1
|
Zhao G, Duan W, Zhang L, Sun W, Liu W, Zhang X, Zhang Y, Shi Q, Wu T. The peptidoglycan-associated lipoprotein gene mutant elicits robust immunological defense in mice against Salmonella enteritidis. Front Microbiol 2024; 15:1422202. [PMID: 38903796 PMCID: PMC11188350 DOI: 10.3389/fmicb.2024.1422202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Salmonella enteritidis (S. enteritidis), a zoonotic pathogen with a broad host range, presents a substantial threat to global public health safety. Vaccination stands as an effective strategy for the prevention and control of S. enteritidis infection, highlighting an immediate clinical need for the creation of safe and efficient attenuated live vaccines. Methods In this study, a S. enteritidis peptidoglycan-associated lipoprotein (pal) gene deletion strain (Δpal), was constructed. To assess its virulence, we conducted experiments on biofilm formation capability, motility, as well as cell and mouse infection. Subsequently, we evaluated the immune-protective effect of Δpal. Results It was discovered that deletion of the pal gene reduced the biofilm formation capability and motility of S. enteritidis. Cell infection experiments revealed that the Δpal strain exhibited significantly decreased abilities in invasion, adhesion, and intracellular survival, with downregulation of virulence gene expression, including mgtC, invH, spvB, sipA, sipB, ssaV, csgA, and pipB. Mouse infection experiments showed that the LD50 of Δpal increased by 104 times, and its colonization ability in mouse tissue organs was significantly reduced. The results indicated that the pal gene severely affected the virulence of S. enteritidis. Further, immunogenicity evaluation of Δpal showed a significant enhancement in the lymphocyte transformation proliferation capability of immunized mice, producing high titers of specific IgG and IgA, suggesting that Δpal possesses good immunogenicity. Challenge protection tests demonstrated that the strain could provide 100% immune protection against wild-type strains in mice. Discussion This study proves that the pal gene influences the virulence of S. enteritidis, and Δpal could serve as a candidate strain for attenuated live vaccines, laying the foundation for the development of attenuated live vaccines against Salmonella.
Collapse
Affiliation(s)
- Guixin Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenlong Duan
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wan Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaoyu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanying Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Tonglei Wu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
3
|
Escobar C, Munoz LR, Bailey MA, Krehling JT, Pacheco WJ, Hauck R, Buhr RJ, Macklin KS. Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients. Animals (Basel) 2023; 13:3119. [PMID: 37835725 PMCID: PMC10571946 DOI: 10.3390/ani13193119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Various culture-based methods to detect Salmonella in animal feed have been developed due to the impact of this bacterium on public and animal health. For this project, tris phosphate carbonate (TPC) and buffered peptone water (BPW) buffering capacities were compared as pre-enrichment mediums for the detection of Salmonella in feed ingredients. A total of 269 samples were collected from 6 feed mills and mixed with the pre-enrichments; pH was measured before and after a 24 h incubation. Differences were observed when comparing pH values by sample type; DDGS and poultry by-product meal presented lower initial pH values for TPC and BPW compared to the other samples. For both TPC and BPW, meat and bone meal presented higher final pH values, while soybean meal and peanut meal had lower final pH values. Furthermore, for BPW, post cooling, pellet loadout, and wheat middlings reported lower final pH values. Additionally, most feed ingredients presented significant differences in pH change after 24 h of incubation, except DDGS. From meat and bone meal samples, four Salmonella isolates were recovered and identified: three using BPW and one using TPC. TPC provided greater buffer capacity towards neutral pH compared to BPW, but BPW was more effective at recovering Salmonella.
Collapse
Affiliation(s)
- Cesar Escobar
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
| | - Luis R. Munoz
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
| | - Matthew A. Bailey
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
| | - James T. Krehling
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
| | - Wilmer J. Pacheco
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
| | - Rüdiger Hauck
- Department of Poultry Science, College of Agriculture Auburn University, Auburn, AL 36849, USA; (C.E.); (L.R.M.); (M.A.B.); (J.T.K.); (W.J.P.); (R.H.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Richard J. Buhr
- USDA-ARS, US National Poultry Research Center, Athens, GA 30605, USA;
| | - Kenneth S. Macklin
- Department of Poultry Science, College of Agriculture Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
5
|
Guo Y, Xu Y, Kang X, Gu D, Jiao Y, Meng C, Tang P, Wang X, Huang C, Geng S, Jiao X, Pan Z. Immunogenic potential and protective efficacy of a sptP deletion mutant of Salmonella Enteritidis as a live vaccine for chickens against a lethal challenge. Int J Med Microbiol 2019; 309:151337. [PMID: 31477487 DOI: 10.1016/j.ijmm.2019.151337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022] Open
Abstract
Salmonella Enteritidis (SE) is a highly adapted pathogen causing severe economic losses in the poultry industry worldwide. Chickens infected by SE are a major source of human food poisoning. Vaccination is an effective approach to control SE infections. This study evaluated the immunogenicity and protective efficacy of a SE sptP deletion mutant (C50336ΔsptP) as a live attenuated vaccine (LAV) candidate in chickens. 14 day-old specific pathogen-free (SPF) chickens were intramuscularly immunized with various doses of C50336ΔsptP. Several groups of chickens were challenged with the virulent wild-type SE strain Z-11 via the same route at 14 days post vaccination. Compared to the control group, the groups vaccinated with 1 × 106, 1 × 107 and 1 × 108 colony-forming units (CFU) of C50336ΔsptP exhibited no clinical symptoms after immunization. Only slight pathological changes occurred in the organs of the 1 × 109 CFU vaccinated group. C50336ΔsptP bacteria were cleared from the organs of immunized chickens within 14 days after vaccination. Lymphocyte proliferation and serum cytokine analyses indicated that significant cellular immune responses were induced after the vaccination of C50336ΔsptP. Compared to the control group, specific IgG antibody levels increased significantly in vaccinated chickens, and the levels increased markedly after the challenge. The 1 × 107, 1 × 108, and 1 × 109 CFU vaccinated chickens groups showed no clinical symptoms or pathological changes, and no death after the lethal challenge. Whereas severe clinical signs of disease and pathological changes were observed in the control group chickens after the challenge. These results suggest that a single dose of C50336ΔsptP could be an effective LAV candidate to against SE infection in chickens.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ying Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yang Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Peipei Tang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xiaohai Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Cuiying Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| |
Collapse
|
6
|
Abstract
Bacterial ghosts (BG) are empty cell envelopes derived from Gram-negative bacteria. They contain many innate immunostimulatory agonists, and are potent activators of a broad range of cell types involved in innate and adaptive immunity. Several considerable studies have demonstrated the effectiveness of BG as adjuvants as well as their ability to induce proinflammatory cytokine production by a range of immune and non-immune cell types. These proinflammatory cytokines trigger a generalized recruitment of T and B lymphocytes to lymph nodes that maximize the chances of encounter with their cognate antigen, and subsequent elicitation of potent immune responses. The plasticity of BG has allowed for the generation of envelope-bound foreign antigens in immunologically active forms that have proven to be effective vaccines in animal models. Besides their adjuvant property, BG also effectively deliver DNA-encoded antigens to dendritic cells, thereby leading to high transfection efficiencies, which subsequently result in higher gene expressions and improved immunogenicity of DNA-based vaccines. In this review, we summarize our understanding of BG interactions with the host immune system, their exploitation as an adjuvant and a delivery system, and address important areas of future research interest.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Pervaiz A Dar
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|