1
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Harnessing the ubiquitin proteasome system as a key player in stem cell biology. Biofactors 2025; 51:e2157. [PMID: 39843166 DOI: 10.1002/biof.2157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins. Proteasomes have a critical role in controlling protein homeostasis in all cell types, including stem cells. We will discuss the role of UPS enzymes as well as the 26S proteasome complex in stem cell biology from several angles. First, we shall overview common trends of proteasomal activity and gene expression of different proteasomal subunits and UPS enzymes upon passaging and differentiation of stem cells toward various cell lineages. Second, we shall explore the effect of modulating proteasomal activity in stem cells and navigate through the interrelation between proteasomes' activity and various proteasome-related transcription factors. Third, we will shed light on curated microRNAs and long non-coding RNAs using various bioinformatics tools that might have a possible role in regulating UPS in stem cells and possibly, upon manipulation, can enhance the differentiation process into different lineages and/or delay senescence upon cell passaging. This will help to decipher the role played by individual UPS enzymes and subunits as well as various interrelated molecular mediators in stem cells' maintenance and/or differentiation and open new avenues in stem cell research. This can ultimately provide a leap toward developing novel therapeutic interventions related to proteasome dysregulation.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Górska E, Tylicka M, Kamińska J, Hermanowicz A, Matuszczak E, Ołdak Ł, Gorodkiewicz E, Karpińska E, Socha K, Kochanowicz J, Jakoniuk M, Homšak E, Koper-Lenkiewicz OM. 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S are high-sensitivity and independent markers of immunological activity in relapsing-remitting type of multiple sclerosis. J Neurochem 2024; 168:2880-2892. [PMID: 38923513 DOI: 10.1111/jnc.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Research on the markers of autoimmune response in multiple sclerosis (MS) is still of great importance. The aim of our study was the evaluation of plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations as potential biomarkers of a relapsing-remitting type of MS (RRMS). Surface plasmon resonance imaging (SPRI) biosensors were used for the evaluation of protein concentrations. Plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations were significantly higher in RRMS patients compared to the control group. All three parameters were characterized by excellent usefulness in differentiating MS patients from healthy individuals (AUC equal to or close to 1.000). The plasma concentration of analyzed parameters was not correlated with severity of disability in the course of RRMS (EDSS value), the number of years from the first MS symptoms, the number of years from MS diagnosis, or the number of relapses within the 24-month observational period. Our study has shown that plasma concentrations of 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S have promising potential in differentiating RRMS patients from healthy individuals. All of the analyzed parameters were found to be independent of the time of MS relapse and the severity of neurological symptoms. Hence, their potential as highly sensitive and independent circulating markers of RRMS suggests a stronger association with immunological activity (inflammatory processes) than with the severity of the disease.
Collapse
Affiliation(s)
- Ewelina Górska
- Neurological Private Practice, Bialystok, Poland
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Elżbieta Karpińska
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Marta Jakoniuk
- Department of Invasive Neurology, Medical University of Białystok, Białystok, Poland
| | - Evgenija Homšak
- Department for Laboratory Diagnostics, University Clinical Centre Maribor, Maribor, Slovenia
- Department for Clinical Biochemistry, Medical Faculty, University Maribor, Maribor, Slovenia
| | | |
Collapse
|
3
|
Gaun A, Preciado López M, Olsson N, Wang JCK, Chan LJG, O'Brien J, Li W, Zavala‐Solorio J, Zhang C, Eaton D, McAllister FE. Triple‐threat quantitative multiplexed plasma proteomics analysis on immune complex disease MRL‐lpr mice. Proteomics 2022; 22:e2100242. [DOI: 10.1002/pmic.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
|
4
|
Black RM, Flaman LL, Lindblom K, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis. Arthritis Res Ther 2022; 24:137. [PMID: 35689293 PMCID: PMC9185927 DOI: 10.1186/s13075-022-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. METHODS Human osteochondral explants were harvested from normal (Collins grade 0-1) ankle talocrural joints of human donors (2 female, 5 male, ages 23-70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2-3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. RESULTS Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. CONCLUSIONS Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa L Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karin Lindblom
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
UCHL1 and Proteasome in Blood Serum in Relation to Dietary Habits, Concentration of Selected Antioxidant Minerals and Total Antioxidant Status among Patients with Alzheimer's Disease. J Clin Med 2022; 11:jcm11020412. [PMID: 35054106 PMCID: PMC8779407 DOI: 10.3390/jcm11020412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. It is the most common form of dementia among the elderly population. So far, no effective methods of its treatment have been found. Research to better understand the mechanism of pathology may provide new methods for early diagnosis. This, in turn, could enable early intervention that could slow or halt disease progression and improve patients' quality of life. Therefore, minimally invasive markers, including serum-based markers, are being sought to improve the diagnosis of AD. One of the important markers may be the concentration of UCHL1 and the proteasome in the blood serum. Their concentration can be affected by many factors, including eating habits. This study was conducted in 110 patients with early or moderate AD, with a mean age of 78.0 ± 8.1 years. The patients were under the care of the Podlasie Center of Psychogeriatrics and the Department of Neurology (Medical University of Białystok, Poland). The control group consisted of 60 healthy volunteers, matched for gender and age. The concentration of UCHL1 and the 20S proteasome subunit were measured by surface plasmon resonance imaging (SPRI). In addition, a nutritional interview was conducted with patients with AD, which assessed the frequency of consumption of 36 groups of products. In the group of patients with AD, compared to the control group, we showed a significantly higher concentration of UCHL1 (56.05 vs. 7.98 ng/mL) and the proteasome (13.02 vs. 5.72 µg/mL). Moreover, we found a low negative correlation between UCHL1 and the proteasome in the control group, and positive in the AD group. The analysis of eating habits showed that the consumption of selected groups of products may affect the concentration of the tested components, and therefore may have a protective effect on AD.
Collapse
|
6
|
Concept and application of circulating proteasomes. Exp Mol Med 2021; 53:1539-1546. [PMID: 34707192 PMCID: PMC8568939 DOI: 10.1038/s12276-021-00692-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
Proteostasis is primarily a function of protein synthesis and degradation. Although the components and processes involved in intracellular proteostasis have been studied extensively, it is apparent that extracellular proteostasis is equitably crucial for the viability of organisms. The 26S proteasome, a unique ATP-dependent proteolytic complex in eukaryotic cells, contributes to the majority of intracellular proteolysis. Accumulating evidence suggests the presence of intact 20S proteasomes in the circulatory system (c-proteasomes), and similar to other plasma proteins, the levels of these c-proteasomes may vary, potentially reflecting specific pathophysiological conditions. Under normal conditions, the concentration of c-proteasomes has been reported to be in the range of ~0.2-2 μg/mL, which is ~2-4-fold lower than that of functional plasma proteins but markedly higher than that of signaling proteins. The characterization of c-proteasomes, such as their origin, structure, role, and clearance, has been delayed mainly due to technical limitations. In this review, we summarize the current perspectives pertaining to c-proteasomes, focusing on the methodology, including our experimental understanding. We believe that once the pathological relevance of c-proteasomes is revealed, these unique components may be utilized in the diagnosis and prognosis of diverse human diseases.
Collapse
|
7
|
Wysocka M, Romanowska A, Gruba N, Michalska M, Giełdoń A, Lesner A. A Peptidomimetic Fluorescent Probe to Detect the Trypsin β2 Subunit of the Human 20S Proteasome. Int J Mol Sci 2020; 21:ijms21072396. [PMID: 32244300 PMCID: PMC7177456 DOI: 10.3390/ijms21072396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 01/20/2023] Open
Abstract
This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (β2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ–Dap(O2(Cbz))–Dap(GO1)–Dap(O2(Cbz))–Arg–ANB–NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 μM, kcat = 245 s−1, and kcat/Km = 7.61 × 107 M−1 s−1. This process was practically halted when a selective inhibitor of the β2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10−11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Lesner
- Correspondence: ; Tel.: +48-585-235-095; Fax: +48-585-235-472
| |
Collapse
|
8
|
The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019; 9:biom9050190. [PMID: 31100951 PMCID: PMC6571867 DOI: 10.3390/biom9050190] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022] Open
Abstract
The last decade has seen accumulating evidence of various proteins being degraded by the core 20S proteasome, without its regulatory particle(s). Here, we will describe recent advances in our knowledge of the functional aspects of the 20S proteasome, exploring several different systems and processes. These include neuronal communication, post-translational processing, oxidative stress, intrinsically disordered protein regulation, and extracellular proteasomes. Taken together, these findings suggest that the 20S proteasome, like the well-studied 26S proteasome, is involved in multiple biological processes. Clarifying our understanding of its workings calls for a transformation in our perception of 20S proteasome-mediated degradation—no longer as a passive and marginal path, but rather as an independent, coordinated biological process. Nevertheless, in spite of impressive progress made thus far, the field still lags far behind the front lines of 26S proteasome research. Therefore, we also touch on the gaps in our knowledge of the 20S proteasome that remain to be bridged in the future.
Collapse
|
9
|
Buneeva OA, Medvedev AE. [Ubiquitin-independent protein degradation in proteasomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:134-148. [PMID: 29723144 DOI: 10.18097/pbmc20186402134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: the ATP-dependent addition of (typically four sequential) residues of the low-molecular ubiquitin protein, involving the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin ligase. The cytoplasm and nucleoplasm proteins labeled in this way are then digested in 26S proteasomes. However, in recent years it has become increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent protein degradation in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate further increase. Since 26S of proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles and whole cells, has the most serious consequences for the whole organism.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
10
|
Dieudé M, Cardinal H, Hébert MJ. Injury derived autoimmunity: Anti-perlecan/LG3 antibodies in transplantation. Hum Immunol 2019; 80:608-613. [PMID: 31029511 DOI: 10.1016/j.humimm.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
Ischemic, immunologic or pharmacological stressors can induce vascular injury and endothelial apoptosis in organ donors, in transplant candidates due to the impact of end stage organ failure on the vasculature, and in association with peri-transplantation events. Vascular injury may shape innate and adaptive immune responses, leading to dysregulation in the balance between tolerance and immunoreactivity to vascular-derived antigens. Mounting evidence shows that the early stages of apoptosis, characterized by the absence of membrane permeabilization, are prone to trigger various modes of intercellular communication allowing neoantigen production, exposure, or both. In this review, we present the evidence for the release of LG3, an immunogenic fragment of perlecan, as a consequence of caspase-3 dependent vascular apoptosis leading to the genesis of anti-LG3 autoantibodies and the consequences of these autoantibodies in native and transplanted kidneys.
Collapse
Affiliation(s)
- Mélanie Dieudé
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Canadian Donation and Transplantation Research Program, Canada; Université de Montréal, Canada.
| | - Héloïse Cardinal
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Canadian Donation and Transplantation Research Program, Canada; Université de Montréal, Canada.
| | - Marie-Josée Hébert
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Canadian Donation and Transplantation Research Program, Canada; Université de Montréal, Canada.
| |
Collapse
|
11
|
Proteasome Activity and C-Reactive Protein Concentration in the Course of Inflammatory Reaction in Relation to the Type of Abdominal Operation and the Surgical Technique Used. Mediators Inflamm 2018; 2018:2469098. [PMID: 30405319 PMCID: PMC6204193 DOI: 10.1155/2018/2469098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
Surgical tissue damage and the accompanying inflammatory response lead to proteasome activation, initiation of damaged protein degradation, and induction of acute-phase inflammatory response. The aim of this study was to investigate the rate of change in proteasome chymotrypsin-like (ChT-L) activity and C-reactive protein concentration depending on the degree of tissue damage and their correlation with prealbumin concentrations in children before and after abdominal surgery. This experimental study included children who underwent abdominal surgery between 2015 and 2017. Plasma prealbumin concentrations and C-reactive protein levels (CRP) were determined by standard biochemical laboratory procedures. Proteasome activity was assessed using a Suc-Leu-Leu-Val-Tyr-AMC peptide substrate. Elevation of plasma proteasome activity was noted in children after laparoscopic and open abdominal surgeries. However, 20S proteasome activity in children undergoing conventional open surgery was significantly higher (P < 0.05) than in patients subjected to laparoscopy. At the same time, an increase in the CRP level was observed. However, there was no correlation between C-reactive protein concentrations and the type of abdominal surgery while there was a correlation observed in the case of proteasomes. Proteasome activity correlates with the degree of surgical tissue damage and prealbumin concentrations. More invasive surgery leads to a stronger activation of the proteasome involved in removing proteins that were damaged due to the surgical procedure. Proteasomes are more specific markers because there is a correlation between proteasome activity and the type of abdominal surgery in contrast to C-reactive protein concentrations which are not different in response to surgery performed in regard to ovarian cysts or cholelithiasis.
Collapse
|
12
|
Matuszczak E, Tylicka M, Dębek W, Sankiewicz A, Gorodkiewicz E, Hermanowicz A. Concentration of Proteasome in the Blood Plasma of Children with Acute Appendicitis, Before and After Surgery, and Its Correlation with CRP. World J Surg 2018; 42:2259-2264. [PMID: 29264727 DOI: 10.1007/s00268-017-4407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The determination of 20S proteasome concentration in the blood plasma of children with appendicitis and its correlation with CRP. DESIGN AND SETTING Thirty-one children with acute appendicitis, were randomly included into the study (age 5 years up to 17 years, mean age 11.5 + 1 years). PARTICIPANTS There were 17 girls and 14 boys. Eighteen healthy, age-matched subjects, admitted for planned surgeries served as controls. Exclusion criteria were: severe preexisting infections, immunological or cardiovascular diseases that required long-term medication, and complicated cases of appendicitis with perforation of appendix and/or peritonitis. MAIN OUTCOME MEASURES The 20S proteasome concentrations in the blood plasma of patients with acute appendicitis were highest before the surgery and were above the range of concentrations measured in controls, and the difference was statistically significant. RESULTS The 20S proteasome concentration measured 24 and 72 h after the operation, slowly decreased over time, and still did not reach the normal range, when compared with the concentration measured in controls (p < 0.05). CONCLUSIONS 20S proteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation. The method of operation-classic open appendectomy, or laparoscopic appendectomy, does not influence the general trend in 20S proteasome concentration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland.
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Dębek
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| | - Anna Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| |
Collapse
|
13
|
Buneeva OA, Medvedev AE. Ubiquitin-Independent Degradation of Proteins in Proteasomes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Romaniuk W, Kalita J, Ostrowska H, Kloczko J. Proteasome 20S in multiple myeloma: comparison of concentration and chymotrypsin-like activity in plasma and serum. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:253-257. [PMID: 29504425 DOI: 10.1080/00365513.2018.1446219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ubiquitin-proteasome system is relevant in the pathobiology of many haematological malignancies, including multiple myeloma. The assessment of proteasome concentration and chymotrypsin-like (ChT-L) activity might constitute a new approach to diagnosis, prognosis and monitoring of anticancer treatment of patients with haematological malignancies and other diseases. The aim of our study was to determine which material, plasma or serum, is better for measuring chymotrypsin-like (ChT-L) activity and proteasome concentration. We analysed proteasome concentration and chymotrypsin-like (ChT-L) activity in 70 plasma and serum samples drawn from 28 patients at different treatment stages for multiple myeloma (MM) and 31 healthy volunteers. Proteasome ChT-L activity and concentration in multiple myeloma patients were significantly higher in plasma compared to serum. In this group we observed significant and positive correlations both between the plasma and serum proteasome ChT-L activity and plasma and serum proteasome concentration. The higher values of proteasome concentration and ChT-L activity in plasma than in serum and their better correlations with parameters of tumour load and prognosis suggest that plasma constitutes a better biological material for measuring ChT-L activity and proteasome concentration than serum in multiple myeloma patients.
Collapse
Affiliation(s)
- Wioletta Romaniuk
- a Department of Haematology , Medical University of Bialystok , Bialystok , Poland
| | - Joanna Kalita
- b Department of Biology , Medical University of Bialystok , Bialystok , Poland
| | - Halina Ostrowska
- b Department of Biology , Medical University of Bialystok , Bialystok , Poland
| | - Janusz Kloczko
- a Department of Haematology , Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
15
|
Matuszczak E, Sankiewicz A, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors. Clin Exp Immunol 2017; 191:125-132. [PMID: 28940383 DOI: 10.1111/cei.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis.
Collapse
Affiliation(s)
- E Matuszczak
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - A Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - W Debek
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - E Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - R Milewski
- Statistics Department, Medical University of Bialystok, Bialystok, Poland
| | - A Hermanowicz
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Tylicka M, Matuszczak E, Karpińska M, Hermanowicz A, Dębek W, Ostrowska H. Proteasome and C-reactive protein inflammatory response in children undergoing shorter and longer lasting laparoscopic cholecystectomy. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:610-616. [PMID: 29022764 DOI: 10.1080/00365513.2017.1385839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Operations of varying duration cause the release of a number of inflammatory mediators, in particular cytokines which lead to proteasome and acute-phase reactions. The purpose of this novel human study, was to characterize inflammatory response in children undergoing laparoscopic cholecystectomy, by analyzing changes in selected inflammatory mediators: C-reactive protein concentration and circulating 20S proteasome activity following surgical injury and to correlate them with the duration of the surgical procedure. Plasma C-reactive protein concentration (CRP) was determined by standard biochemical laboratory procedures. Proteasome activity in the plasma of children was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate. Statistically significant increase in the plasma proteasome activity and C-reactive protein concentration, was noted (p < .05) in children after laparoscopic cholecystectomy. We found the correlation between the 20S proteasome activity and the length of the procedure. In children undergoing longer lasting laparoscopic cholecystectomy the proteasome activity was much higher than in patients having shorter surgical procedure. The CRP concentration and 20S proteasome activity significantly increase after surgery, but only 20S proteasome activity correlate with the length of the surgery. This may confirm that CRP is only an indicator of pathological state, while the function of the proteasomes is more complex because of their participation in the processes of repair and wound healing, and in the removal of damaged proteins.
Collapse
Affiliation(s)
- Marzena Tylicka
- a Department of Biophysics , Medical University of Białystok , Białystok , Poland
| | - Ewa Matuszczak
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Maria Karpińska
- a Department of Biophysics , Medical University of Białystok , Białystok , Poland
| | - Adam Hermanowicz
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Wojciech Dębek
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Halina Ostrowska
- c Department of Biology , Medical University of Białystok , Białystok , Poland
| |
Collapse
|
17
|
Lönnroth I, Oshalim M, Lange S, Johansson E. Interaction of Proteasomes and Complement C3, Assay of Antisecretory Factor in Blood. J Immunoassay Immunochem 2016; 37:43-54. [PMID: 25897558 DOI: 10.1080/15321819.2015.1042544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antisecretory factor (AF) is a protein complex which inhibits inflammation and regulates fluid transport. In this article, two new immunoassays (ELISA) are developed. The first ELISA establishes a 26S proteasome concentration of 0.41±0.03 μg/mL in normal plasma; the second ELISA discloses the binding of proteasomes to complement factor C3. The latter test values increased about tenfold following intake of processed cereals, paralleling with the old AF ELISA. The proteasome/C3 complex is purified and shown to expose hidden antisecretory peptide sequence and contain the inactive C3c protein. These findings might explain the antisecretory and anti-inflammatory effect during AF complex formation.
Collapse
Affiliation(s)
- Ivar Lönnroth
- a Department of Infectious Diseases , Institute of Biomedicine, Gothenburg University , Gothenburg , Sweden
| | - Merna Oshalim
- a Department of Infectious Diseases , Institute of Biomedicine, Gothenburg University , Gothenburg , Sweden.,b Clinical Microbiology , Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Stefan Lange
- a Department of Infectious Diseases , Institute of Biomedicine, Gothenburg University , Gothenburg , Sweden.,b Clinical Microbiology , Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Ewa Johansson
- a Department of Infectious Diseases , Institute of Biomedicine, Gothenburg University , Gothenburg , Sweden.,b Clinical Microbiology , Sahlgrenska University Hospital , Gothenburg , Sweden
| |
Collapse
|
18
|
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ. The 20
S
proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015; 7:318ra200. [DOI: 10.1126/scitranslmed.aac9816] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Matuszczak E, Tylicka M, Dębek W, Hermanowicz A, Ostrowska H. The comparison of C-proteasome activity in the plasma of children after burn injury, mild head injury and blunt abdominal trauma. Adv Med Sci 2015; 60:253-8. [PMID: 26005993 DOI: 10.1016/j.advms.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022]
Abstract
PURPOSE We aimed to evaluate and compare the changes in circulating 20S proteasome activity in the plasma of children suffering from blunt abdominal trauma, thermal injury and mild head injury. PATIENTS AND METHODS The study population comprised 40 patients with burns, 35 children admitted due to mild head injury, and 30 children suffering from blunt abdominal trauma, who were admitted to Pediatric Surgery Department of Medical University of Bialystok Poland, between 2010 and 2014, and their parents gave informed consent, were included into the study. Patients were aged 9 months to 17 years (median=5.73±1.91y). The girls to boys ratio was nearly 1:2 (34 girls and 106 boys). Plasma proteasome activity was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate, 2-6h, 12-16h, and 48h after the injury. 20 healthy children admitted for planned inguinal hernia repair served as controls. RESULTS In our series of patients, the C-proteasome activity was much higher 12-16h after burns, than after mild head injuries, or blunt abdominal injuries, and the difference was statistically significant (p<0.05). CONCLUSIONS Circulating 20S proteasome is probably released from damaged tissues in response to the injury and is a biomarker of tissue damage - more severe in the group of burnt patients in comparison to the patients with mild head injury and blunt abdominal trauma. Therefore detection of 20S proteasome may represent a novel marker of immunological activity and cellular degradation in trauma patients.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland.
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Dębek
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Halina Ostrowska
- Department of Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014; 4:862-84. [PMID: 25250704 PMCID: PMC4192676 DOI: 10.3390/biom4030862] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
21
|
Tylicka M, Matuszczak E, Dębek W, Hermanowicz A, Ostrowska H. Circulating proteasome activity following mild head injury in children. Childs Nerv Syst 2014; 30:1191-6. [PMID: 24700339 PMCID: PMC4072065 DOI: 10.1007/s00381-014-2409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of the study is to characterize changes in circulating proteasome (c-proteasome) activity following mild traumatic brain injury in children. METHODS Fifty children managed at the Department of Pediatric Surgery because of concussion-mild head injury was randomly included into the study. The children were aged 11 months to 17 years (median = 10.07 + -1.91 years). Plasma proteasome activity was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate, 2-6 h, 12-16 h, and 2 days after injury. Twenty healthy children admitted for planned inguinal hernia repair served as controls. RESULTS Statistically significant elevation of plasma c-proteasome activity was noted in children with mild head injury 2-6 h, 12-16 h, and 2 days after the injury. CONCLUSIONS Authors observed a statistically significant upward trend in the c-proteasome activity between 2-6 and 12-16 h after the mild head injury, consistent with the onset of the symptoms of cerebral concussion and a downward trend in the c-proteasome activity in the plasma of children with mild head injury between 12-16 h and on the second day after the injury, consistent with the resolving of the symptoms of cerebral concussion. Further studies are needed to demonstrate that the proteasome activity could be a prognostic factor, which can help in further diagnostic and therapeutic decisions in patients with head injury.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2A, 15-089 Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Wojciech Dębek
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| | - Halina Ostrowska
- Department of Pediatric Surgery, Medical University of Białystok, 15-274 Białystok, Poland
| |
Collapse
|
22
|
Baker TA, Bach HH, Gamelli RL, Love RB, Majetschak M. Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol Res 2014; 63:311-9. [PMID: 24564596 DOI: 10.33549/physiolres.932607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteasomes appear to be involved in the pathophysiology of various acute and chronic lung diseases. Information on the human lung proteasome in health and disease, however, is sparse. Therefore, we studied whether end-stage pulmonary diseases are associated with alterations in lung 20S/26S proteasome content, activity and 20S subunit composition. Biopsies were obtained from donor lungs (n=7) and explanted lungs from patients undergoing lung transplantation because of end stage chronic obstructive pulmonary disease (COPD; n=7), idiopathic pulmonary fibrosis (IPF, n=7) and pulmonary sarcoidosis (n=5). 20S/26S proteasomes in lung extracts were quantified by ELISA, chymotrypsin-like proteasome peptidase activities measured and 20S proteasome beta subunits analyzed by Western blot. As compared with donor lungs, proteasome content was increased in IPF and sarcoidosis, but not in COPD. The relative distribution of free 20S and 26S proteasomes was similar; 20S proteasome was predominant in all extracts. Proteasome peptidase activities in donor and diseased lungs were indistinguishable. All extracts contained a mixed composition of inducible 20S beta immuno-subunits and their constitutive counterparts; a disease associated distribution could not be identified. A higher content of lung proteasomes in IPF and pulmonary sarcoidosis may contribute to the pathophysiology of human fibrotic lung diseases.
Collapse
Affiliation(s)
- T A Baker
- Loyola University Chicago, Maywood, IL, USA.
| | | | | | | | | |
Collapse
|
23
|
Matuszczak E, Tylicka M, Dębek W, Hermanowicz A, Ostrowska H. Correlation between circulating proteasome activity, total protein and c-reactive protein levels following burn in children. Burns 2013; 40:842-7. [PMID: 24290960 DOI: 10.1016/j.burns.2013.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/02/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY To characterize burn-induced changes following burn in children by analyzing circulating proteasome (c-proteasome) activity in the plasma in correlation with total protein and c-reactive protein levels in the plasma, and the severity of the burn. METHODS Fifty consecutive children scalded by hot water who were managed at the Department of Pediatric Surgery after primarily presenting with burns in 4-20% TBSA were included into the study. The children were aged 9 months up to 14 years (mean age 2.5±1 years). Patients were divided into groups according to the pediatric injury severity score used by American Burns Association. Plasma proteasome activity was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate, 2-6 h, 12-16 h, 3 days, 5 days, and 7 days after injury. 20 healthy children consecutively admitted for planned inguinal hernia repair served as controls. RESULTS Statistically significant elevation of plasma c-proteasome activity was noted in all groups of burned children 12-16 h after the injury. We found a strong negative correlation of c-proteasome activity with total protein levels, and positive correlation with CRP levels 12-16 h after burn. We also found stronger correlation between c-proteasome activity and severity of burn, than CRP level and severity of burn 12-16 h, and 3 days after the burn. Correlations were statistically significant. CONCLUSIONS This study characterized circulating 20S proteasome activity levels after burn. C-proteasome activity elevate after burn and correlate negatively with plasma total protein level, thus plasma 20S proteasome activity could be additional biomarker of tissue damage in burn in pediatric population.
Collapse
Affiliation(s)
- E Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Poland.
| | - M Tylicka
- Department of Biology, Medical University of Bialystok, Poland
| | - W Dębek
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - A Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - H Ostrowska
- Department of Biology, Medical University of Bialystok, Poland
| |
Collapse
|
24
|
Bochmann I, Ebstein F, Lehmann A, Wohlschlaeger J, Sixt SU, Kloetzel PM, Dahlmann B. T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. J Cell Mol Med 2013; 18:59-68. [PMID: 24304442 PMCID: PMC3916118 DOI: 10.1111/jcmm.12160] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/10/2013] [Indexed: 01/31/2023] Open
Abstract
The 20S proteasome is almost exclusively localized within cells. High levels of extracellular proteasomes are also found circulating in the blood plasma of patients suffering from a variety of inflammatory, autoimmune and neoplastic diseases. However, the origin of these proteasomes remained enigmatic. Since the proteome of microparticles, small membrane enclosed vesicles released from cells, was shown to contain proteasomal subunits, we studied whether intact proteasomes are actively released into the extracellular space. Using human primary T lymphocytes stimulated with CaCl2 and the calcium ionophore A23187 to induce membrane blebbing we demonstrate that microparticles contain proteolytically active 20S proteasomes as well as the proteasome activator PA28 and subunits of the 19S proteasome regulator. Furthermore, our experiments reveal that incubation of in vitro generated T lymphocyte-microparticles with sphingomyelinase results in the hydrolysis of the microparticle membranes and subsequent release of proteasomes from the vesicles. Thus, we here show for the first time that functional proteasomes can be exported from activated immune cells by way of microparticles, the dissolution of which may finally lead to the generation of extracellular proteasomes.
Collapse
Affiliation(s)
- Isabel Bochmann
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Henry L, Le Gallic L, Garcin G, Coux O, Jumez N, Roger P, Lavabre-Bertrand T, Martinez J, Meunier L, Stoebner P. Proteolytic activity and expression of the 20S proteasome are increased in psoriasis lesional skin. Br J Dermatol 2011; 165:311-20. [DOI: 10.1111/j.1365-2133.2011.10447.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Yousef AA, Suliman GA, Mabrouk MM. The value of correlation of serum 20S proteasome concentration and percentage of lymphocytic apoptosis in critically ill patients: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R215. [PMID: 21108816 PMCID: PMC3220007 DOI: 10.1186/cc9340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/30/2010] [Accepted: 11/25/2010] [Indexed: 11/16/2022]
Abstract
Introduction Sepsis in critically ill patients is almost associated with bad prognosis and its early detection may improve the prognosis. However, it is difficult to monitor the immunological state of these patients depending on the traditional markers of infection or inflammatory mediators. Accelerated lymphocyte death may reflect good idea about the prognosis especially when combined with 20S proteasome determinations, a recently discovered marker for muscle degradation in patients with sepsis. The hypothesis of the present study is to evaluate the role of serum 20S proteasome at early diagnosis of sepsis and its correlation with lymphocyte apoptosis to predict prognosis and consequently the early interference in critically ill patients suffering from a broad range of diseases in the intensive care unit. Methods Sixty-seven critically ill adult intensive care patients were divided into two groups, 32 septic critically ill patients (sepsis group) and 35 non-septic critically ill patients (non-sepsis group), in addition to 33 apparently healthy subjects from the out patient clinic (control group). Patients were tested for serum values of 20S proteasome using ELISA and for percentage of lymphocyte death using annexin V and 7-aminoactinomycin D dye by flow cytometry. Results Measured median value of serum 20S proteasome was significantly higher in septic patients compared with both the non-septic and control groups. A significant increase in the percentage of apoptotic lymphocytes was detected in septic patients when compared with the non-sepsis and control groups. The correlation of both 20S proteasome and percentage of apoptotic lymphocytes was found to be significantly positive in both septic and non-septic patients. Conclusions The correlation of median values of 20S proteasome and the percentage of apoptotic lymphocyte median values could be a good indicator of patient prognosis and survival in critically ill patients.
Collapse
Affiliation(s)
- Ayman A Yousef
- Department of Anesthesia, Tanta University Hospitals, El-Geish Street, Tanta 31527, Egypt.
| | | | | |
Collapse
|
27
|
Henry L, Lavabre-Bertrand T, Douche T, Uttenweiler-Joseph S, Fabbro-Peray P, Monsarrat B, Martinez J, Meunier L, Stoebner PE. Diagnostic value and prognostic significance of plasmatic proteasome level in patients with melanoma. Exp Dermatol 2010; 19:1054-9. [PMID: 20707810 DOI: 10.1111/j.1600-0625.2010.01151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmatic proteasome (p-proteasome) also called circulating proteasome has recently been described as a tumor marker. We investigated the diagnostic and prognostic accuracies of p-proteasome levels in a melanoma population classified according to the American Joint Committee on Cancer staging system. Using an ELISA test, we measured p-proteasome levels in 90 patients and 40 controls between March 2003 and March 2008. The subunit composition of p-proteasomes was determined in metastatic melanoma by proteomic analysis. The mean p-proteasome levels were correlated with stages (P < 0.0001; r(S) = 0.664). They were significantly higher in patients with stage IV and stage III with lymph node metastasis (9187 ± 1294 and 5091 ± 454 ng/ml, respectively) compared to controls (2535 ± 187 ng/ml; P < 0.001), to stage I/II (2864 ± 166 ng/ml; P < 0.001) and to stage III after curative lymphadenectomy (2859 ± 271 ng/ml; P < 0.001). The diagnostic accuracy of p-proteasome was evaluated by receiver operating characteristic analysis. With a cut-off of 4300 ng/ml, diagnostic specificity and sensitivity of p-proteasome for regional or visceral metastases were respectively 96.3% and 72.2%. In univariate analysis, high p-proteasome levels (>4300 ng/ml) were significantly correlated with an increased risk of progression [hazard ratio (HR) = 7.34; 95% CI 3.54-15.21, P < 0.0001] and a risk of death (HR = 5.92; 95% CI 2.84-12.33, P < 0.0001). In multivariate analysis, high p-proteasome levels were correlated with a poorer clinical outcome in the subgroup analysis limited to patients with disease stages I, II and III. Proteomic analysis confirmed the presence of all proteasome and immunoproteasome subunits. Taken together, these results indicate that p-proteasomes are a new marker for metastatic dissemination in patients with melanoma.
Collapse
Affiliation(s)
- Laurent Henry
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, CHU de Nîmes, Nîmes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The objective of the study is to test whether circulating proteasomes are increased in burn patients and to assess whether possible alterations are associated with severity of injury, organ failure, and/or clinically relevant outcomes. In this study, plasma was obtained from burn patients on days 0 (admission, n = 50), 1 (n = 36), 3 (n = 35), 5 (n = 28), 7 (n=34), and 30 (n = 10) (controls: 40 volunteers). The 20S/26S proteasome levels were measured by enzyme-linked immunosorbent assay. Proteasome peptidase activity was assessed using a chymotryptic-like peptide substrate in combination with epoxomicin (specific proteasome inhibitor). Percentage of TBSA burned, presence of inhalation injury, development of sepsis/multiple organ failure, and sequential organ failure assessment scores were documented. On admission, plasma proteasome activity was higher in patients than in controls (P = .011). 26S proteasomes were not detectable. The 20S proteasome concentrations (median [25th/75th percentile]) peaked on day 0 (673 [399/1566] ng/mL; control: 195 [149/249] ng/mL, P < .001), gradually declined within 7 days, and fully returned to baseline at day 30 (116.5 [78/196] ng/mL). Elevated 20S proteasomes were associated with the presence of inhalation injury and correlated linearly with %TBSA in patients without inhalation injury. Initial 20S proteasome concentrations discriminated the presence of inhalation injury in patients with (sensitivity 0.88 and specificity 0.71) and without (sensitivity 0.83 and specificity 0.97) cutaneous burns but did not discriminate sepsis/multiple organ failure development or survival. Circulating 20S proteasome is a biomarker of tissue damage. The 20S proteasome plasma concentrations in patients with burns and/or inhalation injury are unlikely to predict outcomes but may be useful for the diagnosis of inhalation injury.
Collapse
|
29
|
Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 2010; 11:124-33. [PMID: 19710693 PMCID: PMC2832080 DOI: 10.1038/gene.2009.66] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 07/16/2009] [Indexed: 01/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic disorder affecting approximately 1 in 1000 adults. Recent data have implicated interferons (IFN) in the pathogenesis, and the expressions of many genes downstream of IFNs are regulated at the level of histone modifications. We examined H4 acetylation (H4ac) and gene expression in monocytes from patients with SLE to define alterations to the epigenome. Monocytes from 14 controls and 24 SLE patients were used for analysis by chromatin immunoprecipitation for H4ac and gene expression arrays. Primary monocytes treated with alpha-IFN were used as a comparator. Data were analyzed for concordance of H4ac and gene expression. Network analyses and transcription factor analyses were conducted to identify potential pathways. H4ac was significantly altered in monocytes from patients with SLE. In all, 63% of genes with increased H4ac had the potential for regulation by IFN regulatory factor (IRF)1. IRF1 binding sites were also upstream of nearly all genes with both increased H4ac and gene expression. alpha-IFN was a significant contributor to both expression and H4ac patterns, but the greatest concordance was seen in the enrichment of certain transcription factor binding sites upstream of genes with increased H4ac in SLE and genes with increased H4ac after alpha-IFN treatment.
Collapse
Affiliation(s)
- Zhe Zhang
- Center for Biomedical Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Li Song
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kelly Maurer
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathleen E. Sullivan
- Division of Allergy Immunology, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
30
|
Abstract
The purpose of this study was to determine whether 26S proteasome is detectable in human bronchoalveolar lavage fluid (BALF) and whether burn and inhalation injury is accompanied by changes in BALF proteasome content or activity. BALF was obtained on hospital admission from 28 patients with burn and inhalation injury (controls: 10 healthy volunteers). Proteasome concentrations were quantified by enzyme-linked immunosorbent assay, and their native molecular mass was assessed by gel filtration. Proteasome peptidase activity was measured using a chymotryptic-like peptide substrate in combination with epoxomicin (specific proteasome inhibitor). BALF protein was increased in patients (P<.001) and correlated positively with the degree of inhalation injury. The 20S/26S proteasomes were detectable in all BALF by enzyme-linked immunosorbent assay. Gel filtration confirmed the presence of intact 20S and 26S proteasome that was stable without soluble ATP/Mg. In all BALF chymotryptic-like activity was detectable and could be inhibited with epoxomicin by 60 to 70% (P<.01). Absolute amounts of 20S/26S proteasomes and proteasome activity were increased in patients (P<.001 for all). The relative BALF composition after injury was characterized by increased concentrations of 20S proteasome/mg protein (P=.0034 vs volunteers), decreased concentrations of 26S proteasome/mg protein (P=.041 vs volunteers), and reduced specific proteasome activity (P=.044 vs volunteers). The 26S proteasome per milligram and specific proteasome activity were even further reduced in patients who developed ventilator-associated pneumonia (P=.045 and P=.03 vs patients without ventilator-associated pneumonia). This study supports the novel concept that extracellular proteasomes could play a pathophysiological role in the injured lung and suggests that insufficient proteasome function may increase susceptibility for pulmonary complications.
Collapse
|