1
|
Liu A, Chen W, Wei Y, Liang J, Liao S, Chen Y, Li Y, Wang X, Chen W, Qiu Y, Li Z, Ye F. Comparison of diagnostic efficiency of detecting IgG and IgE with immunoassay method in diagnosing ABPA: a meta-analysis. BMC Pulm Med 2023; 23:374. [PMID: 37798745 PMCID: PMC10557217 DOI: 10.1186/s12890-023-02620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Hitherto, the bulk of diagnostic criteria regards Aspergillus-specific immunoglobulin E as a key item, and regard IgG as an auxiliary method in diagnose. Nevertheless, there is no conclusive study in summarize the performance of IgG and IgE diagnosing ABPA. METHODS We conducted a systematic review to identify studies report results of IgE and IgG detection in diagnosing ABPA. QUADAS-2 tool was used to evaluate included studies, and we applied the HSROC model to calculate the pooled sensitivity and specificity. Deeks' funnel was derived to evaluated the public bias of included studies, and Cochrane Q test and I2 statistic were used to test the heterogeneity. RESULTS Eleven studies were included in this study (1127 subjects and 215 for IgE and IgG). Deeks's test for IgE and IgG were 0.10 and 0.19. The pooled sensitivity and specificity for IgE were 0.83 (95%CI: 0.77, 0.90) and 0.89 (0.83, 0.94), and for IgG were 0.93 (0.87, 0.97) and 0.73 (0.62,0.82), with P value < 0.001. The PLR and NLR for IgE were 7.80 (5.03,12.10) and 0.19 (0.13,0.27), while for IgG were 3.45 (2.40,4.96) and 0.09 (0.05,0.17). The combined diagnostic odds ratio and diagnostic score were 41.49 (26.74,64.36) and3.73 (3.29,4.16) for IgE, respectively, and were 38.42 (19.23,76.79) and 3.65 (2.96,4.34) for IgG. CONCLUSION The sensitivity for IgG diagnosing ABPA is higher than IgE, while the specificity for IgE is higher. IgG might be able to play a more important role in filtering ABPA patients.
Collapse
Affiliation(s)
- Anlin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School of Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Wushu Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School of Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Yining Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School of Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Jinkai Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School of Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Shuhong Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School of Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
| | - Yijun Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xidong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weisi Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ye Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Abstract
In cystic fibrosis, a new era has started with the approval and use of highly effective cystic fibrosis transport regulator (CFTR) modulator therapy. As pulmonary function is increasing and exacerbation rate significantly decreases, the current meaning of fungal pulmonary diseases is questioned. During the past couple of decades, several studies have been conducted regarding fungal colonization and infection of the airways in people with cystic fibrosis. Although Aspergillus fumigatus for filamentous fungi and Candida albicans for yeasts remain by far the most common fungal species in patients with cystic fibrosis, the pattern of fungal species associated with cystic fibrosis has considerably diversified recently. Fungi such as Scedosporium apiospermum or Exophiala dermatitidis are recognized as pathogenic in cystic fibrosis and therefore need attention in clinical settings. In this article, current definitions are stated. Important diagnostic steps are described, and their usefulness discussed. Furthermore, clinical treatment strategies and recommendations are named and evaluated. In cystic fibrosis, fungal entities can be divided into different subgroups. Besides colonization, allergic bronchopulmonary aspergillosis, bronchitis, sensitization, pneumonia, and aspergilloma can occur as a fungal disease entity. For allergic bronchopulmonary aspergillosis, bronchitis, pneumonia, and aspergilloma, clear indications for therapy exist but this is not the case for sensitization or colonization. Different pulmonary fungal disease entities in people with cystic fibrosis will continue to occur also in an era of highly effective CFTR modulator therapy. Whether the percentage will decrease or not will be the task of future evaluations in studies and registry analysis. Using the established definition for different categories of fungal diseases is recommended and should be taken into account if patients are deteriorating without responding to antibiotic treatment. Drug-drug interactions, in particular when using azoles, should be recognized and therapies need to be adjusted accordingly.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Education and Research, Health and Medical University-Health and Medical University Potsdam, Potsdam, Germany.,Division of Cystic Fibrosis, Cystic Fibrosis Center West Brandenburg, Postdam, Germany
| |
Collapse
|
3
|
Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60:1-24. [PMID: 35968577 DOI: 10.1080/10408363.2022.2101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
Collapse
Affiliation(s)
- Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Allergic bronchopulmonary aspergillosis (ABPA) in an atopic patient with difficult-to-expectorate airway secretions. Allergol Select 2021; 5:157-161. [PMID: 34079921 PMCID: PMC8167735 DOI: 10.5414/alx02200e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
In the workup of a 55-year-old atopic patient with cough and viscous secretions, we diagnosed an allergic bronchopulmonary aspergillosis (ABPA) on the basis of common diagnostic criteria for adult asthma patients (Rosenberg-Patterson and ISHAM), supported by the use of IgE antibodies against the Aspergillus components Asp f 2, f 4, and f 6. Initial treatment with prednisolone and itraconazole led to remission. In the long-term follow-up, there were few relapses until 2015, which responded well to standard treatment with oral steroids, and since 2016 the patient is in stable remission. The case highlights the valuable contribution of Aspergillus IgE measurements, including the specific IgEs against the components Asp f 1, f 2, f 4, and f 6 in the diagnosis of ABPA.
Collapse
|
5
|
Eschenhagen P, Grehn C, Schwarz C. Prospective Evaluation of Aspergillus fumigatus-Specific IgG in Patients With Cystic Fibrosis. Front Cell Infect Microbiol 2021; 10:602836. [PMID: 33553006 PMCID: PMC7862129 DOI: 10.3389/fcimb.2020.602836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background In Cystic Fibrosis (CF), the airways are often colonized by opportunistic fungi. The most frequently detected mold is Aspergillus fumigatus (Af). Af diseases are associated with significant morbidity and mortality. The most common clinical picture caused by Af is allergic bronchopulmonary aspergillosis (ABPA), triggered by an immunological reaction against Af. Af bronchitis and invasive aspergillosis rarely occur in CF as a result of spore colonization and germination. Since pulmonary mycoses and exacerbations by other pathogens overlap in clinical, radiological, and immunological characteristics, diagnosis still remains a challenge. The search for reliable, widely available biomarkers for Af diseases is therefore still an important task today. Objectives Af-specific IgG m3 is broadly available. Sensitivity and specificity data are contradictory and differ depending on the study population. In our prospective study on pulmonary Af diseases in CF, we determined specific IgG m3 in order to test its suitability as a biomarker for acute Af diseases and as a follow-up parameter. Methods In this prospective single center study, 109 patients with CF were screened from 2016 to 2019 for Af-associated diseases. According to diagnostic criteria, they were divided into four groups (control, bronchitis, ABPA, pneumonia). The groups were compared with respect to the level of Af-specific IgG (ImmunoCAP Gm3). We performed a receiver operating characteristic (ROC) curve analysis to determine cut-off, sensitivity and specificity. Twenty-one patients could be enrolled for a follow-up examination. Results Of the 109 patients, 36 were classified as acute Af-disease (Af bronchitis, ABPA, Af pneumonia). Of these, 21 patients completed follow up-screening. The median Af-specific Gm3 was higher in the acute Af-disease groups. There was a significant difference in Af-specific IgG m3 compared to the control group without acute Af-disease. Overall, there was a large interindividual distribution of Gm3. A cut-off value of 78.05 mg/L for Gm3 was calculated to discriminate controls and patients with ABPA/pneumonia with a specificity of 75% and a sensitivity of 74.6%. The follow up examination of 21 patients showed a decrease of Gm3 in most patients without statistical significance due to the small number of follow up patients. Conclusion Af specific IgG may be a useful biomarker for acute ABPA and Af pneumonia, but not for Af bronchitis in CF. However, due to the large interindividual variability of Gm3, it should only be interpreted alongside other biomarkers. Therefore, due to its broad availability, it could be suitable as a biomarker for ABPA and Af pneumonia in CF, if the results can be supported by a larger multicenter cohort.
Collapse
Affiliation(s)
- Patience Eschenhagen
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Schwarz
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Biomarkers for the Diagnosis of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis: A Systematic Review and Meta-Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1909-1930.e4. [PMID: 33454395 DOI: 10.1016/j.jaip.2020.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity reaction to Aspergillus fumigatus and impacts 10% of individuals with cystic fibrosis (CF). A diagnosis of ABPA is challenging to establish in CF owing to overlapping clinical and radiologic features with CF lung disease. Recent studies have identified blood tests, imaging, and other biomarkers that may be useful for diagnosis. OBJECTIVE To summarize biomarkers that can aid in the diagnosis of ABPA in CF patients and to quantify their diagnostic accuracy through meta-analysis. METHODS We searched MEDLINE, EMBASE, and the Cochrane Controlled Register of Trials and included studies that used a laboratory technique or imaging modality in CF patients diagnosed with ABPA. Pooled sensitivity and specificity were calculated using a hierarchical summary receiver operating characteristic model. RESULTS We identified 791 articles, of which 29 met our eligibility criteria and 9 were included in the meta-analysis. Hyperattenuating mucus on computed tomography (CT) scan (n = 3 studies; pooled sensitivity 62% and specificity 92%) and serum specific immunoglobulin E against recombinant Aspergillus funigatus antigens f4 (n = 6; 69%, 89%) and f6 (n = 6; 39%, 97%) demonstrated high specificity. Based on single studies, serum thymus and activation regulated chemokine (92%, 94%), stimulated basophil expression of CD203c (94%, 74%), the inverted mucoid impaction signal on magnetic resonance imaging (94%, 100%), and skin prick test with recombinant Aspergillus fumigatus f4 and/or f6 (100%, 100%) showed high sensitivity and specificity. CONCLUSIONS Recent studies have found promising biomarkers for diagnosing ABPA in CF. Further research is needed to improve our understanding of their utility in diagnosis and disease monitoring.
Collapse
|
7
|
Chen JJ, He YS, Zhong XJ, Cai ZL, Lyu YS, Zhao ZF, Ji K. Ribonuclease T2 from Aspergillus fumigatus promotes T helper type 2 responses through M2 polarization of macrophages. Int J Mol Med 2020; 46:718-728. [PMID: 32468025 PMCID: PMC7307867 DOI: 10.3892/ijmm.2020.4613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an allergic immunological response to Aspergillus fumigatus (Af) exposure, which induces a strong T helper 2 (Th2) response via mechanisms that have yet to be elucidated. The aim of the present study was to investigate the hypothesis that T2 ribonuclease from Af (Af RNASET2) induces M2‑type macrophage polarization to produce a T helper 2 (Th2) immune response. Recombinant Af RNASET2 (rAf RNASET2) was expressed and purified in a prokaryotic pET system and BALB/c mice were immunized with rAf RNASET2 for in vivo analyses. Expression levels of M2 polarization factors were evaluated in RAW264.7 macrophages treated with rAf RNASET2 in vitro using flow cytometry, reverse transcription‑quantitative PCR, and western blot analysis. The results predicted that the mature Af RNASET2 protein (382 amino acids; GenBank no. MN593022) contained two conserved amino acid sequence (CAS) domains, termed CAS‑1 and CAS‑2, which are also characteristic of the RNASET2 family proteins. The protein expression levels of the Th2‑related cytokines interleukin (IL)‑4, IL‑10, and IL‑13 were upregulated in mice immunized with rAf RNASET2. RAW264.7 macrophages treated with rAf RNASET2 showed increased mRNA expression levels of M2 factors [arginase 1, Il‑10, and Il‑13]; however, there was no difference in cells treated with rAf RNASET2 that had been inactivated with a ribonuclease inhibitor (RNasin). The protein expression levels of IL‑10 in macrophage culture supernatant were also increased following stimulation with rAf RNASET2. In addition, rAf RNASET2 upregulated the expression of phosphorylated mitogen activated protein kinases (MAPKs) in RAW264.7 cells, whereas MAPK inhibitors attenuated rAf RNASET2‑induced IL‑10 expression in RAW264.7 cells. In conclusion, the present study reveals that high rAf RNASET2 activity is required for rAf RNASET2‑induced M2 polarization of macrophages and suggests an important immune regulatory role for Af RNASET2 in ABPA pathogenesis.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xiao-Jun Zhong
- Central Laboratory, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518083, P.R. China
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yan-Si Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
8
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
9
|
Alghamdi NS, Barton R, Wilcox M, Peckham D. Serum IgE and IgG reactivity to Aspergillus recombinant antigens in patients with cystic fibrosis. J Med Microbiol 2019; 68:924-929. [PMID: 31090534 DOI: 10.1099/jmm.0.000991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The diagnosis of aspergillosis in cystic fibrosis (CF) patients remains a challenge due to overlapping features of both diseases. This is further complicated by inconsistent antibody reactivity to the currently used crude antigen, which has led a more focused evaluation of the efficacy of IgE response to a number of pure Aspergillus fumigatus recombinant proteins in patients with CF and asthma. In this study, we dissected the IgE and IgG responses to multiple A. fumigatus recombinant antigens in CF patients with different Aspergillus diseases. METHODOLOGY Serum IgE and IgG antibodies were measured in 12 CF patients with allergic bronchopulmonary aspergillosis (ABPA), 12 with Aspergillus sensitization (AS) and 12 with Aspergillus bronchitis (AB) against recombinant antigens Asp f1, f2, f3, f4 and f6. RESULTS The ABPA group showed significantly greater IgE reactivity to Asp f1, f2, f3 and f4 compared to patients with AS. Patients with AB expressed higher IgG positivity to Asp f1 and Asp f2 compared with those with ABPA. There were very low IgE antibody levels against all recombinant antigens in patients with AS. Aspf1 IgG reactivity in ABPA patients correlated with positive culture. CONCLUSION The use of multiple recombinant antigens may improve the diagnostic accuracy in CF complicated with ABPA or AB. Asp f1 reactivity may relate to the presence of actively growing Aspergillus spp., which might be a useful marker for guiding antifungal therapy in ABPA.
Collapse
Affiliation(s)
- Nada S Alghamdi
- 1 Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Richard Barton
- 2 Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Daniel Peckham
- 4 Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 2018. [PMID: 29538733 DOI: 10.1093/mmy/myx106] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Vandeputte
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | - Amandine Rougeron
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Laboratoire de Parasitologie-Mycologie, CHU, Bordeaux, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales (EA 2106), Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Université François Rabelais, Tours
| | - Ludovic Duvaux
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Institut de Recherche en Horticulture et Semences (IRHS), UMR INRA 1345, Beaucouzé, France
| | - Amandine Gastebois
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Teresa Martín-Gomez
- Respiratory Bacteriology Unit & Clinical Mycology Unit, Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amparo Sole
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitari la Fe, Valencia, Spain
| | - Josep Cano
- Mycology Unit, Medical School/Oenology School, Universitat Rovira i Virgili, Reus, Spain
| | - Javier Pemán
- Unidad de Micología, Servicio de Microbiología, Universitari la Fe, Valencia, Spain
| | - Guillermo Quindos
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, Spain
| | - Françoise Botterel
- Laboratoire de Parasitologie-Mycologie, CHU Henri Mondor, Créteil, France
| | | | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Westmead, New South Wales, Australia
| | - Laurence Delhaès
- Center for Cardiothoracic Research of Bordeaux, Inserm U1045, Bordeaux, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, CHU Charles Nicolle and Université de Rouen, Rouen, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Craig Williams
- University of the West of Scotland, Institute of Healthcare Associated Infection, University Hospital Crosshouse, Kilmarnock, United Kingdom
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Solène Le Gal
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Gilles Nevez
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Maxime Fleury
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Françoise Symoens
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Jean-Philippe Bouchara
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | | |
Collapse
|
11
|
Singh M, Paul N, Singh S, Nayak GR. Asthma and Fungus: Role in Allergic Bronchopulmonary Aspergillosis (ABPA) and Other Conditions. Indian J Pediatr 2018; 85:899-904. [PMID: 29549557 DOI: 10.1007/s12098-018-2646-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Asthma is an allergic, respiratory disorder characterized by hyper responsiveness of the airway to external stimuli. Considerable research is currently being directed towards understanding the role of environmental and genetic factors contributing to the development of asthma and its severity. Recent years have seen a substantial rise in evidence linking fungi to asthma. Few major clinical conditions associated with fungal sensitization and hypersensitive immune response are Allergic bronchopulmonary aspergillosis (ABPA), Allergic fungal rhinosinusitis (AFRS) and Severe asthma with fungal sensitization (SAFS). The most common fungi implicated in these conditions belong to genus Aspergillus, although an association with several other fungi has been described. In this review authors discuss the varying clinical characteristics of fungus induced respiratory complications in individuals with asthma. They also highlight the epidemiology of these conditions including their prevalence in children and their fungal etiological profile. Laboratory diagnostic methods and clinical case definitions have also been discussed. Future studies evaluating the role of fungal exposure and susceptibility to asthma are required. Till date there are no guidelines for the diagnosis and treatment of ABPA in pediatric population, thus it is also imperative to establish validated clinical definitions of fungal allergic manifestations in pediatric patients with asthma to fully understand this complex interaction.
Collapse
Affiliation(s)
- Meenu Singh
- Advanced Pediatrics Centre, PGIMER, Chandigarh, 160012, India.
| | - Nandini Paul
- Advanced Pediatrics Centre, PGIMER, Chandigarh, 160012, India
| | - Shreya Singh
- Department of Microbiology, PGIMER, Chandigarh, India
| | | |
Collapse
|
12
|
Muthu V, Sehgal IS, Dhooria S, Aggarwal AN, Agarwal R. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: A systematic review and diagnostic test accuracy meta-analysis. Clin Exp Allergy 2018; 48:1107-1136. [PMID: 29927507 DOI: 10.1111/cea.13216] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of recombinant A. fumigatus (rAsp) antigens in the diagnosis of allergic bronchopulmonary aspergillosis (ABPA) has not been systematically evaluated. Herein, we evaluate the utility of recombinant A. fumigatus (rAsp) antigens in diagnosing ABPA. METHODS We systematically reviewed the PubMed, EmBase and Scopus databases for studies evaluating rAsp antigens in ABPA. The QUADAS-2 tool and the GRADE approach were used to assess the risk of bias and the quality of evidence, respectively. The diagnostic performance of IgE or skin test against rAsp f1, f2, f3, f4, f6 and their combination was evaluated separately for ABPA complicating asthma or cystic fibrosis (CF), using an HSROC model. The reference standard for diagnosing ABPA was the composite (clinical, radiological, immunological) criteria. RESULTS Our search yielded 26 studies (n = 1694) and 17 studies (n = 1131) for inclusion in the systematic review and meta-analysis, respectively. In asthmatics, the pooled sensitivity for diagnosing ABPA was best for IgE against a combination of rAsp f1 or f3 (96.7%; 95% confidence interval [CI], 87.6-99.2). The pooled specificity for diagnosing ABPA was highest (99.2%; 95% CI, 88.2-99.9) for IgE against a combination of f4 or f6. In CF patients, the pooled sensitivity of rAsp f1 or f3 was 93.3% (95% CI, 55.2-99.9) while the pooled specificity of rAsp f4 or f6 was 93.9% (95% CI, 68.8-99.9). The quality of evidence was low as per the GRADE approach. CONCLUSIONS A combination of IgE against rAsp antigens (f1, f2, f3, f4 and f6) is likely to be helpful in the diagnosis of ABPA.
Collapse
Affiliation(s)
- Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
13
|
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disease caused by Aspergillus induced hypersensitivity. It usually occurs in immunocompetent but susceptible patients with bronchial asthma and cystic fibrosis. If ABPA goes undiagnosed and untreated, it may progress to bronchiectasis and/or pulmonary fibrosis with significant morbidity and mortality. ABPA is a well-recognized entity in adults; however, there is lack of literature in children. The aim of the present review is to summarize pathophysiology, diagnostic criteria, clinical features, and treatment of ABPA with emphasis on the pediatric population. A literature search was undertaken through PubMed till April 30, 2018, with keywords “ABPA or allergic bronchopulmonary aspergillosis” with limitation to “title.” The relevant published articles related to ABPA in pediatric population were included for the review. The ABPA is very well studied in adults. Recently, it is increasingly being recognized in children. There is lack of separate diagnostic criteria of ABPA for children. Although there are no trials regarding treatment of ABPA in children, steroids and itraconazole are the mainstay of therapy based on studies in adults and observational studies in children. Omalizumab is upcoming therapy, especially in refractory ABPA cases. There is a need to develop the pediatric-specific cutoffs for diagnostic criteria in ABPA. Well-designed trials are required to determine appropriate treatment regimen in children.
Collapse
Affiliation(s)
- Kana Ram Jat
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj C Vaidya
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joseph L Mathew
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Jondhale
- Department of Pediatrics, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Carsin A, Romain T, Ranque S, Reynaud‐Gaubert M, Dubus J, Mège J, Vitte J. Aspergillus fumigatus in cystic fibrosis: An update on immune interactions and molecular diagnostics in allergic bronchopulmonary aspergillosis. Allergy 2017; 72:1632-1642. [PMID: 28513848 DOI: 10.1111/all.13204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
A wide spectrum of pathological conditions may result from the interaction of Aspergillus fumigatus and the immune system of its human host. Allergic bronchopulmonary aspergillosis is one of the most severe A. fumigatus-related diseases due to possible evolution toward pleuropulmonary fibrosis and respiratory failure. Allergic bronchopulmonary aspergillosis occurs almost exclusively in cystic fibrosis or asthmatic patients. An estimated 8%-10% of patients with cystic fibrosis experience this condition. The diagnosis of allergic bronchopulmonary aspergillosis relies on criteria first established in 1977. Progress in the understanding of host-pathogen interactions in A. fumigatus and patients with cystic fibrosis and the ongoing validation of novel laboratory tools concur to update and improve the diagnosis of allergic bronchopulmonary aspergillosis.
Collapse
Affiliation(s)
- A. Carsin
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
| | - T. Romain
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| | - S. Ranque
- Aix‐Marseille Univ APHM Hôpital Timone Laboratoire de Parasitologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - M. Reynaud‐Gaubert
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
- Aix‐Marseille Univ APHM Hôpital Nord Centre de Ressources et de Compétences en Mucoviscidose Marseille France
| | - J.‐C. Dubus
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J.‐L. Mège
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J. Vitte
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| |
Collapse
|
15
|
Proteomics as a Tool to Identify New Targets Against Aspergillus and Scedosporium in the Context of Cystic Fibrosis. Mycopathologia 2017; 183:273-289. [PMID: 28484941 DOI: 10.1007/s11046-017-0139-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder that increases the risk of suffering microbial, including fungal, infections. In this paper, proteomics-based information was collated relating to secreted and cell wall proteins with potential medical applications from the most common filamentous fungi in CF, i.e., Aspergillus and Scedosporium/Lomentospora species. Among the Aspergillus fumigatus secreted allergens, β-1,3-endoglucanase, the alkaline protease 1 (Alp1/oryzin), Asp f 2, Asp f 13/15, chitinase, chitosanase, dipeptidyl-peptidase V (DppV), the metalloprotease Asp f 5, mitogillin/Asp f 1, and thioredoxin reductase receive a special mention. In addition, the antigens β-glucosidase 1, catalase, glucan endo-1,3-β-glucosidase EglC, β-1,3-glucanosyltransferases Gel1 and Gel2, and glutaminase A were also identified in secretomes of other Aspergillus species associated with CF: Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus. Regarding cell wall proteins, cytochrome P450 and eEF-3 were proposed as diagnostic targets, and alkaline protease 2 (Alp2), Asp f 3 (putative peroxiredoxin pmp20), probable glycosidases Asp f 9/Crf1 and Crf2, GPI-anchored protein Ecm33, β-1,3-glucanosyltransferase Gel4, conidial hydrophobin Hyp1/RodA, and secreted aspartyl protease Pep2 as protective vaccines in A. fumigatus. On the other hand, for Scedosporium/Lomentospora species, the heat shock protein Hsp70 stands out as a relevant secreted and cell wall antigen. Additionally, the secreted aspartyl proteinase and an ortholog of Asp f 13, as well as the cell wall endo-1,3-β-D-glucosidase and 1,3-β-glucanosyl transferase, were also found to be significant proteins. In conclusion, proteins mentioned in this review may be promising candidates for developing innovative diagnostic and therapeutic tools for fungal infections in CF patients.
Collapse
|
16
|
Hurraß J, Heinzow B, Aurbach U, Bergmann KC, Bufe A, Buzina W, Cornely OA, Engelhart S, Fischer G, Gabrio T, Heinz W, Herr CEW, Kleine-Tebbe J, Klimek L, Köberle M, Lichtnecker H, Lob-Corzilius T, Merget R, Mülleneisen N, Nowak D, Rabe U, Raulf M, Seidl HP, Steiß JO, Szewszyk R, Thomas P, Valtanen K, Wiesmüller GA. Medical diagnostics for indoor mold exposure. Int J Hyg Environ Health 2016; 220:305-328. [PMID: 27986496 DOI: 10.1016/j.ijheh.2016.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023]
Abstract
In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and/or impairment of well-being. Predisposing factors for odor effects can be given by genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for impairment of well-being are environmental concerns, anxieties, conditioning and attributions as well as a variety of diseases. Risk groups that must be protected are patients with immunosuppression and with mucoviscidosis (cystic fibrosis) with regard to infections and individuals with mucoviscidosis and asthma with regard to allergies. If an association between mold exposure and health effects is suspected, the medical diagnosis includes medical history, physical examination, conventional allergy diagnosis, and if indicated, provocation tests. For the treatment of mold infections, it is referred to the AWMF guidelines for diagnosis and treatment of invasive Aspergillus infections. Regarding mycotoxins, there are currently no validated test methods that could be used in clinical diagnostics. From the perspective of preventive medicine, it is important that mold damages cannot be tolerated in indoor environments.
Collapse
Affiliation(s)
- Julia Hurraß
- Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln, Germany.
| | - Birger Heinzow
- Formerly: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel, Germany
| | - Ute Aurbach
- Abteilung Mikrobiologie und Mykologie, Labor Dr. Wisplinghoff, Köln, Germany
| | | | - Albrecht Bufe
- Experimentelle Pneumologie, Ruhr-Universität Bochum, Germany
| | - Walter Buzina
- Institut für Hygiene, Mikrobiologie und Umweltmedizin, Medizinische Universität Graz, Austria
| | - Oliver A Cornely
- Klinik I für Innere Medizin, ZKS Köln und Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Universität zu Köln, Germany
| | - Steffen Engelhart
- Institut für Hygiene und Öffentliche Gesundheit, Universitätsklinikum Bonn, Germany
| | - Guido Fischer
- Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart, Germany
| | - Thomas Gabrio
- Formerly: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart, Germany
| | - Werner Heinz
- Medizinische Klinik und Poliklinik II, Schwerpunkt Infektiologie, Universitätsklinikum Würzburg, Germany
| | - Caroline E W Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, München, Germany; Ludwig-Maximilians-Universität München, apl. Prof. "Hygiene und Umweltmedizin", Germany
| | | | - Ludger Klimek
- Zentrums für Rhinologie und Allergologie, Wiesbaden, Germany
| | - Martin Köberle
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, Germany
| | | | | | - Rolf Merget
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Germany
| | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München, Germany
| | - Uta Rabe
- Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus im Fläming Treuenbrietzen GmbH, Treuenbrietzen, Germany
| | - Monika Raulf
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Germany
| | - Hans Peter Seidl
- Formerly: Lehrstuhl für Mikrobiologie sowie Dermatologische Klinik der Technischen Universität München, Germany
| | - Jens-Oliver Steiß
- Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen, Germany
| | - Regine Szewszyk
- Umweltbundesamt, FG II 1.4 Mikrobiologische Risiken, Berlin, Germany
| | - Peter Thomas
- Klinik und Poliklinik für Dermatologie und Allergologie der Ludwig-Maximilians-Universität München, Germany
| | - Kerttu Valtanen
- Umweltbundesamt, FG II 1.4 Mikrobiologische Risiken, Berlin, Germany
| | - Gerhard A Wiesmüller
- Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln, Germany; Institut für Arbeitsmedizin und Sozialmedizin, Medizinische Fakultät der RWTH Aachen, Germany
| |
Collapse
|
17
|
Vitte J, Romain T, Carsin A, Gouitaa M, Stremler-Le Bel N, Baravalle-Einaudi M, Cleach I, Reynaud-Gaubert M, Dubus JC, Mège JL. Aspergillus fumigatus components distinguish IgE but not IgG4 profiles between fungal sensitization and allergic broncho-pulmonary aspergillosis. Allergy 2016; 71:1640-1643. [PMID: 27542151 DOI: 10.1111/all.13031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
Aspergillus fumigatus is the causative agent of allergic broncho-pulmonary aspergillosis. Prompt and accurate diagnosis may be difficult to achieve with current clinical and laboratory scores, which do not include immune responses to recombinant A. fumigatus allergens. We measured specific immunoglobulin E and G4 directed to recombinant A. fumigatus allergens in 55 cystic fibrosis patients without allergic broncho-pulmonary aspergillosis but sensitized to A. fumigatus and in nine patients with allergic broncho-pulmonary aspergillosis (two with cystic fibrosis and seven with asthma). IgG4 responses to recombinant A. fumigatus allergens were detected in all patients, but neither prevalence nor levels were different between the two patient groups. On the other hand, both prevalence and levels of IgE responses to Asp f 3, Asp f 4, and Asp f 6 helped distinguish allergic broncho-pulmonary aspergillosis from A. fumigatus sensitization with good negative and positive predictive values.
Collapse
Affiliation(s)
- J. Vitte
- Laboratoire d'Immunologie; Hôpital de La Conception; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
- Faculté de Médecine de Marseille; Aix-Marseille University; Marseille France
| | - T. Romain
- Laboratoire d'Immunologie; Hôpital de La Conception; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - A. Carsin
- Faculté de Médecine de Marseille; Aix-Marseille University; Marseille France
- Centre de Ressources et de Compétences en Mucoviscidose; Hôpital Timone Enfants; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - M. Gouitaa
- Service de Pneumologie; Hôpital Nord; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - N. Stremler-Le Bel
- Centre de Ressources et de Compétences en Mucoviscidose; Hôpital Timone Enfants; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - M. Baravalle-Einaudi
- Centre de Ressources et de Compétences en Mucoviscidose; Hôpital Timone Enfants; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - I. Cleach
- Laboratoire d'Immunologie; Hôpital de La Conception; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - M. Reynaud-Gaubert
- Faculté de Médecine de Marseille; Aix-Marseille University; Marseille France
- Centre de Ressources et de Compétences en Mucoviscidose; Hôpital Nord; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - J.-C. Dubus
- Faculté de Médecine de Marseille; Aix-Marseille University; Marseille France
- Centre de Ressources et de Compétences en Mucoviscidose; Hôpital Timone Enfants; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
| | - J.-L. Mège
- Laboratoire d'Immunologie; Hôpital de La Conception; APHM Assistance Publique Hôpitaux de Marseille; Marseille France
- Faculté de Médecine de Marseille; Aix-Marseille University; Marseille France
| |
Collapse
|
18
|
Maturu VN, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy 2016; 45:1765-78. [PMID: 26177981 DOI: 10.1111/cea.12595] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/08/2015] [Accepted: 07/03/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND The prevalence of Aspergillus sensitization (AS) and allergic bronchopulmonary aspergillosis (ABPA) in cystic fibrosis (CF) has been varyingly reported. The aim of this systematic review was to estimate the overall prevalence of AS/ABPA in CF. METHODS We searched the PubMed and EmBase databases for studies reporting the prevalence of AS/ABPA in CF. We calculated the proportion with 95% confidence interval (CI) to assess the prevalence of AS and ABPA in the individual studies and then pooled the results using a random effects model. Statistical heterogeneity was assessed using the I2 test while publication bias was assessed using both graphical and statistical methods. RESULTS Our search yielded 64 eligible studies. The pooled prevalence of AS was 39.1% (95% CI: 33.3-45.1) and was higher with skin test compared to specific IgE (43.8% vs. 32.8%, P = 0.002); however, the prevalence did not vary with the type of skin test used (intradermal or percutaneous). The prevalence of ABPA was 8.9% (95% CI: 7.4-10.7) and was higher in adults as compared to children (10.1% vs. 8.9%, P < 0.0001). There was a wide variation in the criteria used for diagnosing ABPA. Almost 50% (12/23) of the publications after 2004 used criteria other than the CF foundation criteria for diagnosing ABPA. There was significant statistical heterogeneity and evidence of publication bias. CONCLUSIONS There is a high prevalence of AS and ABPA in patients with CF. Despite six decades of research, there is still a need to adopt uniform methodology and criteria for the diagnosis of AS/ABPA.
Collapse
Affiliation(s)
- V N Maturu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - R Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Gabriel MF, Postigo I, Tomaz CT, Martínez J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. ENVIRONMENT INTERNATIONAL 2016; 89-90:71-80. [PMID: 26826364 DOI: 10.1016/j.envint.2016.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 05/25/2023]
Abstract
Alternaria alternata spores are considered a well-known biological contaminant and a very common potent aeroallergen source that is found in environmental samples. The most intense exposure to A. alternata allergens is likely to occur outdoors; however, Alternaria and other allergenic fungi can colonize in indoor environments and thereby increase the fungal aeroallergen exposure levels. A consequence of human exposure to fungal aeroallergens, sensitization to A. alternata, has been unequivocally associated with increased asthma severity. Among allergenic proteins described in this fungal specie, the major allergen, Alt a 1, has been reported as the main elicitor of airborne allergies in patients affected by a mold allergy and considered a marker of primary sensitization to A. alternata. Moreover, A. alternata sensitization seems to be a triggering factor in the development of poly-sensitization, most likely because of the capability of A. alternata to produce, in addition to Alt a 1, a broad and complex array of cross-reactive allergens that present homologs in several other allergenic sources. The study and understanding of A. alternata allergen information may be the key to explaining why sensitization to A. alternata is a risk factor for asthma and also why the severity of asthma is associated to this mold. Compared to other common environmental allergenic sources, such as pollens and dust mites, fungi are reported to be neglected and underestimated. The rise of the A. alternata allergy has enabled more research into the role of this fungal specie and its allergenic components in the induction of IgE-mediated respiratory diseases. Indeed, recent research on the identification and characterization of A. alternata allergens has allowed for the consideration of new perspectives in the categorization of allergenic molds, assessment of exposure and diagnosis of fungi-induced allergies.
Collapse
Affiliation(s)
- Marta F Gabriel
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain; Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Cândida T Tomaz
- Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jorge Martínez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain.
| |
Collapse
|
21
|
Prospective Evaluation of a New Aspergillus IgG Enzyme Immunoassay Kit for Diagnosis of Chronic and Allergic Pulmonary Aspergillosis. J Clin Microbiol 2016; 54:1236-42. [PMID: 26888904 DOI: 10.1128/jcm.03261-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/10/2016] [Indexed: 12/29/2022] Open
Abstract
Anti-Aspergillus IgG antibodies are important biomarkers for the diagnosis of chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA). We compared the performance of a new commercial enzyme immunoassay (EIA) (Bordier Affinity Products) with that of the Bio-Rad and Virion\Serion EIAs. This assay is novel in its association of two recombinant antigens with somatic and metabolic antigens of Aspergillus fumigatus In a prospective multicenter study, 436 serum samples from 147 patients diagnosed with CPA (136 samples/104 patients) or ABPA (94 samples/43 patients) and from 205 controls (206 samples) were tested. We obtained sensitivities of 97%, 91.7%, and 86.1%, and specificities of 90.3%, 91.3%, and 81.5% for the Bordier, Bio-Rad, and Virion\Serion tests, respectively. The Bordier kit was more sensitive than the Bio-Rad kit (P < 0.01), which was itself more sensitive than the Virion\Serion kit (P = 0.04). The Bordier and Bio-Rad kits had similar specificity (P = 0.8), both higher than that of the Virion\Serion kit (P = 0.02). The area under the receiver operating characteristic (ROC) curves confirmed the superiority of the Bordier kit over the Bio-Rad and the Virion\Serion kits (0.977, 0.951, and 0.897, respectively; P < 0.01 for each comparison). In a subset analysis of 279 serum samples tested with the Bordier and Bio-Rad kits and an in-house immunoprecipitin assay (IPD), the Bordier kit had the highest sensitivity (97.7%), but the IPD tended to be more specific (71.2 and 84.7%, respectively; P = 0.10). The use of recombinant, somatic, and metabolic antigens in a single EIA improved the balance of sensitivity and specificity, resulting in an assay highly suitable for use in the diagnosis of chronic and allergic aspergillosis.
Collapse
|
22
|
New Commercially Available IgG Kits and Time-Resolved Fluorometric IgE Assay for Diagnosis of Allergic Bronchopulmonary Aspergillosis in Patients with Cystic Fibrosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:196-203. [PMID: 26698651 DOI: 10.1128/cvi.00498-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is difficult to diagnose; diagnosis relies on clinical, radiological, pathological, and serological criteria. Our aim was to assess the performance of two new commercially available kits and a new in-house assay: an Aspergillus fumigatus enzyme-linked immunosorbent assay (ELISA) IgG kit (Bordier Affinity Products), an Aspergillus Western blotting IgG kit (LDBio Diagnostics), and a new in-house time-resolved fluorometric IgE assay (dissociation-enhanced lanthanide fluorescent immunoassay, or DELFIA) using recombinant proteins from an Aspergillus sp. recently developed by our laboratory for ABPA diagnosis in a retrospective study that included 26 cystic fibrosis patients. Aspergillus fumigatus-specific IgG levels measured by a commercial ELISA kit were in accordance with the level of precipitins currently used in our lab. The ELISA kit could accelerate and help standardize ABPA diagnosis. Aspergillus fumigatus-specific IgE levels measured by ImmunoCAP (Phadia) with A. fumigatus M3 antigen and by DELFIA with a purified protein extract of A. fumigatus were significantly correlated (P < 10(-6)). The results with recombinant antigens glucose-6-phosphate isomerase and mannitol-1-phosphate dehydrogenase were encouraging but must be confirmed with sera from more patients. The DELFIA is an effective tool that can detect specific IgE against more fungal allergens than can be detected with other commercially available tests.
Collapse
|
23
|
Jolink H, de Boer R, Willems LNA, van Dissel JT, Falkenburg JHF, Heemskerk MHM. T helper 2 response in allergic bronchopulmonary aspergillosis is not driven by specific Aspergillus antigens. Allergy 2015; 70:1336-9. [PMID: 26179335 DOI: 10.1111/all.12688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/11/2022]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is characterized by an allergic immunological response to Aspergillus fumigatus. In this study, we investigated whether certain Aspergillus antigens are more allergenic than others, as was postulated previously. We stimulated peripheral blood mononuclear cells from patients with ABPA with the classically described A. fumigatus allergens Aspf1, Aspf2, Aspf3, and Aspf4, as well as two other Aspergillus antigens, Crf1 and Catalase1. Activated CD4+ T cells displayed a T helper 2 phenotype with the production of IL-4 in response to stimulation with several of these different antigens. Immune responses were not limited to the classically described A. fumigatus allergens. In healthy individuals, we demonstrated a similar recognition profile to the different antigens, but in contrast the activated CD4+ T cells exerted a T helper 1 phenotype and mainly produced IFN-γ after stimulation with A. fumigatus antigens. In conclusion, irrespective of the A. fumigatus antigen, the T-cell immune response in patients with ABPA is skewed to a T helper 2 cytokine secretion profile.
Collapse
Affiliation(s)
- H. Jolink
- Department of Hematology; Leiden University Medical Center; Leiden the Netherlands
- Department of Infectious Diseases; Leiden University Medical Center; Leiden the Netherlands
| | - R. de Boer
- Department of Hematology; Leiden University Medical Center; Leiden the Netherlands
| | - L. N. A. Willems
- Department of Pulmonary Medicine; Leiden University Medical Center; Leiden the Netherlands
| | - J. T. van Dissel
- Department of Infectious Diseases; Leiden University Medical Center; Leiden the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology; Leiden University Medical Center; Leiden the Netherlands
| | - M. H. M. Heemskerk
- Department of Hematology; Leiden University Medical Center; Leiden the Netherlands
| |
Collapse
|
24
|
Geltner C, Sorschag S, Willinger B, Jaritz T, Saric Z, Lass-Flörl C. Necrotizing mycosis due to Verruconis gallopava in an immunocompetent patient. Infection 2015; 43:743-6. [PMID: 25744338 DOI: 10.1007/s15010-015-0757-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
Verruconis gallopava is a dematiaceous mould usually causing saprophytic infection in immunosuppressed host. Only a few cases have been published even in immunocompromised states. We present a rare case of pulmonary involvement in an immunocompetent patient with recurrent disease. The mid-aged woman had no evidence of any disease causing impaired immune response. Recurrent disease shows pulmonary infiltrates and symptoms of allergic bronchopulmonary mycosis. We describe an emerging pathogen that has been found in an immunocompetent host. Eradication was not possible despite the use of several different antifungal drugs. Further recurrence of infection in the described patient is probable.
Collapse
Affiliation(s)
- Christian Geltner
- Department of Pulmonology, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11, AT 9020, Klagenfurt, Austria.
| | - Sieglinde Sorschag
- Institute of Laboratory Diagnostics and Microbiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Jaritz
- Department of Pulmonology, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11, AT 9020, Klagenfurt, Austria
| | - Zoran Saric
- Department of Pulmonology, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11, AT 9020, Klagenfurt, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Gabriel MF, Postigo I, Gutiérrez-Rodríguez A, Suñén E, Guisantes J, Tomaz CT, Martínez J. Characterisation of Alternaria alternata manganese-dependent superoxide dismutase, a cross-reactive allergen homologue to Asp f 6. Immunobiology 2015; 220:851-8. [PMID: 25657116 DOI: 10.1016/j.imbio.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
It is well known that Alternaria alternata presents a significant level of allergenic cross-reactivity with several other phylogenetically related and non-related allergenic moulds. To improve the molecular diagnosis, the identification and characterisation of all clinically relevant allergens, including both species-specific and cross-reacting proteins, is required. In this study we report the molecular and immunological characterisation of the A. alternata manganese-dependent superoxide dismutase (Alt a MnSOD) and its cross-reactivity with Asp f 6, a diagnostic marker allergen in allergic bronchopulmonary aspergillosis (ABPA). The cDNA coding for Alt a MnSOD sequence was isolated by RACE and PCR. Alt a MnSOD is a protein of 191 amino acids that presented significant homology and potential cross-reactive epitopes with Asp f 6. The recombinant protein was produced in Escherichia coli and the immunoreactivity was evaluated in patient sera. Immunoblotting analyses showed that seven of sixty-one A. alternata-sensitised patient sera and two ABPA patient sera reacted with the recombinant Alt a MnSOD. The native counterpart contained in both A. alternata and Aspergillus fumigatus extracts inhibited IgE binding to the recombinant molecule. The allergen was named Alt a 14 by the official Allergen nomenclature subcommittee. Thus, Alt a 14 is a relevant allergen in A. alternata sensitisation that may be used to improve diagnostic procedures. Evidence of cross-reactivity between Asp f 6 and Alt a 14-recognition by ABPA patient sera suggest the existence of an Alt a 14-mediated mechanism that, similar to Asp f 6, may be related to the pathogenesis of ABPA.
Collapse
Affiliation(s)
- Marta F Gabriel
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain; Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Antonio Gutiérrez-Rodríguez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Ester Suñén
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Jorge Guisantes
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Cândida T Tomaz
- Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jorge Martínez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain.
| |
Collapse
|
26
|
Evaluation of the Aspergillus Western blot IgG kit for diagnosis of chronic aspergillosis. J Clin Microbiol 2014; 53:248-54. [PMID: 25392351 DOI: 10.1128/jcm.02690-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immunoprecipitin detection (IPD) is the current reference confirmatory technique for anti-Aspergillus antibody detection; however, the lack of standardization is a critical drawback of this assay. In this study, we evaluated the performance of the Aspergillus Western blot (Asp-WB) IgG kit (LDBio Diagnostics, Lyon, France), a recently commercialized immunoblot assay for the diagnosis of various clinical presentations of chronic aspergillosis. Three hundred eight serum samples from 158 patients with aspergillosis sensu lato (s.l.) were analyzed. More specifically, 267 serum samples were derived from patients with Aspergillus disease, including 89 cases of chronic pulmonary aspergillosis, 10 of aspergilloma, and 32 of allergic bronchopulmonary aspergillosis, while 41 samples were from patients with Aspergillus colonization, including 15 cystic fibrosis (CF) and 12 non-CF patients. For blood donor controls, the Asp-WB specificity was 94%, while the kit displayed a sensitivity for the aspergillosis s.l. diagnosis of 88.6%, with a diagnostic odds ratio (DOR) of 119 (95% confidence interval [CI], 57 to 251). The DOR values were 185.22 (95% CI,78.79 to 435.45) and 43.74 (95% CI, 15.65 to 122.20) for the diagnosis of Aspergillus disease and Aspergillus colonization, respectively. Among the patients, the sensitivities of the Asp-WB in the diagnosis of Aspergillus colonization were 100% and 41.7% in CF and non-CF patients, respectively. The Asp-WB yielded fewer false-negative results than did IPD. In conclusion, the Asp-WB kit performed well for the diagnosis of various clinical presentations of aspergillosis in nonimmunocompromised patients, with an enhanced standardization and a higher sensitivity than with IPD, which is the current reference method.
Collapse
|
27
|
Pashley CH. Fungal culture and sensitisation in asthma, cystic fibrosis and chronic obstructive pulmonary disorder: what does it tell us? Mycopathologia 2014; 178:457-63. [PMID: 25151366 DOI: 10.1007/s11046-014-9804-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Abstract
Collectively asthma, chronic obstructive pulmonary disorder (COPD) and cystic fibrosis (CF) are very common, important causes of disease and ill health. Filamentous fungal colonisation of the airways can occur in all three disease groups, although the clinical relevance is unclear. Allergic bronchopulmonary aspergillosis (ABPA) is a well-recognised severe complication of airway colonisation associated primarily with Aspergillus fumigatus. Fungal colonisation may have a deleterious effect without fulfilling all the diagnostic criteria of ABPA; however, a lack of standardisation in processing respiratory samples hampers comparisons. Whilst mycology laboratory accreditation programs are common, most countries have no national standard guidelines for processing respiratory samples. Fungal recovery from sputum in CF, asthma and COPD can be around 40, 54 and 49%, respectively. Isolation of fungi from sputum has been associated with reduced lung function in asthma and CF, although no such associations have been found in COPD. It is unclear whether fungal colonisation contributes to lower lung function or is a marker of more severe lung disease and aggressive therapy. Fungal sensitisation may contribute to the persistence of active respiratory symptoms; however, the exact prevalence is unclear. Sensitisation to A. fumigatus has been associated with reduced lung function in asthma, COPD and CF. It has suggested that both skin prick tests and specific IgE measurement by the ImmunoCAP system should be used in diagnoses of allergy, due to discordance in test results; however, there is currently no widely adopted consensus as to which fungi to test for.
Collapse
Affiliation(s)
- Catherine H Pashley
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK,
| |
Collapse
|
28
|
Muro M, Mondejar-López P, Moya-Quiles MR, Salgado G, Pastor-Vivero MD, Lopez-Hernandez R, Boix F, Campillo JA, Minguela A, Garcia-Alonso A, Sánchez-Solís M, Álvarez-López MR. HLA-DRB1 and HLA-DQB1 genes on susceptibility to and protection from allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Microbiol Immunol 2013; 57:193-7. [PMID: 23278646 DOI: 10.1111/1348-0421.12020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/17/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity pulmonary disease that affects both patients with cystic fibrosis (CF) and those with asthma. HLA-DRB1 alleles have previously been associated with ABPA-CF susceptibility; however, HLA-DQB1 allele associations have not been clearly established. The aim of the present study was to investigate HLA class II associations in patients with ABPA-CF and determine their roles in susceptibility or protection. Patients with ABPA-CF, patients with CF without ABPA, patients with asthma without ABPA (AST), and healthy controls were included in this study. DNA was extracted by automatic extractor. HLA-DRB1 and -DQB1 genotyping was performed by the Luminex PCR-SSOP method (One Lambda, Canoga Park, CA, USA). Allele specific PCR-SSP was also performed by high-resolution analysis (One Lambda). Statistical analysis was performed with SSPS and Arlequin software. Both HLA-DRB1*5:01 and -DRB1*11:04 alleles occurred with greater frequency in patients with ABPA-CF than in those with AST and CF and control subjects, corroborating previously published data. On the other hand, analysis of haplotypes revealed that almost all patients with ABPA-CF lacking DRB1*15:01 or DRB1*11:04 carry either DRB1*04, DRB1*11:01, or DRB1*07:01 alleles. In the HLA-DQB1 region, the HLA-DQB1*06:02 allele occurred more frequently in patients with ABPA-CF than in those with AST and CF and healthy controls, whereas HLA-DQB1*02:01 occurred less frequently in patients with ABPA-CF. These data confirm that there is a correlation between HLA-DRB1*15:01, -DRB1*11:04, DRB1*11:01, -DRB1*04 and -DRB1*07:01 alleles and ABPA-CF susceptibility and suggest that HLA-DQB1*02:01 is an ABPA-CF resistance allele.
Collapse
Affiliation(s)
- Manuel Muro
- Immunology Service, University Hospital Virgen Arrixaca, Madrid-Cartagena Rd, 30120, El Palmar, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Fungi and yeasts are critical causes of acute infection. As such, the detection and identification of these organisms are crucial in the diagnosis of affected patient populations. There is a vast array of commercial tests currently available for diagnostic purposes. These vary from traditional culture and biochemical methods to advanced multiparameter molecular tests. Recent technological advances have driven the development of rapid tests which are complementing and in some cases replacing the more traditional methods of detection. Irrespective of the method used the ultimate goal is timely detection of the infectious agent allowing appropriate treatment and improved outcome for the patient.
Collapse
|
30
|
Gernez Y, Dunn CE, Everson C, Mitsunaga E, Gudiputi L, Krasinska K, Davies ZA, Herzenberg LA, Tirouvanziam R, Moss RB. Blood basophils from cystic fibrosis patients with allergic bronchopulmonary aspergillosis are primed and hyper-responsive to stimulation by aspergillus allergens. J Cyst Fibros 2012; 11:502-10. [PMID: 22608296 DOI: 10.1016/j.jcf.2012.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Fifteen to sixty percent of cystic fibrosis patients harbor Aspergillus fumigatus (Af) in their airways (CF-AC) and some will develop allergic bronchopulmonary aspergillosis (CF-ABPA). Since basophils play a key role in allergy, we hypothesized that they would display alterations in CF-ABPA patients compared to CF-AC or patients without Af colonization (CF). METHODS Using flow cytometry, we measured CD203c, CD63 and CD123 levels on basophils from CF-ABPA (N=11), CF-AC (N=14), and CF (N=12) patients before and after ex vivo stimulation with Af allergens. RESULTS Baseline CD203c was increased in basophils from CF-ABPA compared to CF-AC and CF patients. Af extract and recombinant Aspf1 stimulated basophils from CF-ABPA patients to markedly upregulate CD203c, along with modest upregulation of CD63 and a CD123 downward trend. Plasma TARC/CCL17 at baseline and post-stimulation cell supernatant histamine levels were similar in the three groups. CONCLUSIONS In CF-ABPA, blood basophils are primed and hyperresponsive to Af allergen stimulation.
Collapse
Affiliation(s)
- Yael Gernez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mahdavinia M, Grammer LC. Management of allergic bronchopulmonary aspergillosis: a review and update. Ther Adv Respir Dis 2012; 6:173-87. [PMID: 22547692 DOI: 10.1177/1753465812443094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the first description of allergic bronchopulmonary aspergillosis (ABPA) in the 1950s there have been numerous studies that have shed light on the characteristics and immunopathogenesis of this disease. The increased knowledge and awareness have resulted in earlier diagnosis and treatment of patients with this condition. This article aims to provide a summary and updates on ABPA by reviewing the results of recent studies on this disease with a focus on articles published within the last 5 years. A systematic search of PubMed/Medline with keywords of ABPA or allergic bronchopulmonary aspergillosis was performed. All selected articles were reviewed with a focus on findings of articles published from December 2006 to December 2011. The relevant findings are summarized in this paper.
Collapse
|
32
|
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is caused by an exaggerated T(H)2 response to the ubiquitous mold Aspergillus fumigatus. ABPA develops in a small fraction of patients with cystic fibrosis and asthma, suggesting that intrinsic host defects play a major role in disease susceptibility. This article reviews current understanding of the immunopathology, clinical and laboratory findings, and diagnosis and management of ABPA. It highlights clinical and laboratory clues to differentiate ABPA from cystic fibrosis and asthma, which are challenging given clinical and serologic similarities. A practical diagnostic algorithm and management scheme to aid in the treatment of these patients is outlined.
Collapse
|
33
|
|
34
|
Abstract
Indoor Exposure to Mould AllergensHumid indoor environments may be colonised by allergenic filamentous microfungi (moulds),Aspergillusspp.,Penicilliumspp.,Cladosporiumspp., andAlternariaspp. in particular. Mould-induced respiratory diseases are a worldwide problem. In the last two decades, mould allergens and glucans have been used as markers of indoor exposure to moulds. Recently, mould allergens Alt a 1 (Alternaria alternata) and Asp f 1 (Aspergillus fumigatus) have been analysed in various environments (residential and occupational) with enzyme-linked immunosorbent assays, which use monoclonal or polyclonal antibodies. Household Alt a 1 and Asp f 1 levels were usually under the limit of the method detection. By contrast, higher levels of mould allergens were found in environments with high levels of bioaerosols such as poultry farms and sawmills. Data on allergen Alt a 1 and Asp f 1 levels in agricultural settings may provide information on possible colonisation of respective moulds and point out to mould-related diseases in occupants.
Collapse
|