some countries, including those in the Western Balkans (WBs), a region with high AMR rates. This review analyzed existing research on carbapenem-resistant Enterobacterales (CRE) to better understand the AMR landscape in the WB countries. The most prevalent CRE was Klebsiella pneumoniae, followed by Escherichia coli, Enterobacter cloacae, and Proteus mirabilis, with sporadic cases of Morganella morganii, Providencia spp., Klebsiella oxytoca, and Citrobacter sedlakii. Carbapenemase production was identified as the most common mechanism of carbapenem resistance, but other resistance mechanisms were not investigated. An increasing trend in carbapenem resistance has been observed over the last decade, alongside a shift in carbapenemase epidemiology from the NDM type in 2013-2014 to the OXA-48 type in recent years. Few studies have applied whole-genome sequencing for CRE analysis, which has demonstrated the spread of resistance determinants across different niches and over time, emphasizing the importance of molecular-based research. The overall low number of studies in the WB countries can be attributed to limited resources, highlighting the need for enhanced support in education, training, technology, and equipment to improve data collection and evaluation.
Collapse
Affiliation(s)
- Snezana Brkic
- Institute for Laboratory Diagnostics "Konzilijum", 11000 Belgrade, Serbia
| | - Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Salvador-Oke KT, Pitout JDD, Peirano G, Strydom KA, Kingsburgh C, Ehlers MM, Kock MM. Klebsiella pneumoniae with carbapenemases: high prevalence of sequence type 307 with bla OXA181 in South African community hospitals. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04947-z. [PMID: 39289248 DOI: 10.1007/s10096-024-04947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This study investigated the molecular characteristics of urinary carbapenemase-producing Klebsiella pneumoniae isolates (n = 194) in Gauteng, South Africa, using simple, cost-effective PCR methodologies. Extensively drug resistant (XDR) ST307 with blaOXA-181 on IncX3 plasmids was endemic in Gauteng community hospitals leaving limited options for treating in- and outpatient urinary tract infections. High-level ceftazidime/avibactam resistance was detected among isolates harbouring blaOXA-48-like including blaOXA-181. These findings highlighted the need for genomic methodologies suitable for lower- and middle-income countries to track XDR clones and plasmids in community hospitals. Such results will aid with treatment and stewardship strategies.
Collapse
Affiliation(s)
- Kafilat Taiwo Salvador-Oke
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Gisele Peirano
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Kathy-Anne Strydom
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
- Ampath National Reference Laboratory, Centurion, Pretoria, South Africa
| | - Chanel Kingsburgh
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
- Ampath National Reference Laboratory, Centurion, Pretoria, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
6
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
8
|
Raro OHF, Nordmann P, Poirel L. Complete genome sequence of the OXA-48-producing Klebsiella pneumoniae strain 11978. Microbiol Resour Announc 2024; 13:e0034124. [PMID: 39162464 PMCID: PMC11390037 DOI: 10.1128/mra.00341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
We announce the complete genome sequence of Klebsiella pneumoniae strain 11978 isolated from a patient hospitalized in Turkey in 2001. The genome belongs to sequence type 14 and includes three plasmids. Notably, it presents an IncL plasmid carrying blaOXA-48, which demonstrated global success in terms of dissemination.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Canabal R, González-Bello C. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics. Bioorg Chem 2024; 150:107528. [PMID: 38852309 DOI: 10.1016/j.bioorg.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
β-Lactamases are bacterial enzymes that inactivate β-lactam antibiotics and, as such, are the most prevalent cause of antibiotic resistance in Gram-negative bacteria. The ever-increasing production and worldwide dissemination of bacterial strains producing carbapenemases is currently a global health concern. These enzymes catalyze the hydrolysis of carbapenems - the β-lactam antibiotics with the broadest spectrum of activity that are often considered as drugs of last resort. The incidence of carbapenem-resistant pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and carbapenemase or extended spectrum beta-lactamase (ESBL)-producing Enterobacterales, which are frequent in clinical settings, is worrisome since, in some cases, no therapies are available. These include all metallo-β-lactamases (VIM, IMP, NDM, SMP, and L1), and serine-carbapenemases of classes A (KPC, SME, IMI, and GES), and of classes D (OXA-23, OXA-24/40, OXA-48 and OXA-58). Consequently, the early diagnosis of bacterial strains harboring carbapenemases is a pivotal task in clinical microbiology in order to track antibiotic bacterial resistance and to improve the worldwide management of infectious diseases. Recent research efforts on the development of chromogenic and fluorescent chemical sensors for the specific and sensitive detection and quantification of β-lactamase production in multidrug-resistant pathogens are summarized herein. Studies to circumvent the main limitations of the phenotypic and molecular methods are discussed. Recently reported chromogenic and fluorogenic cephalosporin- and carbapenem-based β-lactamase substrates will be reviewed as alternative options to the currently available nitrocefin and related compounds, a chromogenic cephalosporin-based reagent widely used in clinical microbiology laboratories. The scope of these new chemical sensors, along with the synthetic approaches to synthesize them, is also summarized.
Collapse
Affiliation(s)
- Rafael Canabal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Sun L, Meng N, Wang H, Wang Z, Jiao X, Wang J. Occurrence and characteristics of bla OXA-181-carrying Klebsiella aerogenes from swine in China. J Glob Antimicrob Resist 2024; 38:35-41. [PMID: 38763331 DOI: 10.1016/j.jgar.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Nan Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanyun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Paudel R, Shrestha E, Chapagain B, Tiwari BR. Carbapenemase producing Gram negative bacteria: Review of resistance and detection methods. Diagn Microbiol Infect Dis 2024; 110:116370. [PMID: 38924837 DOI: 10.1016/j.diagmicrobio.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Gram negative bacilli that are carbapenem resistant have emerged and are spreading worldwide. Infections caused by carbapenem resistant isolates posses a significant threat due to their high morbidity and mortality rates. Carbapenemases production by multi-drug resistant pathogens severely restricts treatment choices for illnesses caused by bacteria that are resistant to both carbapenems and majority of β-lactam antibiotics. Various phenotypic and genotypic methods for identification can distinguish between different classes of carbapenemase and identify pathogens that are resistant to carbapenems. The establishment of a quick, accurate and reliable test for identifying the clinical strains that produce the carbapenemase enzyme is essential for optimum diagnosis of microbial pathogens and management of the global rise in the prevalence of carbapenemase producing bacterial strains. The aim of this review was to summarize the mechanisms of carbapenem resistance and to provide an overview of different carbapenemase detection methods for carbapenem resistant Gram negative bacilli.
Collapse
Affiliation(s)
- Rajan Paudel
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal.
| | - Elina Shrestha
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bipin Chapagain
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| | - Bishnu Raj Tiwari
- School of Health and Allied Sciences, Pokhara University, Pokhara, Nepal
| |
Collapse
|
12
|
D'Achille G, Nunzi I, Fioriti S, Cirioni O, Brescini L, Giacometti A, Teodori L, Brenciani A, Giovanetti E, Mingoia M, Morroni G. Clonal dissemination of Klebsiella pneumoniae carrying bla OXA-48 gene in a central Italy hospital. J Glob Antimicrob Resist 2024; 38:339-340. [PMID: 39032696 DOI: 10.1016/j.jgar.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Affiliation(s)
- Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria Nunzi
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Simona Fioriti
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Infectious Disease Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Teodori
- Clinical Microbiology Laboratory, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Andrea Brenciani
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Microbiology Unit, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marina Mingoia
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
13
|
Sastre-Dominguez J, DelaFuente J, Toribio-Celestino L, Herencias C, Herrador-Gómez P, Costas C, Hernández-García M, Cantón R, Rodríguez-Beltrán J, Santos-Lopez A, San Millan A. Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria. Nat Ecol Evol 2024:10.1038/s41559-024-02523-4. [PMID: 39198572 PMCID: PMC7616626 DOI: 10.1038/s41559-024-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation.
Collapse
Affiliation(s)
| | | | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coloma Costas
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Al-Madboly LA, El-Salam MAA, Bastos JK, Aboukhatwa S, El-Morsi RM. Characterization of GQA as a novel β-lactamase inhibitor of CTX-M-15 and KPC-2 enzymes. Microb Cell Fact 2024; 23:221. [PMID: 39118086 PMCID: PMC11308155 DOI: 10.1186/s12934-024-02421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 08/10/2024] Open
Abstract
β-lactam resistance is a significant global public health issue. Outbreaks of bacteria resistant to extended-spectrum β-lactams and carbapenems are serious health concerns that not only complicate medical care but also impact patient outcomes. The primary objective of this work was to express and purify two soluble recombinant representative serine β‑lactamases using Escherichia coli strain as an expression host and pET101/D as a cloning vector. Furthermore, a second objective was to evaluate the potential, innovative, and safe use of galloylquinic acid (GQA) from Copaifera lucens as a potential β-lactamase inhibitor.In the present study, blaCTX-M-15 and blaKPC-2 represented genes encoding for serine β-lactamases that were cloned from parent isolates of E. coli and K. pneumoniae, respectively, and expression as well as purification were performed. Moreover, susceptibility results demonstrated that recombinant cells became resistant to all test carbapenems (MICs; 64-128 µg/mL) and cephalosporins (MICs; 128-512 µg/mL). The MICs of the tested β-lactam antibiotics were determined in combination with 4 µg/mL of GQA, clavulanic acid, or tazobactam against E. coli strains expressing CTX-M-15 or KPC-2-β-lactamases. Interestingly, the combination with GQA resulted in an important reduction in the MIC values by 64-512-fold to the susceptible range with comparable results for other reference inhibitors. Additionally, the half-maximal inhibitory concentration of GQA was determined using nitrocefin as a β-lactamase substrate. Data showed that the test agent was similar to tazobactam as an efficient inhibitors of the test enzymes, recording smaller IC50 values (CTX-M-15; 17.51 for tazobactam, 28.16 µg/mL for GQA however, KPC-2; 20.91 for tazobactam, 24.76 µg/mL for GQA) compared to clavulanic acid. Our work introduces GQA as a novel non-β-lactam inhibitor, which interacts with the crucial residues involved in β-lactam recognition and hydrolysis by non-covalent interactions, complementing the enzyme's active site. GQA markedly enhanced the potency of β-lactams against carbapenemase and extended-spectrum β-lactamase-producing strains, reducing the MICs of β-lactams to the susceptible range. The β-lactamase inhibitory activity of GQA makes it a promising lead molecule for the development of more potent β-lactamase inhibitors.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mohamed A Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Jairo K Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, SP, 14040-903, Brazil
| | - Shaimaa Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
15
|
Bustamante M, Koopman F, Martens J, Brons JK, DelaFuente J, Hackl T, Kuipers OP, van Doorn GS, de Vos MGJ. Community context influences the conjugation efficiency of Escherichia coli. FEMS MICROBES 2024; 5:xtae023. [PMID: 39170752 PMCID: PMC11338288 DOI: 10.1093/femsmc/xtae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In urinary tract infections (UTIs), different bacteria can live in a polymicrobial community consisting of different species. It is unknown how community members affect the conjugation efficiency of uropathogenic Escherichia coli. We investigated the influence of individual species often coisolated from urinary infections (UTI) on the conjugation efficiency of E. coli isolates in artificial urine medium. Pairwise conjugation rate experiments were conducted between a donor E. coli strain containing the pOXA-48 plasmid and six uropathogenic E. coli isolates, in the presence and absence of five different species commonly coisolated in polymicrobial UTIs to elucidate their effect on the conjugation efficiency of E. coli. We found that the basal conjugation rates of pOXA-48, in the absence of other species, are dependent on the bacterial host genetic background. Additionally, we found that bacterial interactions have an overall positive effect on the conjugation rate of pOXA-48. Particularly, Gram-positive enterococcal species were found to enhance the conjugation rates towards uropathogenic E. coli isolates. We hypothesize that the nature of the coculture and physical interactions are important for these increased conjugation rates in an artificial urine medium environment.
Collapse
Affiliation(s)
| | - Floor Koopman
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jesper Martens
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jolanda K Brons
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Thomas Hackl
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Oscar P Kuipers
- GBB, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Marjon G J de Vos
- GELIFES, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Novazzi F, Arcari G, Drago Ferrante F, Boutahar S, Genoni AP, Carcione D, Cassani G, Gigante P, Carbotti M, Capuano R, Pasciuta R, Mancini N. Combined Use of Phenotypic Screening and of a Novel Commercial Assay (REALQUALITY Carba-Screen) for the Rapid Molecular Detection of Carbapenemases: A Single-Center Experience. Diagnostics (Basel) 2024; 14:1599. [PMID: 39125475 PMCID: PMC11311838 DOI: 10.3390/diagnostics14151599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carbapenem resistance is a serious public health threat, causing numerous deaths annually primarily due to healthcare-associated infections. To face this menace, surveillance programs in high-risk patients are becoming a widespread practice. Here we report the performance of the combined use of a recently approved commercial multiplex real-time PCR assay (REALQUALITY Carba-Screen kit) with conventional phenotypic screening. In this three-month study, 479 rectal swabs from 309 patients across high-risk units were evaluated by combining the two approaches. Although the molecular assay showed a higher positivity rate than phenotypic screening (7.1% vs. 5%), it should be noted that the molecular method alone would have missed eight carbapenem-resistant isolates, while using only phenotypic screening would not have detected sixteen isolates. This demonstrates the complementary strengths of each method. Our study confirms the need for a combined approach to maximize the possible clinical impact of this kind of screening, ensuring a more comprehensive detection of resistant strains.
Collapse
Affiliation(s)
- Federica Novazzi
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Gabriele Arcari
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Francesca Drago Ferrante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Sara Boutahar
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Angelo Paolo Genoni
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Davide Carcione
- Laboratory of Clinical Microbiology and Virology, ASST Valle Olona, 21013 Gallarate, Italy
| | - Gianluca Cassani
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Paolo Gigante
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Mattia Carbotti
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Riccardo Capuano
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Renée Pasciuta
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Hospital of Varese, 21100 Varese, Italy; (F.N.); (G.A.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
17
|
Markovska R, Stankova P, Popivanov G, Gergova I, Mihova K, Mutafchiyski V, Boyanova L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics (Basel) 2024; 13:677. [PMID: 39061359 PMCID: PMC11274196 DOI: 10.3390/antibiotics13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid spread of carbapenemase-producing strains has led to increased levels of resistance among Gram-negative bacteria, especially enterobacteria. The current study aimed to collect and genetically characterize the colistin- and carbapenem-resistant isolates, obtained in one of the biggest hospitals (Military Medical Academy) in Sofia, Bulgaria. Clonal relatedness was detected by RAPD and MLST. Carbapenemases, ESBLs, and mgrB were investigated by PCR amplification and sequencing, replicon typing, and 16S rRNA methyltransferases with PCRs. Fourteen colistin- and carbapenem-resistant K. pneumoniae isolates were detected over five months. Six carbapenem-resistant and colistin-susceptible isolates were also included. The current work revealed a complete change in the spectrum of carbapenemases in Bulgaria. blaNDM-5 was the only NDM variant, and it was always combined with blaOXA-232. The coexistence of blaOXA-232 and blaNDM-5 was observed in 10/14 (72%) of colistin- and carbapenem-resistant K. pneumoniae isolates and three colistin-susceptible isolates. All blaNDM-5- and blaOXA-232-positive isolates belonged to the ST6260 (ST101-like) MLST type. They showed great mgrB variability and had a higher mortality rate. In addition, we observed blaOXA-232 ST14 isolates and KPC-2-producing ST101, ST16, and ST258 isolates. The colistin- and carbapenem-resistant isolates were susceptible only to cefiderocol for blaNDM-5- and blaOXA-232-positive isolates and to cefiderocol and ceftazidime/avibactam for blaOXA-232- or blaKPC-2-positive isolates. All blaOXA-232-positive isolates carried rmtB methylase and the colE replicon type. The extremely limited choice of appropriate treatment for patients infected with such isolates and their faster distribution highlight the need for urgent measures to control this situation.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (G.P.); (V.M.)
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | | | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
18
|
Gonzalez C, Oueslati S, Rima M, Nermont R, Dortet L, Hopkins KL, Iorga BI, Bonnin RA, Naas T. Molecular, Genetic, and Biochemical Characterization of OXA-484 Carbapenemase, a Difficult-to-Detect R214G Variant of OXA-181. Microorganisms 2024; 12:1391. [PMID: 39065158 PMCID: PMC11278660 DOI: 10.3390/microorganisms12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.
Collapse
Affiliation(s)
- Camille Gonzalez
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Mariam Rima
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Réva Nermont
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Laurent Dortet
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Katie L. Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK;
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France;
| | - Rémy A. Bonnin
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Yuan PB, Dai LT, Zhang QK, Zhong YX, Liu WT, Yang L, Chen DQ. Global emergence of double and multi-carbapenemase producing organisms: epidemiology, clinical significance, and evolutionary benefits on antimicrobial resistance and virulence. Microbiol Spectr 2024; 12:e0000824. [PMID: 38860788 PMCID: PMC11218513 DOI: 10.1128/spectrum.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Redundant carbapenemase-producing (RCP) bacteria, which carry double or multiple carbapenemases, represent a new and concerning phenomenon. The objective of this study is to conduct a comprehensive analysis of the epidemiology and genetic mechanisms of RCP strains to support targeted surveillance and control measures. A retrospective analysis was conducted using surveillance data from 277 articles. Statistical analysis was performed to determine and evaluate species prevalence, proportions of carbapenemases, antibiotic susceptibility profiles, sample information, and patient outcomes. Complete plasmid sequencing data were utilized to investigate potential antimicrobial resistance or virulence advantages that strains may gain from acquiring redundant carbapenemases. RCP bacteria are widely distributed globally, and their prevalence is increasing over time. Several countries, including China, India, Iran, Turkey, and South Korea, have reported more than 100 RCP strains. The most commonly reported RCP species are Klebsiella pneumoniae and Acinetobacter baumannii, which exhibit varying proportions of carbapenemase combinations. Certain species-carbapenemase combinations, such as K. pneumoniae carrying New Delhi metallo-β-lactamase (NDM) + oxacillinase (OXA) (56.76%) and K. pneumoniae carbapenemase (KPC) + Verona integron-encoded metallo-β-lactamase (VIM) (50.00%) carbapenemases, are associated with high mortality rates. In patients with RCP strains isolated from the bloodstream and respiratory system, the mortality rates are 58.70% and 69.23%, respectively. Analysis of plasmids from RCP strains suggests that they may acquire additional antibiotic resistance phenotypes and virulence factors. Carbapenem-resistant bacteria carrying redundant carbapenemases pose a significant global health threat. This study provides valuable insights into the epidemiology and genetic mechanisms of these bacteria, supporting the development of effective control and prevention strategies to mitigate their transmission.IMPORTANCEThis study examined the global distribution patterns of 1,780 bacteria with double or multiple carbapenemases from 277 articles and assessed their clinical impact. The presence of multiple carbapenemases increases the chances of co-resistance to other classes of antibiotics and more virulence factors, further complicating the clinical management of infections.
Collapse
Affiliation(s)
- Pei-Bo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Ting Dai
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Ke Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Xia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Ting Liu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Hou B, Zhou Y, Wang W, Shen W, Yu Q, Mao M, Wang S, Ai W, Yu F, Shao P. Characterization of ST15-KL112 Klebsiella pneumoniae Co-Harboring Bla oxa-232 and rmtF in China. Infect Drug Resist 2024; 17:2719-2732. [PMID: 38974316 PMCID: PMC11227325 DOI: 10.2147/idr.s462158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction This study aimed to investigate the emergence and characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains that demonstrate resistance to multiple antibiotics, including aminoglycosides and tigecycline, in a Chinese hospital. Methods A group of ten CRKP strains were collected from the nine patients in a Chinese hospital. Antimicrobial Susceptibility Testing (AST) and phenotypic inhibition assays precisely assess bacterial antibiotic resistance. Real-time quantitative PCR (RT-qPCR) was used to analyze the mRNA levels of efflux pump genes (acrA/acrB and oqxA/oqxB) and the regulatory gene (ramA). The core-genome tree and PFGE patterns were analyzed to assess the clonal and horizontal transfer expansion of the strains. Whole-genome sequencing was performed on a clinical isolate of K. pneumoniae named Kpn20 to identify key resistance genes and antimicrobial resistance islands (ARI). Results The CRKP strains showed high resistance to carbapenems, aminoglycosides (CLSI, 2024), and tigecycline (EUCAST, 2024). The mRNA expression levels of efflux pump genes and regulatory genes were detected by RT-qPCR. All 10 isolates had significant differences compared to the control group of ATCC13883. The core-genome tree and PFGE patterns revealed five clusters, indicating clonal and horizontal transfer expansion. Three key resistance genes (blaoxa-232, blaCTX-M-15 , and rmtF) were observed in the K. pneumoniae clinical isolate Kpn20. Mobile antibiotic resistance islands were identified containing bla CTX-M-15 and rmtF, with multiple insertion sequences and transposons present. The coexistence of bla oxa-232 and rmtF in a high-risk K. pneumoniae strain was reported. Conjugation assay was utilized to investigate the transferability of bla oxa-232-encoding plasmids horizontally. Conclusion The study highlights the emergence of ST15-KL112 high-risk CRKP strains with multidrug resistance, including to aminoglycosides and tigecycline. The presence of mobile ARI and clonal and horizontal transfer expansion of strains indicate the threat of transmission of these strains. Future research is needed to assess the prevalence of such isolates and develop effective control measures.
Collapse
Affiliation(s)
- Bailong Hou
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
| | - Wei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Weifeng Shen
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Qinlong Yu
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Minjie Mao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Siheng Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Wenxiu Ai
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Pingyang Shao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| |
Collapse
|
21
|
Lee YL, Wang WY, Ko WC, Hsueh PR. Global epidemiology and antimicrobial resistance of Enterobacterales harbouring genes encoding OXA-48-like carbapenemases: insights from the results of the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme 2018-2021. J Antimicrob Chemother 2024; 79:1581-1589. [PMID: 38758189 DOI: 10.1093/jac/dkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES The recent emergence of carbapenem-resistant Enterobacterales poses a major and escalating threat to global public health. This study aimed to analyse the global distribution and antimicrobial resistance of Enterobacterales harbouring variant OXA-48-like carbapenemase-related genes. METHODS Enterobacterales isolates were collected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme during 2018-2021. Comprehensive antimicrobial susceptibility testing and β-lactamase gene detection were also conducted, along with statistical analysis of the collected data. RESULTS Among the 72 244 isolates, 1934 Enterobacterales isolates were identified to harbour blaOXA-48-like genes, predominantly Klebsiella spp. (86.9%). High rates of multidrug resistance were observed, with only ceftazidime/avibactam and tigecycline showing favourable susceptibility. A discrepancy between the genotype and phenotype of carbapenem resistance was evident: 16.8% (233 out of 1384) of the Enterobacterales isolates with blaOXA-48-like genes exhibited susceptibility to meropenem. Specifically, 37.4% (64/95) of Escherichia coli strains with blaOXA-48-like genes displayed meropenem susceptibility, while the corresponding percentages for Klebsiella pneumoniae and Enterobacter cloacae complex were 25.2% (160/1184) and 0% (0/36), respectively (P < 0.05). Geographical analysis revealed that the highest prevalence of blaOXA-48-like genes occurred in Asia, the Middle East and Eastern Europe. The proportion of K. pneumoniae isolates harbouring blaOXA-232 increased from 23.9% in 2018 to 56.0% in 2021. By contrast, the proportion of blaOXA-48 decreased among K. pneumoniae isolates during 2018-2021. CONCLUSIONS This study underscores the widespread and increasing prevalence of blaOXA-48-like genes in Enterobacterales and emphasizes the need for enhanced surveillance, improved diagnostic methods and tailored antibiotic stewardship to combat the spread of these resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- PhD Program in Medical Biotechnology, Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Yao Wang
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Chin Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
22
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
23
|
Wu J, Liu M, Zhao J, Xi Y, Yang H, Chen S, Long J, Duan G. Global distribution and genetic characterization of bla OXA-positive plasmids in Escherichia coli. World J Microbiol Biotechnol 2024; 40:244. [PMID: 38871847 DOI: 10.1007/s11274-024-04051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In recent years, the emergence of blaOXA-encoding Escherichia coli (E. coli) poses a significant threat to human health. Here, we systematically analyzed the global geographic distribution and genetic characteristics of 328 blaOXA-positive E. coli plasmids based on NCBI database. Twelve blaOXA variants have been discovered, with blaOXA-1 (57.93%) being the most common, followed by blaOXA-10 (11.28%) and blaOXA-48 (10.67%). Our results suggested that blaOXA-positive E. coli plasmids were widespread in 40 countries, mainly in China, the United States, and Spain. MLST analysis showed that ST2, ST43, and ST471 were the top three host STs for blaOXA-positive plasmids, deserving continuing attention in future surveillance program. Network analysis revealed a correlation between different blaOXA variants and specific antibiotic resistance genes, such as blaOXA-1 and aac (6')-Ib-cr (95.79%), blaOXA-181 and qnrS1 (87.88%). The frequent detection of aminoglycosides-, carbapenems- and even colistin-related resistance genes in blaOXA-positive plasmids highlights their multidrug-resistant potential. Additionally, blaOXA-positive plasmids were further divided into eight clades, clade I-VIII. Each clade displayed specificity in replicon types and conjugative transfer elements. Different blaOXA variants were associated with specific plasmid lineages, such as blaOXA-1 and IncFII plasmids in clade II, and blaOXA-48 and IncL plasmids in clade I. Overall, our findings provide a comprehensive insight into blaOXA-positive plasmids in E. coli, highlighting the role of plasmids in blaOXA dissemination in E. coli.
Collapse
Affiliation(s)
- Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
24
|
Hajizadeh Y, Badmasti F, Oloomi M. Inhibition of the bla OXA-48 gene expression in Klebsiella pneumoniae by a plasmid carrying CRISPRi-Cas9 system. Gene 2024; 910:148332. [PMID: 38431235 DOI: 10.1016/j.gene.2024.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance is an increasing concern that threatens the effectiveness of treating bacterial infections. The spread of carbapenem resistant Klebsiella pneumoniae poses a significant threat to global public health. To combat this issue, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system is being developed. This system includes a single guide RNA (sgRNA) and a nuclease dead Cas9 (dCas9), which work together to downregulate gene expression. Our project involved the use of the CRISPRi system to reduce gene expression of the beta-lactamase oxacillin-48 (blaOXA-48) gene in K. pneumoniae. We designed a sgRNA and cloned it into pJMP1363 plasmid harboring the CRISPRi system. The pJMP1363-sgRNA construct was transformed in K. pneumoniae harboring the blaOXA-48 gene. The MIC test was used to evaluate the antimicrobial resistance, and quantitative real-time RT-PCR was used to confirm the inhibition of the OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA construct expression. The Galleria mellonella larvae model was also utilized for in vivo assay. Following the transformation, the MIC test indicated a 4-fold reduction in meropenem resistance, and qRT-PCR analysis revealed a 60-fold decrease in the mRNA OXA-48 harboring the pJMP1363-sgRNA construct expression. Additionally, G. mellonella larvae infected with OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA showed higher survival rates. Based on the findings, it can be concluded that the CRISPR interference technique has successfully reduced antibiotic resistance and virulence in the K. pneumoniae harboring the blaOXA-48 gene.
Collapse
Affiliation(s)
- Yeganeh Hajizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Takei S, Tabe Y, Miida T, Hishinuma T, Khasawneh A, Kirikae T, Sherchand JB, Tada T. Multidrug-resistant Klebsiella pneumoniae clinical isolates producing NDM- and OXA-type carbapenemase in Nepal. J Glob Antimicrob Resist 2024; 37:233-243. [PMID: 38759919 DOI: 10.1016/j.jgar.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES The emergence of multidrug-resistant Klebsiella pneumoniae has become a serious problem in medical settings worldwide. METHODS A total of 46 isolates of multidrug-resistant K. pneumoniae were obtained from 2 hospitals in Nepal from October 2018 to April 2019. RESULTS Most of these isolates were highly resistant to carbapenems, aminoglycosides, and fluoroquinolones with the minimum inhibitory concentrations (MICs) of more than 64 µg/mL. These isolates harboured carbapenemase-encoding genes, including blaNDM-1, blaNDM-5, blaOXA-181 and blaOXA-232, and 16S rRNA methyltransferase-encoding genes, including armA, rmtB, rmtC, and rmtF. Multilocus sequence typing revealed that 44 of 46 isolates were high-risk clones such as ST11 (2%), ST14 (4%), ST15 (11%), ST37 (2%), ST101 (2%), ST147 (28%), ST231 (13%), ST340 (4%), and ST395 (28%). In particular, ST395 isolates, which spread across medical settings in Nepal, co-harboured blaNDM-5 and rmtB on IncFII plasmids and co-harboured blaOXA-181/-232 and rmtF on ColKP3 plasmids. Several isolates harboured blaOXA-181 or blaNDM-5 on their chromosomes and multi-copies of blaNDM-1 or genes encoding 16S rRNA methyltransferases on their plasmids. CONCLUSIONS The presented study demonstrates that the high-risk clones of multidrug-resistant K. pneumoniae spread in a clonal manner across hospitals in Nepal.
Collapse
Affiliation(s)
- Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Abdullah Khasawneh
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeevan B Sherchand
- Department of Medical Microbiology, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Lerminiaux N, Mitchell R, Katz K, Fakharuddin K, McGill E, Mataseje L. Plasmid genomic epidemiology of carbapenem-hydrolysing class D β-lactamase (CDHL)-producing Enterobacterales in Canada, 2010-2021. Microb Genom 2024; 10:001257. [PMID: 38896471 PMCID: PMC11261825 DOI: 10.1099/mgen.0.001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Carbapenems are last-resort antibiotics for treatment of infections caused by multidrug-resistant Enterobacterales, but carbapenem resistance is a rising global threat due to the acquisition of carbapenemase genes. Oxacillinase-48 (bla OXA-48)-type carbapenemases are increasing in abundance in Canada and elsewhere; these genes are frequently found on mobile genetic elements and are associated with specific transposons. This means that alongside clonal dissemination, bla OXA-48-type genes can spread through plasmid-mediated horizontal gene transfer. We applied whole genome sequencing to characterize 249 bla OXA-48-type-producing Enterobacterales isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short- and long-read sequencing, we obtained 70 complete and circular bla OXA-48-type-encoding plasmids. Using MOB-suite, four major plasmids clustered were identified, and we further estimated a plasmid cluster for 91.9 % (147/160) of incomplete bla OXA-48-type-encoding contigs. We identified different patterns of carbapenemase mobilization across Canada, including horizontal transmission of bla OXA-181/IncX3 plasmids (75/249, 30.1 %) and bla OXA-48/IncL/M plasmids (47/249, 18.9 %), and both horizontal transmission and clonal transmission of bla OXA-232 for Klebsiella pneumoniae ST231 on ColE2-type/ColKP3 plasmids (25/249, 10.0 %). Our findings highlight the diversity of OXA-48-type plasmids and indicate that multiple plasmid clusters and clonal transmission have contributed to bla OXA-48-type spread and persistence in Canada.
Collapse
Affiliation(s)
- Nicole Lerminiaux
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Erin McGill
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Laura Mataseje
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Zuo H, Sugawara Y, Kondo K, Kayama S, Kawakami S, Uechi K, Nakano A, Yahara K, Sugai M. Emergence of an IncX3 plasmid co-harbouring the carbapenemase genes blaNDM-5 and blaOXA-181. JAC Antimicrob Resist 2024; 6:dlae073. [PMID: 38741895 PMCID: PMC11089413 DOI: 10.1093/jacamr/dlae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Background The spread of transmissible plasmids with carbapenemase genes has contributed to a global increase in carbapenemase-producing Enterobacterales over the past two decades, with blaNDM and blaOXA among the most prevalent carbapenemase genes. Objectives To characterize an Escherichia coli isolate co-carrying blaNDM-5 and blaOXA-181 (JBEHAAB-19-0176) that was isolated in the Japan Antimicrobial Resistant Bacterial Surveillance in 2019-20, and to evaluate the functional advantage of carrying both genes as opposed to only one. Methods The whole-genome sequence of the isolate was determined using long- and short-read sequencing. Growth assay and co-culture experiments were performed for phenotypic characterization in the presence of different β-lactam antibiotics. Results WGS analysis showed that blaNDM-5 and blaOXA-181 were carried by the same IncX3 plasmid, pJBEHAAB-19-0176_NDM-OXA. Genetic characterization of the plasmid suggested that the plasmid emerged through the formation of a co-integrate and resolution of two typical IncX3 plasmids harbouring blaNDM-5 and blaOXA-181, which involved two recombination events at the IS3000 and IS26 sequences. When cultured in the presence of piperacillin or cefpodoxime, the growth rate of the transformant co-harbouring blaNDM-5 and blaOXA-181 was significantly higher than the transformant with only blaNDM-5. Furthermore, in co-culture where the two blaNDM-5-harbouring transformants were allowed to compete directly, the strain additionally harbouring blaOXA-181 showed a marked growth advantage. Conclusions The additional carriage of blaOXA-181 confers a selective advantage to bacteria in the presence of piperacillin and cefpodoxime. These findings may explain the current epidemiology of carbapenemase-producing Enterobacterales, in which bacteria carrying both blaNDM-5 and blaOXA-48-like genes have emerged independently worldwide.
Collapse
Affiliation(s)
- Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Uechi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Ami Nakano
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
28
|
Bandić Pavlović D, Pospišil M, Nađ M, Vrbanović Mijatović V, Luxner J, Zarfel G, Grisold A, Tonković D, Dobrić M, Bedenić B. Multidrug-Resistant Bacteria in Surgical Intensive Care Units: Antibiotic Susceptibility and β-Lactamase Characterization. Pathogens 2024; 13:411. [PMID: 38787264 PMCID: PMC11124292 DOI: 10.3390/pathogens13050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Multidrug-resistant (MDR) bacteria of the utmost importance are extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacterales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus spp. (VRE). In this study, an evaluation of MDR bacteria in surgical intensive care units in a tertiary referral hospital was conducted. The study aimed to characterize β-lactamases and other resistance traits of Gram-negative bacteria isolated in surgical intensive care units (ICUs). Disk diffusion and the broth dilution method were used for antibiotic susceptibility testing, whereas ESBL screening was performed through a double disk synergy test and an inhibitor-based test with clavulanic acid. A total of 119 MDR bacterial isolates were analysed. ESBL production was observed in half of the Proteus mirabilis, 90% of the Klebsiella pneumoniae and all of the Enterobacter cloacae and Escherichia coli isolates. OXA-48 carbapenemase, carried by the L plasmid, was detected in 34 K. pneumoniae and one E. coli and Enterobacter cloacae complex isolates, whereas NDM occurred sporadically and was identified in three K. pneumoniae isolates. OXA-48 positive isolates coharboured ESBLs belonging to the CTX-M family in all but one isolate. OXA-23 carbapenemase was confirmed in all A. baumannii isolates. The findings of this study provide valuable insight of resistance determinants of Enterobacterales and A. baumannii which will enhance surveillance and intervention strategies that are necessary to curb the ever-growing carbapenem resistance rates.
Collapse
Affiliation(s)
- Daniela Bandić Pavlović
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Mladen Pospišil
- Department of Emergency Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Marina Nađ
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Vilena Vrbanović Mijatović
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Josefa Luxner
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Gernot Zarfel
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Andrea Grisold
- Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (J.L.); (G.Z.); (A.G.)
| | - Dinko Tonković
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (D.B.P.); (V.V.M.); (D.T.)
| | - Mirela Dobrić
- Department of Anesthesiology, Intensive Medicine and Pain Management, University Hospital Centre Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Branka Bedenić
- Biomedical Research Center Šalata—BIMIS, Department for Clinical Microbiology and Infection Prevention and Control, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Zongo PD, Cabanel N, Royer G, Depardieu F, Hartmann A, Naas T, Glaser P, Rosinski-Chupin I. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat Commun 2024; 15:4093. [PMID: 38750030 PMCID: PMC11096173 DOI: 10.1038/s41467-024-48219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.
Collapse
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Paris, France
- Université Paris Cité, Paris, France
| | - Nicolas Cabanel
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Guilhem Royer
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Florence Depardieu
- Université Paris Cité, Paris, France
- Synthetic Biology Unit, Institut Pasteur, Paris, France
| | - Alain Hartmann
- UMR AgroEcologie 1347, INRAe, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Naas
- Team ReSIST, INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
30
|
Rima M, Oueslati S, Cotelon G, Creton E, Bonnin RA, Dortet L, Iorga BI, Naas T. Role of amino acid 159 in carbapenem and temocillin hydrolysis of OXA-933, a novel OXA-48 variant. Antimicrob Agents Chemother 2024; 68:e0018024. [PMID: 38526049 PMCID: PMC11064584 DOI: 10.1128/aac.00180-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the β5-β6 loop, but interacting with key residues of it.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Garance Cotelon
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Dhabaan G, Jamal H, Ouellette D, Alexander S, Arane K, Campigotto A, Tadros M, Piché-Renaud PP. Detection of OXA-181 Carbapenemase in Shigella flexneri. Emerg Infect Dis 2024; 30:1048-1050. [PMID: 38666725 PMCID: PMC11060442 DOI: 10.3201/eid3005.231558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
We report the detection of OXA-181 carbapenemase in an azithromycin-resistant Shigella spp. bacteria in an immunocompromised patient. The emergence of OXA-181 in Shigella spp. bacteria raises concerns about the global dissemination of carbapenem resistance in Enterobacterales and its implications for the treatment of infections caused by Shigella bacteria.
Collapse
|
32
|
Heng H, Yang X, Zhang H, Sun R, Ye L, Li J, Chan EWC, Zhang R, Chen S. Early detection of OXA-232-producing Klebsiella pneumoniae in China predating its global emergence. Microbiol Res 2024; 282:127672. [PMID: 38447456 DOI: 10.1016/j.micres.2024.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Antibiotic resistance is a global health issue, with Klebsiella pneumoniae (KP) posing a particular threat due to its ability to acquire resistance to multiple drug classes rapidly. OXA-232 is a carbapenemase that confers resistance to carbapenems, a class of antibiotics often used as a last resort for treating severe bacterial infections. The study reports the earliest known identification of six OXA-232-producing KP strains that were isolated in Zhejiang, China, in 2008 and 2009 within a hospital, two years prior to the first reported identification of OXA-232 in France. The four KP strains carry the OXA-232 gene and exhibit hypervirulent loci, suggesting a broader temporal and geographical spread and integration of this resistance and virulence than previously recognized with implications for public health. Global analysis of all OXA-232-bearing KP strains revealed that OXA-232-encoding plasmids are conservative, while the strains were very diverse suggesting the plasmid mediated transmission of this carbapenemase genes. Importantly, a large proportion of the OXA-232-bearing KP strains also carried virulence plasmids, in particular the recent emergence of ST15 type of KP that carried both OXA-232-encoding plasmids and hypervirulent (hv) plasmids in China since 2019, highlighting the importance of the emergence of this type of KP strains in clinical setting. The early detection and investigations of OXA-232 in these strains warrants the retrospective studies to uncover the true timeline of antibiotic resistance spread, which could provide valuable insights for shaping future strategies to tackle the global health crisis.
Collapse
Affiliation(s)
- Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Haoshuai Zhang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ruanyang Sun
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
33
|
Ma J, Xu R, Li W, Liu M, Ding X. Whole-genome sequencing of clinical isolates of Citrobacter Europaeus in China carrying bla OXA-48 and bla NDM-1. Ann Clin Microbiol Antimicrob 2024; 23:38. [PMID: 38685062 PMCID: PMC11059591 DOI: 10.1186/s12941-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE To analyze the clinical infection characteristics and genetic environments of resistance genes in carbapenem-resistant Citrobacter europaeus using whole-genome sequencing. METHODS The susceptibility of two clinical isolates of C. europaeus (WF0003 and WF1643) to 24 antimicrobial agents was assessed using the BD Phoenix™ M50 System and Kirby-Bauer (K-B) disk-diffusion method. Whole-genome sequencing was performed on the Illumina and Nanopore platforms, and ABRicate software was used to predict resistance and virulence genes of carbapenem-resistant C. europaeus. The characteristics of plasmids carrying carbapenem-resistance genes and their genetic environments were analyzed. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze the homology of these two C. europaeus strains with ten strains of C. europaeus in the NCBI database. RESULTS The two strains of carbapenem-resistant C. europaeus are resistant to various antimicrobial agents, particularly carbapenems and β-lactams. WF0003 carries blaNDM- 1, which is located on an IncX3 plasmid that has high homology to the pNDM-HN380 plasmid. blaNDM- 1 is located on a truncated Tn125. It differs from Tn125 by the insertion of IS5 in the upstream ISAba125 and the deletion of the downstream ISAba125, which is replaced by IS26. WF1643 carries blaOXA- 48 in a Tn1999 transposon on the IncL/M plasmid, carrying only that single drug resistance gene. Homology analysis of these two strains of C. europaeus with ten C. europaeus strains in the NCBI database revealed that the 12 strains can be classified into three clades, with both WF0003 and WF1643 in the B clade. CONCLUSION To the best of our knowledge, this is the first study to report an IncX3 plasmid carrying blaNDM- 1 in C. europaeus in China. C. europaeus strains harboring carbapenem-resistance genes are concerning in relation to the spread of antimicrobial resistance, and the presence of carbapenem-resistance genes in C. europaeus should be continuously monitored.
Collapse
Affiliation(s)
- Jie Ma
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Ranran Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Mi Liu
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiaomei Ding
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
34
|
Dos Santos S, Diene SM, Benouda A, Zerouali K, Ghaith DM, El-Mahdy RH, El Tayeb SHM, Boutiba I, Hammami A, Chrabieh R, Daoud Z, Mereghetti L, Francois P, Van Der Mee-Marquet N. Carbapenem- and colistin-resistant Enterobacterales in intensive care unit patients in Mediterranean countries, 2019. Front Microbiol 2024; 15:1370553. [PMID: 38680922 PMCID: PMC11045966 DOI: 10.3389/fmicb.2024.1370553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction The colonization of patients by carbapenemase-producing Enterobacterales (CPE) has been associated with heightened mortality, especially in vulnerable individuals within intensive care units (ICUs). Our study aimed to comprehensively assess CPE prevalence among ICU patients across the Mediterranean region pre-COVID-19, conducting a multicenter prevalence study in the first quarter of 2019. Methods We collected clinical data and rectal or fecal samples from 256 ICU patients for CPE testing. Additionally, we performed whole-genome sequencing on 40 representative CPE strains to document their molecular characteristics. Results Among the 256 patients, CPE was detected in 73 samples (28.5%), with prevalence varying from 3.3 to 69.0% across participating centers. We observed 13 colistin-resistant CPE strains, affecting three ICUs. Genetic analysis revealed highly diverse E. coli and K. pneumoniae strains, predominantly from international high-risk clones. Notably, blaOXA-48 and blaNDM-1 were the most prevalent carbapenemase genes. Molecular typing uncovered potential patient clusters in six centers. Significantly, longer hospital stays were associated with increased CPE carriage (p < 0.001). Nine centers across Morocco, Tunisia, Egypt, and Lebanon voluntarily participated. Discussion Our study provides CPE prevalence in Mediterranean ICUs and reaffirms established CPE presence in this setting but also provides updates on the molecular diversity of CPE strains. These findings highlight the imperative of reinforcing infection control measures in the participating ICUs to curtail escalated mortality rates, and of strictly applying isolation measures around patients originating from the Mediterranean region when transferred to other healthcare institutions.
Collapse
Affiliation(s)
- Sandra Dos Santos
- Centre d’Appui pour la Prévention des Infections Associées aux Soins Centre Val de Loire, Centre Hospitalier Universitaire, Tours, France
| | - Seydina M. Diene
- Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - Amina Benouda
- Laboratoire de Microbiologie, Hôpital Cheikh Zaid, Rabat, Morocco
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Ibn Rochd, Faculté de Médecine et de Pharmacie, Casablanca, Morocco
| | - Doaa M. Ghaith
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha H. El-Mahdy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Ilhem Boutiba
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Charles Nicolle, Tunis, Tunisia
| | - Adnene Hammami
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire Habib Bourguiba, Sfax, Tunisia
| | - Remie Chrabieh
- Department of Dermatology, Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - Ziad Daoud
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, Saint George Hospital-UMC, Beirut, Lebanon
| | - Laurent Mereghetti
- Service de Bactériologie-Virologie-Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nathalie Van Der Mee-Marquet
- Centre d’Appui pour la Prévention des Infections Associées aux Soins Centre Val de Loire, Centre Hospitalier Universitaire, Tours, France
| | | |
Collapse
|
35
|
Hoarau AOG, Mavingui P, Miltgen G. Comprehensive analysis of antimicrobial resistance in the Southwest Indian Ocean: focus on WHO critical and high priority pathogens. Front Public Health 2024; 12:1357345. [PMID: 38628847 PMCID: PMC11018943 DOI: 10.3389/fpubh.2024.1357345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network.
Collapse
Affiliation(s)
- Axel O. G. Hoarau
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Guillaume Miltgen
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
- Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France
- Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France
| |
Collapse
|
36
|
Marais G, Moodley C, Claassen-Weitz S, Patel F, Prentice E, Tootla H, Nyakutira N, Lennard K, Reddy K, Bamford C, Niehaus A, Whitelaw A, Brink A. Carbapenem-resistant Klebsiella pneumoniae among hospitalized patients in Cape Town, South Africa: molecular epidemiology and characterization. JAC Antimicrob Resist 2024; 6:dlae050. [PMID: 38529003 PMCID: PMC10963078 DOI: 10.1093/jacamr/dlae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Background The molecular epidemiology of carbapenem-resistant Enterobacterales in Cape Town remains largely unknown. Objectives This study aimed to describe the molecular epidemiology, resistome, virulome and mobilome of carbapenem-resistant Klebsiella pneumoniae (CRKP) within Cape Town to guide therapy, antimicrobial stewardship and infection prevention and control practices. Methods Eighty-five CRKP isolates from hospitalized patients underwent WGS as part of a prospective, multicentre, cross-sectional study, conducted between 1 November 2020 and 30 November 2022, across public-sector and private-sector hospitals in Cape Town, South Africa. Results MLST revealed three novel types, ST6785, ST6786 and ST6787, while the most common were ST219, ST307, ST17, ST13 and ST2497. Different predominant clones were noted in each hospital. The most common carbapenemase gene was blaOXA-48-like, detected in 71% of isolates, with blaNDM detected in 5%. Notably, co-detection of two carbapenemase genes (blaOXA-48-like and blaNDM) occurred in 13% of isolates. The yersiniabactin siderophore was detected in 73% of isolates, and was most commonly associated with the ICEKp5 mobile element. All carbapenemases were located on plasmids. The genes blaOXA-181 and blaOXA-232 colocalized with a ColKP3 replicon type on assembled contigs in 83% and 100% of cases, respectively. Conclusions CRKP epidemiology in Cape Town reflects institutionally dominant, rather than regional, clones. The most prevalent carbapenemase gene was blaOXA-48-like, in keeping with CRKP epidemiology in South Africa in general. Emerging clones harbouring both blaOXA-48-like and blaNDM, such as ST17, ST2497 and the novel ST6787, are a concern due to the limited availability of appropriate antimicrobial agents in South Africa.
Collapse
Affiliation(s)
- Gert Marais
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Clinton Moodley
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Shantelle Claassen-Weitz
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Fadheela Patel
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Elizabeth Prentice
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Hafsah Tootla
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- Medical Microbiology, National Health Laboratory Service, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| | - Nyasha Nyakutira
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Katie Lennard
- Division of Computational Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Kessendri Reddy
- Division of Medical Microbiology, Stellenbosch University, Cape Town, Western Cape, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, Western Cape, South Africa
| | - Colleen Bamford
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- Division of Medical Microbiology, Pathcare, Cape Town, South Africa
| | - Abraham Niehaus
- Division of Medical Microbiology, Ampath, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology, Stellenbosch University, Cape Town, Western Cape, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, Western Cape, South Africa
| | - Adrian Brink
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
37
|
DelaFuente J, Diaz-Colunga J, Sanchez A, San Millan A. Global epistasis in plasmid-mediated antimicrobial resistance. Mol Syst Biol 2024; 20:311-320. [PMID: 38409539 PMCID: PMC10987494 DOI: 10.1038/s44320-024-00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.
Collapse
Affiliation(s)
| | - Juan Diaz-Colunga
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Institute of Functional Biology & Genomics, IBFG - CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Alvaro Sanchez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Institute of Functional Biology & Genomics, IBFG - CSIC, Universidad de Salamanca, Salamanca, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Stone G, Wise M, Utt E. In vitro activity of ceftazidime-avibactam and comparators against OXA-48-like Enterobacterales collected between 2016 and 2020. Microbiol Spectr 2024; 12:e0147323. [PMID: 38329363 PMCID: PMC10913439 DOI: 10.1128/spectrum.01473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Oxacillinases (OXA)-48-like β-lactamases are one of the most common resistance determinants among carbapenem-resistant Enterobacterales reported globally. Moreover, there is no standard treatment available against organisms producing OXA-48-like enzymes, and they are sometimes difficult to detect, making treatment challenging. The objective of this study was to evaluate the distribution and antimicrobial susceptibility of blaOXA-48-like Enterobacterales isolates against ceftazidime-avibactam (CAZ-AVI) and a panel of comparators collected worldwide from 2016 to 2020 as a part of the Antimicrobial Testing Leadership and Surveillance program. Among all the Enterobacterales isolates collected, 1.8% (1,690/94,052) carried blaOXA-48-like, and a majority of those were identified as K. pneumoniae (86.5%, 1,462/1,690). Among all the blaOXA-48-like isolates, 88.9% (1,502/1,690) were extended-spectrum β-lactamase (ESBL)-positive, 20.7% (350/1,690) were metallo-β-lactamase (MBL)-positive, and 8.9% (150/1,690) were ESBL- and MBL-negative. There were 10 different variants of the OXA-48-like family of enzymes detected, with the major variant being blaOXA-48 (50.2%, 848/1,690), blaOXA-232 (29.3%, 496/1,690), and blaOXA-181 (18.0%, 304/1,690). Overall, all the blaOXA-48-like isolates showed a susceptibility of 78.6% to CAZ-AVI. Importantly, high susceptibility to CAZ-AVI was shown by all the blaOXA-48 type, MBL-negative isolates (n = 1,380, ≥99.0%), and all the MBL-negative isolates (n = 1,300, ≥97.6%) of the major variants (blaOXA-48, blaOXA-232, and blaOXA-181) studied. Among the comparator agents, all isolates showed good susceptibility to only tigecycline (>95.0%) and colistin (>78.6%). Considering the limited treatment options available, CAZ-AVI could be considered as a potential treatment option against blaOXA-48-like Enterobacterales. However, routine surveillance and appropriate stewardship strategies for these organisms may help identify emerging resistance mechanisms and effective treatment of infections. IMPORTANCE Resistance to carbapenems among Enterobacterales is often due to the production of enzymes that are members of the oxacillinases (OXA)-48-like family. These organisms can also be resistant to other classes of drugs and are difficult to identify and treat. This study evaluated the activity of the drug ceftazidime-avibactam (CAZ-AVI) and other comparator agents against a global collection of Enterobacterales that produce OXA-48-like enzymes. CAZ-AVI was active against blaOXA-48-like Enterobacterales, and only colistin and tigecycline were similarly active among the comparator agents, highlighting the limited treatment options against these organisms. Continued surveillance of the distribution of these OXA 48-like producing Enterobacterales and monitoring of resistance patterns along with the implementation of antimicrobial stewardship measures to guide antibiotic use and appropriate treatment are necessary to avoid drug resistance among these organisms.
Collapse
Affiliation(s)
| | | | - Eric Utt
- Pfizer Inc., Groton, Connecticut, USA
| |
Collapse
|
39
|
Addis E, Unali I, Bertoncelli A, Ventura A, Cecchetto R, Mazzariol A. Different OXA-Carbapenemases in Genetically Unrelated Klebsiella pneumoniae Strains Isolated in a North Italian Hospital During Multidrug Resistance Screening. Microb Drug Resist 2024; 30:127-133. [PMID: 38165645 DOI: 10.1089/mdr.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Klebsiella pneumoniae is one of the main opportunistic pathogens that cause a broad spectrum of diseases with increasingly frequent acquisition of resistance to antibiotics, namely carbapenems. This study focused on the characterization of 23 OXA-48-like carbapenemase-producing K. pneumoniae isolates using phenotypic and molecular tests. Phenotypic determination of the presence of β-lactamases was performed using the extended-spectrum beta-lactamase (ESBL) NP test, and phenotypic determination of the presence of carbapenemase was based on the Carba NP test. Antimicrobial susceptibility tests were performed to assess the resistance against carbapenems. Molecular characterization of ESBL genes and carbapenemase genes (blaOXA-48, blaKPC, blaVIM, and blaNDM) was performed using polymerase chain reaction (PCR) techniques. In addition, K. pneumoniae strains were analyzed for their relatedness using multilocus sequence typing PCR analysis based on the Institut Pasteur protocol, which produces allelic profiles that contain their evolutionary and geographic pattern. Following further Sanger sequencing of the blaOXA-48 genes, no genetic mutations were found. Some OXA-48-producing K. pneumoniae isolates coharbored blaKPC, blaNDM, and blaVIM genes, which encode other carbapenemases that can hydrolyze carbapenem antibiotics. The final part of the study focused on the characterization of the plasmid profiles of all isolates to better understand the spreading of the IncL/M blaOXA-48 plasmid gene. The plasmid profile also revealed other incompatibility groups, suggesting that other plasmid genes are spreading in K. pneumoniae isolates, which can coharbor and spread different carbapenemases simultaneously.
Collapse
Affiliation(s)
- Elena Addis
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilaria Unali
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Ventura
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Wang H, Xia F, Xia Y, Li J, Hu Y, Deng Y, Zou M. Pangenome analysis of Shewanella xiamenensis revealed important genetic traits concerning genetic diversity, pathogenicity and antibiotic resistance. BMC Genomics 2024; 25:216. [PMID: 38413855 PMCID: PMC10898099 DOI: 10.1186/s12864-024-10146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Shewanella xiamenensis, widely distributed in natural environments, has long been considered as opportunistic pathogen. Recently, significant changes in the resistance spectrum have been observed in S. xiamenensis, due to acquired antibiotic resistance genes. Therefore, a pan-genome analysis was conducted to illuminate the genomic changes in S. xiamenensis. RESULTS Phylogenetic analysis revealed three major clusters and three singletons, among which close relationship between several strains was discovered, regardless of their host and niches. The "open" genomes with diversity of accessory and strain-specific genomes took advantage towards diversity environments. The purifying selection pressure was the main force on genome evolution, especially in conservative genes. Only 53 gene families were under positive selection pressure. Phenotypic resistance analysis revealed 21 strains were classified as multi-drug resistance (MDR). Ten types of antibiotic resistance genes and two heavy metal resistance operons were discovered in S. xiamenensis. Mobile genetic elements and horizontal gene transfer increased genome diversity and were closely related to MDR strains. S. xiamenensis carried a variety of virulence genes and macromolecular secretion systems, indicating their important roles in pathogenicity and adaptability. Type IV secretion system was discovered in 15 genomes with various sequence structures, indicating it was originated from different donors through horizontal gene transfer. CONCLUSIONS This study provided with a detailed insight into the changes in the pan-genome of S. xiamenensis, highlighting its capability to acquire new mobile genetic elements and resistance genes for its adaptation to environment and pathogenicity to human and animals.
Collapse
Affiliation(s)
- Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yubing Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yating Deng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 41008, Hunan Province, People's Republic of China.
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
41
|
Fröhlich C, Bunzel HA, Buda K, Mulholland AJ, van der Kamp MW, Johnsen PJ, Leiros HKS, Tokuriki N. Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase. Nat Catal 2024; 7:499-509. [PMID: 38828429 PMCID: PMC11136654 DOI: 10.1038/s41929-024-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/25/2024] [Indexed: 06/05/2024]
Abstract
Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
Collapse
Affiliation(s)
| | - H. Adrian Bunzel
- Department of Biosystem Science and Engineering, ETH Zurich, Basel, Switzerland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Pål J. Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
42
|
Pitout JDD, Peirano G, Matsumura Y, DeVinney R, Chen L. Escherichia coli sequence type 410 with carbapenemases: a paradigm shift within E. coli toward multidrug resistance. Antimicrob Agents Chemother 2024; 68:e0133923. [PMID: 38193668 PMCID: PMC10869336 DOI: 10.1128/aac.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Escherichia coli sequence type ST410 is an emerging carbapenemase-producing multidrug-resistant (MDR) high-risk One-Health clone with the potential to significantly increase carbapenem resistance among E. coli. ST410 belongs to two clades (ST410-A and ST410-B) and three subclades (ST410-B1, ST410-B2, and ST410-B3). After a fimH switch between clades ST410-A and ST410-B1, ST410-B2 and ST410-B3 subclades showed a stepwise progression toward developing MDR. (i) ST410-B2 initially acquired fluoroquinolone resistance (via homologous recombination) in the 1980s. (ii) ST410-B2 then obtained CMY-2, CTX-M-15, and OXA-181 genes on different plasmid platforms during the 1990s. (iii) This was followed by the chromosomal integration of blaCMY-2, fstl YRIN insertion, and ompC/ompF mutations during the 2000s to create the ST410-B3 subclade. (iv) An IncF plasmid "replacement" scenario happened when ST410-B2 transformed into ST410-B3: F36:31:A4:B1 plasmids were replaced by F1:A1:B49 plasmids (both containing blaCTX-M-15) followed by blaNDM-5 incorporation during the 2010s. User-friendly cost-effective methods for the rapid identification of ST410 isolates and clades are needed because limited data are available about the frequencies and global distribution of ST410 clades. Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently required to investigate the success of ST410 (including the ability to acquire successive MDR determinants). Such information will aid with management and prevention strategies to curb the spread of carbapenem-resistant E. coli. The medical community can ill afford to ignore the spread of a global E. coli clone with the potential to end the carbapenem era.
Collapse
Affiliation(s)
- Johann D. D. Pitout
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Yasufumi Matsumura
- Kyoto University Graduate School of Medicine, Pretoria, Gauteng, South Africa
| | | | - Liang Chen
- Meridian Health Center for Discovery and Innovation, Kyoto, Japan
- Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
43
|
El Chaar M, Khoury Y, Douglas GM, El Kazzi S, Jisr T, Soussi S, Merhi G, Moghnieh RA, Shapiro BJ. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in critical care patients. Microbiol Spectr 2024; 12:e0312823. [PMID: 38171007 PMCID: PMC10846182 DOI: 10.1128/spectrum.03128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Colonization with multidrug-resistant Escherichia coli strains causes a substantial health burden in hospitalized patients. We performed a longitudinal genomics study to investigate the colonization of resistant E. coli strains in critically ill patients and to identify evolutionary changes and strain replacement events within patients. Patients were admitted to the intensive care unit and hematology wards at a major hospital in Lebanon. Perianal swabs were collected from participants on admission and during hospitalization, which were screened for extended-spectrum beta-lactamases and carbapenem-resistant Enterobacterales. We performed whole-genome sequencing and analysis on E. coli strains isolated from patients at multiple time points. The E. coli isolates were genetically diverse, with 11 sequence types (STs) identified among 22 isolates sequenced. Five patients were colonized by E. coli sequence type 131 (ST131)-encoding CTX-M-27, an emerging clone not previously observed in clinical samples from Lebanon. Among the eight patients whose resident E. coli strains were tracked over time, five harbored the same E. coli strain with relatively few mutations over the 5 to 10 days of hospitalization. The other three patients were colonized by different E. coli strains over time. Our study provides evidence of strain diversity within patients during their hospitalization. While strains varied in their antimicrobial resistance profiles, the number of resistance genes did not increase over time. We also show that ST131-encoding CTX-M-27, which appears to be emerging as a globally important multidrug-resistant E. coli strain, is also prevalent among critical care patients and deserves further monitoring.IMPORTANCEUnderstanding the evolution of bacteria over time in hospitalized patients is of utmost significance in the field of infectious diseases. While numerous studies have surveyed genetic diversity and resistance mechanisms in nosocomial infections, time series of within-patient dynamics are rare, and high-income countries are over-represented, leaving low- and middle-income countries understudied. Our study aims to bridge these research gaps by conducting a longitudinal survey of critically ill patients in Lebanon. This allowed us to track Escherichia coli evolution and strain replacements within individual patients over extended periods. Through whole-genome sequencing, we found extensive strain diversity, including the first evidence of the emerging E. coli sequence type 131 clone encoding the CTX-M-27 beta-lactamase in a clinical sample from Lebanon, as well as likely strain replacement events during hospitalization.
Collapse
Affiliation(s)
- Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Yaralynn Khoury
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Gavin M. Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Samir El Kazzi
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Tamima Jisr
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Shatha Soussi
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Georgi Merhi
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Rima A. Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center, Beirut, Lebanon
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
44
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
45
|
Lin YT, Chuang C, Chou SH, Juan CH, Yang TC, Kreiswirth BN, Chen L. Emergence of OXA-48-producing hypervirulent Klebsiella pneumoniae strains in Taiwan. Eur J Clin Microbiol Infect Dis 2024; 43:389-393. [PMID: 38062176 DOI: 10.1007/s10096-023-04733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The OXA-48-producing hypervirulent Klebsiella pneumoniae (hvKP) strains were rarely reported. In this study, we characterized three carbapenem-resistant hvKP strains (KP2185, NCRE61, and KP2683-1) isolated from renal abscess, scrotal abscess, and blood samples in a Taiwan hospital. The three strains belonged to two different clones: ST23 K1 (KP2683-1) and ST11 KL64 (KP2185 and NCRE61). KP2683-1 exhibited the highest virulence in an in vivo model. Whole-genome sequencing analysis showed that KP2185 and NCRE61 acquired IncFIB type plasmids containing a set of virulence genes (iroBCDN, iucABCD, rmpA, rmpA2, and iutA), while KP2683-1 acquired an IncL type plasmid harboring blaOXA-48.
Collapse
Affiliation(s)
- Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chien Chuang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barry N Kreiswirth
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA.
| |
Collapse
|
46
|
Sękowska A. In Vitro Activity of "Old" and "New" Antimicrobials against the Klebsiella pneumoniae Complex. Antibiotics (Basel) 2024; 13:126. [PMID: 38391512 PMCID: PMC10886291 DOI: 10.3390/antibiotics13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The Klebsiella pneumoniae complex is a commonly isolated bacteria in human infections. These opportunistic pathogens pose a serious threat to public health due to their potential transmission to the human population. Resistance to carbapenems is a significant antimicrobial resistance mechanism, leading to limited therapeutic options. Therefore, the aim of this study was to evaluate the in vitro activity of fosfomycin, colistin, ceftazidime-avibactam, and meropenem-vaborbactam against multidrug-resistant K. pneumoniae complex strains. This study involved 160 strains of Gram-negative rods, comprising 138 K. pneumoniae and 22 K. variicola. The minimal inhibitory concentration of fosfomycin was estimated using the agar dilution method, and for colistin, the microdilution method was employed. Susceptibility to ceftazidime-avibactam and meropenem-vaborbactam was determined using the gradient strip method. All analyzed K. pneumoniae complex isolates produced extended-spectrum β-lactamases, and 60.0% exhibited carbapenemases. The majority of the analyzed strains were susceptible to fosfomycin and colistin (62.5%). Among pandrug-resistant K. pneumoniae complex isolates, the highest susceptibility was observed with colistin (43.9%). Fosfomycin demonstrated good activity against ESβLs- and VIM-positive isolates from this complex. Colistin also exhibited satisfactory in vitro activity against VIM- and KPC-positive isolates from the K. pneumoniae complex. Ceftazidime-avibactam displayed good activity against K. pneumoniae complex strains producing ESβLs, KPC, and OXA enzymes. Additionally, meropenem-vaborbactam showed satisfactory in vitro activity against ESβLs- and KPC-positive isolates from this complex.
Collapse
Affiliation(s)
- Alicja Sękowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Maria Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
- Clinical Microbiology Department, Dr. A. Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| |
Collapse
|
47
|
Dinda V, Kimang’a AN, Kariuki D, Sifuna AW, O’Brien TJ, Welch M, Reva ON. Whole genome sequencing and genotyping Klebsiella pneumoniae multi-drug resistant hospital isolates from Western Kenya. Access Microbiol 2024; 6:000667.v4. [PMID: 38361654 PMCID: PMC10866029 DOI: 10.1099/acmi.0.000667.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives Klebsiella pneumoniae are a frequent cause of nosocomial infections worldwide. Sequence type 147 (ST147) has been reported as a major circulating high-risk lineage in many countries, and appears to be a formidable platform for the dissemination of antimicrobial resistance (AMR) determinants. However, the distribution of this pathogen in Western African hospitals has been scarcely studied. The main objective of this work was to perform whole genome sequencing of K. pneumoniae isolates from a referral hospital in Kakamega (Kenya) for genotyping and identification of AMR and virulence determinants. Methods In total, 15 K. pneumoniae isolates showing a broad spectrum antimicrobial resistance were selected for whole genome sequencing by Illumina HiSeq 2500 platform. Results ST147 was the dominant lineage among the highly-resistant K. pneumoniae isolates that we sequenced. ST147 was associated with both community- and the hospital-acquired infections, and with different infection sites, whereas other STs were predominantly uropathogens. Multiple antibiotic resistance and virulence determinants were detected in the genomes including extended-spectrum β-lactamases (ESBL) and carbapenemases. Many of these genes were plasmid-borne. Conclusions Our data suggest that the evolutionary success of ST147 may be linked with the acquisition of broad host-range plasmids, and their propensity to accrue AMR and virulence determinants. Although ST147 is a dominant lineage in many countries worldwide, it has not been previously reported as prevalent in Africa. Our data suggest an influx of new nosocomial pathogens with new virulence genes into African hospitals from other continents.
Collapse
Affiliation(s)
- Victor Dinda
- Department of Medical Laboratory Science, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Andrew Nyerere Kimang’a
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel Kariuki
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Anthony Wawire Sifuna
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Thomas James O’Brien
- Department of Biochemistry, University of Cambridge, Hopkins Building, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Hopkins Building, Cambridge, UK
| | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Tkalec V, Lindic P, Jursa T, Ivanusa Sket H, Maric L, Cimerman M, Rupnik M, Golle A. Carbapenemase and extended-spectrum beta-lactamase-producing bacteria in waters originating from a single landfill in Slovenia. FEMS Microbiol Lett 2024; 371:fnae070. [PMID: 39227167 DOI: 10.1093/femsle/fnae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024] Open
Abstract
Groundwater, rainwater, and leachate associated with a single landfill were analysed to detect extended-spectrum beta-lactamase (ESBL)-producing and carbapenemase (CP)-producing bacteria. After cultivation on three commercial selective-differential media, 240 bacterial isolates were obtained and identified by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Isolates from clinically relevant species were further genotyped by enterobacterial repetitive intergenic consensus polymerase chain reaction, and tested for antibiotic susceptibility and presence of CPs and ESBL enzymes. Two ESBL-producing isolates and two isolates producing CPs were detected in rainwater, groundwater, and leachate: Klebsiella oxytoca complex with the gene for the ESBL enzyme CTX-M-1 and the gene for the CP OXA-48, Serratia fonticola with the gene for the ESBL enzyme FONA-2, and Pseudomonas aeruginosa with the gene coding Verona integron-encoded Metallo-beta-lactamases (VIM) metallo-beta-lactamase. Our study indicates that bacteria with ESBL and CP genes can be present in landfill-associated waters.
Collapse
Affiliation(s)
- Valerija Tkalec
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Polona Lindic
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Tatjana Jursa
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | | | - Leon Maric
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Mojca Cimerman
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| |
Collapse
|
49
|
Li Y, Sun X, Dong N, Wang Z, Li R. Global distribution and genomic characteristics of carbapenemase-producing Escherichia coli among humans, 2005-2023. Drug Resist Updat 2024; 72:101031. [PMID: 38071860 DOI: 10.1016/j.drup.2023.101031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/27/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
Carbapenem-resistant Escherichia coli (CREC) has become a major public health problem worldwide. To date, there is a limited understanding of the global distribution of CREC. In this study, we performed a comprehensive genomic analysis of 7, 731 CRECs of human origin collected from different countries worldwide between 2005 and 2023. Our results showed that these CRECs were distributed in 75 countries, mainly from the United States (17.49%), China (14.88%), and the United Kingdom (14.73%). Eight carbapenemases were identified among the CRECs analyzed, including KPC, IMP, NDM, VIM, OXA, FRI, GES, and IMI. NDM was the most predominant carbapenemase (52.15%), followed by OXA (30.09%) and KPC (14.72%). Notably, all CRECs carried multiple antibiotic resistance genes (ARGs), with 178 isolates carrying mcr-1 and 9 isolates carrying tet(X). The CREC isolates were classified into 465 known sequence types (STs), with ST167 being the most common (11.5%). Correlation analysis demonstrated the significant role of mobile genetic elements in facilitating the transfer of carbapenem resistance genes. Furthermore, some CRECs from different countries showed high genetic similarity, suggesting clonal transmission exists. According to the GWAS results, the genetic difference of blaNDM-positive CRECs from China were mainly enriched in bacterial Type IV secretion system pathways compared with those from the United Kingdom and the United States. Therefore, continuous global surveillance of CRECs is imperative in the future.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, PR China.
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
50
|
Di Pilato V, Pollini S, Miriagou V, Rossolini GM, D'Andrea MM. Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, dissemination, and evolution of a major clinical challenge. Expert Rev Anti Infect Ther 2024; 22:25-43. [PMID: 38236906 DOI: 10.1080/14787210.2024.2305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Klebsiella pneumoniae is a major agent of healthcare-associated infections and a cause of some community-acquired infections, including severe bacteremic infections associated with metastatic abscesses in liver and other organs. Clinical relevance is compounded by its outstanding propensity to evolve antibiotic resistance. In particular, the emergence and dissemination of carbapenem resistance in K. pneumoniae has posed a major challenge due to the few residual treatment options, which have only recently been expanded by some new agents. The epidemiological success of carbapenem-resistant K. pneumoniae (CR-Kp) is mainly linked with clonal lineages that produce carbapenem-hydrolyzing enzymes (carbapenemases) encoded by plasmids. AREAS COVERED Here, we provide an updated overview on the mechanisms underlying the emergence and dissemination of CR-Kp, focusing on the role that plasmids have played in this phenomenon and in the co-evolution of resistance and virulence in K. pneumoniae. EXPERT OPINION CR-Kp have disseminated on a global scale, representing one of the most important contemporary public health issues. These strains are almost invariably associated with complex multi-drug resistance (MDR) phenotypes, which can also include recently approved antibiotics. The heterogeneity of the molecular bases responsible for these phenotypes poses significant hurdles for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Vivi Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | | |
Collapse
|