1
|
King-Lyons ND, Bhati AS, Hu JC, Mandell LM, Shenoy GN, Willison HJ, Connell TD. A Novel Cytotoxic Mechanism for Triple-Negative Breast Cancer Cells Induced by the Type II Heat-Labile Enterotoxin LT-IIc through Ganglioside Ligation. Toxins (Basel) 2024; 16:311. [PMID: 39057951 PMCID: PMC11281474 DOI: 10.3390/toxins16070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
Collapse
Affiliation(s)
- Natalie D. King-Lyons
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Aryana S. Bhati
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - John C. Hu
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Department of Medicine, Division of Infectious Disease, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Lorrie M. Mandell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Gautam N. Shenoy
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Terry D. Connell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| |
Collapse
|
2
|
Highly Pathogenic Avian Influenza H5 Hemagglutinin Fused with the A Subunit of Type IIb Escherichia coli Heat Labile Enterotoxin Elicited Protective Immunity and Neutralization by Intranasal Immunization in Mouse and Chicken Models. Vaccines (Basel) 2019; 7:vaccines7040193. [PMID: 31766677 PMCID: PMC6963717 DOI: 10.3390/vaccines7040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic avian influenza viruses are classified by the World Organization for Animal Health (OIE) as causes of devastating avian diseases. This study aimed to develop type IIb Escherichiacoli heat-labile enterotoxin (LTIIb) as novel mucosal adjuvants for mucosal vaccine development. The fusion protein of H5 and LTIIb-A subunit was expressed and purified for mouse and chicken intranasal immunizations. Intranasal immunization with the H5-LTIIb-A fusion protein in mice elicited potent neutralizing antibodies in sera and bronchoalveolar lavage fluids, induced stronger Th1 and Th17 cellular responses in spleen and cervical lymph nodes, and improved protection against H5N1 influenza virus challenge. More interestingly, intranasal immunization with the H5-LTIIb-A fusion protein in chickens elicited high titers of IgY, IgA, hemagglutinin inhibition (HAI), and neutralizing antibodies in their antisera. This study employed the novel adjuvants of LTIIb for the development of a new generation of mucosal vaccines against highly pathogenic avian influenza viruses.
Collapse
|
3
|
Maeda DLNF, Batista MT, Pereira LR, de Jesus Cintra M, Amorim JH, Mathias-Santos C, Pereira SA, Boscardin SB, Silva SDR, Faquim-Mauro EL, Silveira VB, Oliveira DBL, Johnston SA, Ferreira LCDS, Rodrigues JF. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein. Front Immunol 2017; 8:1175. [PMID: 28993770 PMCID: PMC5622152 DOI: 10.3389/fimmu.2017.01175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.
Collapse
Affiliation(s)
| | - Milene Tavares Batista
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Center for Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana de Jesus Cintra
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jaime Henrique Amorim
- Center of Biological and Health Sciences, Federal University of Western Bahia, Bahia, Brazil
| | - Camila Mathias-Santos
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara Araújo Pereira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanessa Barbosa Silveira
- Clinical and Molecular Virology Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danielle Bruna Leal Oliveira
- Clinical and Molecular Virology Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephen Albert Johnston
- Center for Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Falcão Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Greene CJ, Hu JC, Vance DJ, Rong Y, Mandell L, King-Lyons N, Masso-Welch P, Mantis NJ, Connell TD. Enhancement of humoral immunity by the type II heat-labile enterotoxin LT-IIb is dependent upon IL-6 and neutrophils. J Leukoc Biol 2016; 100:361-9. [PMID: 27059843 DOI: 10.1189/jlb.3a0415-153rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 03/23/2016] [Indexed: 11/24/2022] Open
Abstract
LT-IIb, a type II heat-labile enterotoxin produced by Escherichia coli, is a potent intradermal adjuvant that enhances immune responses to coadministered antigens. Although the immune mechanisms that promote this augmented immune response have not been well defined, prior intradermal immunization experiments suggested that early cellular and immunomodulatory events at the site of immunization modulated the augmentation of antigen-specific immune responses by LT-IIb. To investigate that hypothesis, mice were intradermally immunized with a recombinant ricin vaccine, a prospective toxin subunit antigen, in the presence and absence of LT-IIb. Analysis of tissue-fluid collection, coupled with histologic sections from the site of intradermal immunization, revealed that a single dose of LT-IIb induced local production of interleukin 6 and promoted a regional infiltration of neutrophils. The adjuvant effects of LT-IIb were abrogated in interleukin 6-deficient mice and when mice were depleted of neutrophils by pretreatment with anti-Ly6G. Overall, these data firmly demonstrated that LT-IIb, when used as an intradermal adjuvant, recruits neutrophils and is a potent rapid inducer of interleukin 6.
Collapse
Affiliation(s)
- Christopher J Greene
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - John C Hu
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - David J Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA; and
| | - Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA; and
| | - Lorrie Mandell
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Natalie King-Lyons
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Patricia Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA; and Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Terry D Connell
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA;
| |
Collapse
|
5
|
Comparative Adjuvant Effects of Type II Heat-Labile Enterotoxins in Combination with Two Different Candidate Ricin Toxin Vaccine Antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1285-93. [PMID: 26491037 DOI: 10.1128/cvi.00402-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 μg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans.
Collapse
|
6
|
El-Kassas S, Faraj R, Martin K, Hajishengallis G, Connell TD, Nashar T. Cell clustering and delay/arrest in T-cell division implicate a novel mechanism of immune modulation by E. coli heat-labile enterotoxin B-subunits. Cell Immunol 2015; 295:150-62. [PMID: 25880107 DOI: 10.1016/j.cellimm.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
The B-subunits of heat-labile enterotoxins LT-I (LT-IB) and LT-IIa (LT-IIaB) are strong adjuvants that bind to cell-surface receptors, including gangliosides G(M1) and GD1b, respectively. LT-IIaB also binds TLR-2. We demonstrate for the first time that co-incubation with the B-subunits induces significant clustering of B cells after only 4h, and B and T cells in 24h. Clustering was dependent on intact B-subunits, but not on the TLR-2 binding activity of LT-IIaB, indicating it was ganglioside-mediated. Treatment of B cells with LT-IB, a mixture of LT-IB+LT-IIaB, but not LT-IIaB alone, caused a delay in T cell division following ovalbumin endocytosis. B cell receptor-mediated uptake in presence of each treatment caused an arrest, but with increased production of IL-2. Further, treatments differentially increased the proportion of macrophages expressing MHC class-II. These results highlight the outcomes of interplay between signals involving different receptors and implicate a novel mechanism of adjuvanticity.
Collapse
Affiliation(s)
- Seham El-Kassas
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA; Kafrelshikh University, College of Veterinary Medicine, Kafrelsheikh, Egypt
| | - Rawah Faraj
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA; Middle Technical University, Institute of Medical Technology, Department of Community Health, Baghdad, Iraq
| | - Karmarcha Martin
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA
| | - George Hajishengallis
- Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| | - Terry D Connell
- The Department of Microbiology & Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, 138 Farber Hall, 3435 Main St., University at Buffalo, NY 14214, USA
| | - Toufic Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, 1200 Montgomery Road, Tuskegee, AL 36088, USA.
| |
Collapse
|
7
|
Intradermal administration of the Type II heat-labile enterotoxins LT-IIb and LT-IIc of enterotoxigenic Escherichia coli enhances humoral and CD8+ T cell immunity to a co-administered antigen. PLoS One 2014; 9:e113978. [PMID: 25536061 PMCID: PMC4275187 DOI: 10.1371/journal.pone.0113978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/02/2014] [Indexed: 01/16/2023] Open
Abstract
Vaccinations are extremely effective at combating infectious diseases. Many conserved antigen (Ag) targets, however, are poorly immunogenic. Protein subunit vaccines frequently elicit only humoral immune responses and fail to confer protection against serious intracellular pathogens. These barriers to vaccine development are often overcome by the use of appropriate adjuvants. Heat-labile enterotoxins (HLT) produced by enterotoxigenic strains of Escherichia coli are potent adjuvants when administered by mucosal or systemic routes. The efficacy of the type II HLT, however, has not been well-defined when administered by the intradermal (ID) route. Using a murine ID immunization model, the adjuvant properties of LT-IIb and LT-IIc, two type II HLTs, were compared with those of LT-I, a prototypical type I HLT. While all three HLT adjuvants enhanced Ag-specific humoral responses to similar levels, LT-IIb and LT-IIc, in contrast to LT-I, induced a more vigorous Ag-specific CD8+ T cell response and proffered faster clearance of Listeria monocytogenes in a challenge model. Additionally, LT-IIb and LT-IIc induced distinct differences in the profiles of the Ag-specific CD8+ T cell responses. While LT-IIc stimulated a robust and rapid primary CD8+ T cell response, LT-IIb exhibited slower CD8+ T cell expansion and contraction kinetics with the formation of higher percentages of effector memory cells. In comparison to LT-I and LT-IIc, LT-IIb evoked better long-term protection after immunization. Furthermore, LT-IIb and LT-IIc enhanced the total number of dendritic cells (DC) in the draining lymph node (DLN) and expression of costimulatory molecules CD80, CD86, and CD40 on DCs. In contrast to LT-I, LT-IIb and LT-IIc induced less edema, cellular infiltrates, and general inflammation at the site of ID injection. Thus, LT-IIb and LT-IIc are attractive comprehensive ID adjuvants with unique characteristic that enhance humoral and cellular immunity to a co-administered protein Ag.
Collapse
|
8
|
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines (Basel) 2014; 2:323-53. [PMID: 26344622 PMCID: PMC4494261 DOI: 10.3390/vaccines2020323] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023] Open
Abstract
Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented.
Collapse
|
9
|
Greene CJ, Chadwick CM, Mandell LM, Hu JC, O’Hara JM, Brey RN, Mantis NJ, Connell TD. LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity. PLoS One 2013; 8:e69678. [PMID: 23936344 PMCID: PMC3732243 DOI: 10.1371/journal.pone.0069678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022] Open
Abstract
Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.
Collapse
Affiliation(s)
- Christopher J. Greene
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Chrystal M. Chadwick
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lorrie M. Mandell
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - John C. Hu
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Joanne M. O’Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- The Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| | - Robert N. Brey
- Soligenix, Inc., Princeton, New Jersey, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- The Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
- * E-mail: (TDC); (NJM)
| | - Terry D. Connell
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- * E-mail: (TDC); (NJM)
| |
Collapse
|
10
|
Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 2012; 152:68-77. [PMID: 23137790 DOI: 10.1016/j.vetimm.2012.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|