1
|
Yang Y, Xue Y, Wang X, Wang L, Wang J, Zhang J, Liu Y, Liang Y, Wu X. Bioinformatics Analysis and Immunogenicity Assessment of the Novel Multi-Stage DNA Vaccine W541 Against Mycobacterium Tuberculosis. Immun Inflamm Dis 2024; 12:e70074. [PMID: 39588938 PMCID: PMC11590035 DOI: 10.1002/iid3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Vaccination is one of the effective measures to prevent latent tuberculosis infection (LTBI) from developing into active tuberculosis (TB). Applying bioinformatics methods to pre-evaluate the biological characteristics and immunogenicity of vaccines can improve the efficiency of vaccine development. OBJECTIVES To evaluate the immunogenicity of TB vaccine W541 and to explore the application of bioinformatics technology in TB vaccine research. METHODS This study concatenated the immunodominant sequences of Ag85A, Ag85B, Rv3407, and Rv1733c to construct the W541 DNA vaccine. Then, bioinformatics methods were used to analyze the physicochemical properties, antigenicity, allergenicity, toxicity, and population coverage of the vaccine, to identify its epitopes, and to perform molecular docking with MHC alleles and Toll-like receptor 4 (TLR4) of the host. Finally, the immunogenicity of the vaccine was evaluated in animal experiments. RESULTS The W541 vaccine protein is a soluble cytoplasmic protein with a half-life of 1.1 h in vivo and an instability index of 45.37. It has good antigenicity and wide population coverage without allergenicity and toxicity. It contains 138 HTL epitopes, 73 CTL epitopes, 8 linear and 14 discontinuous B cell epitopes, and has a strong affinity for TLR4. Immune simulations have shown that it can effectively stimulate innate and adaptive immune responses. Animal experiments confirmed that the W541 DNA vaccine could effectively activate Th1- and Th17-type immune responses, producing high levels of IFN-γ and IL-17A, but could not significantly increase antibody levels. CONCLUSION The W541 DNA vaccine can induce strong cellular immune responses. However, further optimization of the vaccine design is needed to make the expressed protein more stable in vivo. Bioinformatics analysis could reveal the physicochemical and immunological information of vaccines, which is critical for guiding vaccine design and development.
Collapse
Affiliation(s)
- Yourong Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Junxian Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
3
|
Kwon KW, Choi HG, Choi HH, Choi E, Kim H, Kim HJ, Shin SJ. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine 2024; 42:1941-1952. [PMID: 38368223 DOI: 10.1016/j.vaccine.2024.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hagyu Kim
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
4
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
5
|
Kwon KW, Choi HG, Kim KS, Park SA, Kim HJ, Shin SJ. BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice. NPJ Vaccines 2024; 9:55. [PMID: 38459038 PMCID: PMC10923817 DOI: 10.1038/s41541-024-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
The quest for effective and enhanced multiantigenic tuberculosis (TB) subunit vaccine necessitates the induction of a protective pathogen-specific immune response while circumventing detrimental inflammation within the lung milieu. In line with this goal, we engineered a modified iteration of the quadrivalent vaccine, namely HSP90-ESAT-6-HspX-RipA (HEHR), which was coupled with the TLR4 adjuvant, CIA09A. The ensuing formulation was subjected to comprehensive assessment to gauge its protective efficacy against the hypervirulent Mycobacterium tuberculosis (Mtb) Haarlem clinical strain M2, following a BCG-prime boost regimen. Regardless of vaccination route, both intramuscular and subcutaneous administration with the HEHR vaccine exhibited remarkable protective efficacy in significantly reducing the Mtb bacterial burden and pulmonary inflammation. This underscores its notably superior protective potential compared to the BCG vaccine alone or a former prototype, the HSP90-E6 subunit vaccine. In addition, this superior protective efficacy was confirmed when testing a tag-free version of the HEHR vaccine. Furthermore, the protective immune determinant, represented by durable antigen-specific CD4+IFN-γ+IL-17A+ T-cells expressing a CXCR3+KLRG1- cell surface phenotype in the lung, was robustly induced in HEHR-boosted mice at 12 weeks post-challenge. Collectively, our data suggest that the BCG-prime HEHR boost vaccine regimen conferred improved and long-term protection against hypervirulent Mtb strain with robust antigen-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | | | - Shin Ae Park
- R&D Center, EyeGene Inc., Goyang, 10551, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
6
|
Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K. Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection. Bioconjug Chem 2023; 34:1738-1753. [PMID: 37606258 PMCID: PMC10587871 DOI: 10.1021/acs.bioconjchem.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.
Collapse
Affiliation(s)
- Chiara Bellini
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
| | - Emil Vergara
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Fruzsina Bencs
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Kinga Fodor
- Department
of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network (ELKH), Eötvös
Loránd University, Budapest 1117, Hungary
| | - Denis Krivić
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Bernadett Bacsa
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sára Eszter Surguta
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Rajko Reljic
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Kata Horváti
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
7
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Liang Y, Li X, Yang Y, Xiao L, Liang Y, Mi J, Xue Y, Gong W, Wang L, Wang J, Zhang J, Shi Y, Peng B, Chen X, Zhao W, Wu X. Preventive effects of Mycobacterium tuberculosis DNA vaccines on the mouse model with latent tuberculosis infection. Front Immunol 2023; 14:1110843. [PMID: 36860878 PMCID: PMC9968874 DOI: 10.3389/fimmu.2023.1110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Background About a quarter of the world's population with latent tuberculosis infection (LTBI) are the main source of active tuberculosis. Bacillus Calmette Guerin (BCG) cannot effectively control LTBI individuals from developing diseases. Latency-related antigens can induce T lymphocytes of LTBI individuals to produce higher IFN-γ levels than tuberculosis patients and normal subjects. Herein, we firstly compared the effects of M. tuberculosis (MTB) ag85ab and 7 latent DNA vaccines on clearing latent MTB and preventing its activation in the mouse LTBI model. Methods A mouse LTBI model was established, and then immunized respectively with PBS, pVAX1 vector, Vaccae vaccine, ag85ab DNA and 7 kinds of latent DNAs (including rv1733c, rv2660c, rv1813c, rv2029c, rv2628, rv2659c and rv3407) for three times. The mice with LTBI were injected with hydroprednisone to activate the latent MTB. Then, the mice were sacrificed for the bacterial count, histopathological examination, and immunological evaluation. Results Using chemotherapy made the MTB latent in the infected mice, and then using hormone treatment reactivated the latent MTB, indicating that the mouse LTBI model was successfully established. After the mouse LTBI model was immunized with the vaccines, the lung colony-forming units (CFUs) and lesion degree of mice in all vaccines group were significantly decreased than those in the PBS group and vector group (P<0.0001, P<0.05). These vaccines could induce antigen-specific cellular immune responses. The number of IFN-γ effector T cells spots secreted by spleen lymphocytes in the ag85ab DNA group was significantly increased than those in the control groups (P<0.05). In the splenocyte culture supernatant, IFN-γ and IL-2 levels in the ag85ab, rv2029c, and rv2659c DNA groups significantly increased (P<0.05), and IL-17A levels in ag85ab and rv2659c DNA groups also significantly increased (P<0.05). Compared with the PBS and vector groups, the proportion of CD4+CD25+FOXP3+ regulatory T cells in spleen lymphocytes of ag85ab, rv2660c, rv2029c, and rv3407 DNA groups were significantly reduced (P<0.05). Conclusions MTB ag85ab and 7 kinds of latent DNA vaccines showed immune preventive efficacies on a mouse model of LTBI, especially the rv2659c, and rv1733c DNA. Our findings will provide candidates for the development of new multi-stage vaccines against TB.
Collapse
Affiliation(s)
- Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoping Li
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,Department of Respiration, Hengdong People’s Hospital, Hengyang, China
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yumei Liang
- Department of Pathology, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yingchang Shi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bizhen Peng
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Chen
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Weiguo Zhao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| |
Collapse
|
9
|
Waeckerle-Men Y, Kotkowska ZK, Bono G, Duda A, Kolm I, Varypataki EM, Amstutz B, Meuli M, Høgset A, Kündig TM, Halin C, Sander P, Johansen P. Photochemically-Mediated Inflammation and Cross-Presentation of Mycobacterium bovis BCG Proteins Stimulates Strong CD4 and CD8 T-Cell Responses in Mice. Front Immunol 2022; 13:815609. [PMID: 35173729 PMCID: PMC8841863 DOI: 10.3389/fimmu.2022.815609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1β in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Zuzanna K. Kotkowska
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Géraldine Bono
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Eleni M. Varypataki
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Beat Amstutz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Thomas M. Kündig
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Pål Johansen,
| |
Collapse
|
10
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Cytotoxic T-Cell-Based Vaccine against SARS-CoV-2: A Hybrid Immunoinformatic Approach. Vaccines (Basel) 2022; 10:vaccines10020218. [PMID: 35214676 PMCID: PMC8878688 DOI: 10.3390/vaccines10020218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents an alternative vaccination platform that provides long-term cellular immune protection mediated by cytotoxic T-cells. The immune response via cellular immunity creates superior resistance to viral mutations, which are currently the greatest threat to the global vaccination campaign. Furthermore, we also propose a safer, more facile, and physiologically appropriate immunization method using either intranasal or oral administration. The underlying technology is an adaptation of synthetic long peptides (SLPs) previously used in cancer immunotherapy. The overall quality of the SLP constructs was validated using in silico methods. SLPs comprising HLA class I and class II epitopes were designed to stimulate antigen cross-presentation and canonical class II presentation by dendritic cells. The desired effect is a cytotoxic T cell-mediated prompt and specific immune response against the virus-infected epithelia and a rapid and robust virus clearance. Epitopes isolated from COVID-19 convalescent patients were screened for HLA class I and class II binding (NetMHCpan and NetMHCIIpan) and highest HLA population coverage (IEDB Population Coverage). 15 class I and 4 class II epitopes were identified and used for this SLP design. The constructs were characterized based on their toxicity (ToxinPred), allergenicity (AllerCatPro), immunogenicity (VaxiJen 2.0), and physico-chemical parameters (ProtParam). Based on in silico predictions, out of 60 possible SLPs, 36 candidate structures presented a high probability to be immunogenic, non-allergenic, non-toxic, and stable. 3D peptide folding followed by 3D structure validation (PROCHECK) and molecular docking studies (HADDOCK 2.4) with Toll-like receptors 2 and 4 provided positive results, suggestive for favorable antigen presentation and immune stimulation.
Collapse
|
12
|
Zhang L, Ma H, Wan S, Zhang Y, Gao M, Liu X. Mycobacterium tuberculosis latency-associated antigen Rv1733c SLP improves the accuracy of differential diagnosis of active tuberculosis and latent tuberculosis infection. Chin Med J (Engl) 2022; 135:63-69. [PMID: 34802023 PMCID: PMC8850866 DOI: 10.1097/cm9.0000000000001858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Differential diagnosis of active tuberculosis (ATB) and latent tuberculosis infection (LTBI) has been a challenge for clinicians in high TB burden countries. The purpose of this study was to improve the accuracy of differential diagnosis of ATB and LTBI by using fluorescent immunospot (FluoroSpot) assay to detect specific Th1 cell immune responses. The novel mycobacterium tuberculosis (MTB) latency-associated antigens Rv1733c and synthetic long peptides derived from Rv1733c (Rv1733c SLP) were used based on virulence factors early secreting antigen target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10). METHODS Fifty-seven ATB cases, including 20 pathogen-confirmed ATB and 37 clinically diagnosed ATB, and 36 LTBI cases, were enrolled between January and December 2017. FluoroSpot assay was used to detect the interferon γ (IFN-γ) and interleukin 2 (IL-2) secreted by the specific T cells after being stimulated with MTB virulence factors ESAT-6 and CFP-10, MTB latency-associated antigens Rv1733c and Rv1733c SLP. The receiver operating characteristic (ROC) curve was used to define the best cutoff value of latency-associated antigens in the use of differentiating ATB and LTBI. The sensitivity, specificity, predictive value, and likelihood ratio of ESAT-6 and CFP-10-FluoroSpot combined with latency-associated antigen in the differential diagnosis of ATB and LTBI were also calculated. RESULTS Following the stimulation with Rv1733c and Rv1733c SLP, the frequency of single IL-2-secreting T cells stimulated by Rv1733c SLP had the largest area under the ROC curve, which was 0.766. With a cutoff value of 1 (spot-forming cells [SFCs]/2.5 × 105 peripheral blood mononuclear cells) for frequency, the sensitivity and specificity of distinguishing ATB from LTBI were 72.2% and 73.7%, respectively. ESAT-6 and CFP-10-FluoroSpot detected the frequency and proportion of single IFN-γ-secreting T cells; the sensitivity and specificity of distinguishing ATB from LTBI were 82.5% and 66.7%, respectively. Combined with the frequency of single IL-2-secreting T cells stimulated by Rv1733c SLP on the basis of ESAT-6 and CFP-10-FluoroSpot, the sensitivity and specificity increased to 84.2% and 83.3%, respectively. CONCLUSION Rv1733c SLP, combined with ESAT-6 and CFP-10, might be used as a candidate antigen for T cell-based tuberculosis diagnostic tests to differentiate ATB from LTBI.
Collapse
Affiliation(s)
- Lifan Zhang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huimin Ma
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shijun Wan
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yueqiu Zhang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol 2021; 12:745592. [PMID: 34745048 PMCID: PMC8570039 DOI: 10.3389/fmicb.2021.745592] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient infectious disease, tuberculosis (TB) is still the leading cause of death from a single infectious agent worldwide. Latent TB infection (LTBI) has been recognized as the largest source of new TB cases and is one of the biggest obstacles to achieving the aim of the End TB Strategy. The latest data indicate that a considerable percentage of the population with LTBI and the lack of differential diagnosis between LTBI and active TB (aTB) may be potential reasons for the high TB morbidity and mortality in countries with high TB burdens. The tuberculin skin test (TST) has been used to diagnose TB for > 100 years, but it fails to distinguish patients with LTBI from those with aTB and people who have received Bacillus Calmette–Guérin vaccination. To overcome the limitations of TST, several new skin tests and interferon-gamma release assays have been developed, such as the Diaskintest, C-Tb skin test, EC-Test, and T-cell spot of the TB assay, QuantiFERON-TB Gold In-Tube, QuantiFERON-TB Gold-Plus, LIAISON QuantiFERON-TB Gold Plus test, and LIOFeron TB/LTBI. However, these methods cannot distinguish LTBI from aTB. To investigate the reasons why all these methods cannot distinguish LTBI from aTB, we have explained the concept and definition of LTBI and expounded on the immunological mechanism of LTBI in this review. In addition, we have outlined the research status, future directions, and challenges of LTBI differential diagnosis, including novel biomarkers derived from Mycobacterium tuberculosis and hosts, new models and algorithms, omics technologies, and microbiota.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Bellini C, Horváti K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020; 9:cells9122673. [PMID: 33333744 PMCID: PMC7765234 DOI: 10.3390/cells9122673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) herald of the “End TB Strategy” has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against Mycobacterium tuberculosis (Mtb). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mtb, has highlighted the need for alternative vaccines. In this review, we seek to give an overview of Mtb infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.
Collapse
Affiliation(s)
- Chiara Bellini
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
15
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
16
|
Horváti K, Pályi B, Henczkó J, Balka G, Szabó E, Farkas V, Biri-Kovács B, Szeder B, Fodor K. A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides. Vaccines (Basel) 2019; 7:vaccines7030101. [PMID: 31461944 PMCID: PMC6789589 DOI: 10.3390/vaccines7030101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Epitopes from different proteins expressed by Mycobacterium tuberculosis (Rv1886c, Rv0341, Rv3873) were selected based on previously reported antigenic properties. Relatively short linear T-cell epitope peptides generally have unordered structure, limited immunogenicity, and low in vivo stability. Therefore, they rely on proper formulation and on the addition of adjuvants. Here we report a convenient synthetic route to induce a more potent immune response by the formation of a trivalent conjugate in spatial arrangement. Chemical and structural characterization of the vaccine conjugates was followed by the study of cellular uptake and localization. Immune response was assayed by the measurement of splenocyte proliferation and cytokine production, while vaccine efficacy was studied in a murine model of tuberculosis. The conjugate showed higher tendency to fold and increased internalization rate into professional antigen presenting cells compared to free epitopes. Cellular uptake was further improved by the incorporation of a palmitoyl group to the conjugate and the resulted pal-A(P)I derivative possessed an internalization rate 10 times higher than the free epitope peptides. Vaccination of CB6F1 mice with free peptides resulted in low T-cell response. In contrast, significantly higher T-cell proliferation with prominent expression of IFN-γ, IL-2, and IL-10 cytokines was measured for the palmitoylated conjugate. Furthermore, the pal-A(P)I conjugate showed relevant vaccine efficacy against Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary.
- Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest 1097, Hungary
| | - Judit Henczkó
- National Biosafety Laboratory, National Public Health Center, Budapest 1097, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Eleonóra Szabó
- Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Budapest 1122, Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary
- Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Kinga Fodor
- Department of Laboratory Animal and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| |
Collapse
|
17
|
Liang Y, Zhang X, Bai X, Yang Y, Gong W, Wang T, Ling Y, Zhang J, Wang L, Wang J, Li G, Chen Y, Chen X, Wu X. Immunogenicity and Therapeutic Effects of Latency-Associated Genes in a Mycobacterium Tuberculosis Reactivation Mouse Model. Hum Gene Ther Methods 2019; 30:60-69. [PMID: 30727774 DOI: 10.1089/hgtb.2018.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xiaoyan Zhang
- Zhengzhou Kingmed Center for Clinical Laboratory, Zhengzhou, P.R. China
| | - Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Wenping Gong
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Tong Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yanbo Ling
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Jie Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Gaimei Li
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Yi Chen
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xiaoyang Chen
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, the 8th Medical Center of PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
18
|
Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol 2018; 39:88-101. [PMID: 30327124 DOI: 10.1016/j.smim.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/15/2023]
Abstract
Every day approximately six thousand people die of Tuberculosis (TB). Its causative agent, Mycobacterium tuberculosis (Mtb), is an ancient pathogen that through its evolution developed complex mechanisms to evade immune surveillance and acquire the ability to establish persistent infection in its hosts. Currently, it is estimated that one-fourth of the human population is latently infected with Mtb and among those infected 3-10% are at risk of developing active TB disease during their lifetime. The currently available diagnostics are not able to detect this risk group for prophylactic treatment to prevent transmission. Anti-TB drugs are available but only as long regimens with considerable side effects, which could both be reduced if adequate tests were available to monitor the response of TB to treatment. New vaccines are also urgently needed to substitute or boost Bacille Calmette-Guérin (BCG), the only approved TB vaccine: although BCG prevents disseminated TB in infants, it fails to impact the incidence of pulmonary TB in adults, and therefore has little effect on TB transmission. To achieve TB eradication, the discovery of Mtb antigens that effectively correlate with the human response to infection, with the curative host response following TB treatment, and with natural as well as vaccine induced protection will be critical. Over the last decade, many new Mtb antigens have been found and proposed as TB biomarkers and vaccine candidates, but only a very small number of these is being used in commercial diagnostic tests or is being assessed as candidate TB vaccine antigens in human clinical trials, aiming to prevent infection, disease or disease recurrence following treatment. Most of these antigens were discovered decades ago, before the complete Mtb genome sequence became available, and thus did not harness the latest insights from post-genomic antigen discovery strategies and genome wide approaches. These have, for example, revealed critical phase variation in Mtb replication and accompanying gene -and therefore antigen- expression patterns. In this review, we present a brief overview of past methodologies, and subsequently focus on the most important recent Mtb antigen discovery studies which have mined the Mtb antigenome through "unbiased" genome wide approaches. We compare the results for these approaches -as far as we know for the first time-, highlight Mtb antigens that have been identified independently by different strategies and present a comprehensive overview of the Mtb antigens thus discovered.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Tom Hm Ottenhoff
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
19
|
Durantel D, Kusters I, Louis J, Manel N, Ottenhoff THM, Picot V, Saaadatian-Elahi M. Mechanisms behind TB, HBV, and HIV chronic infections. INFECTION GENETICS AND EVOLUTION 2017; 55:142-150. [PMID: 28919545 DOI: 10.1016/j.meegid.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical for pathogens to maintain their presence within hosts, giving rise to chronic infections. Here, we examine the immune evasion strategies employed by three pathogens with high medical burden, namely, tuberculosis, HIV and HBV. Establishment of chronic infection by these pathogens is a multi-step process that involves an interplay between restriction factor, innate immunity and adaptive immunity. Engagement of these host defences is intimately linked with specific steps within the pathogen replication cycles. Critical host factors are increasingly recognized to regulate immune evasion and susceptibility to disease. Fuelled by innovative technology development, the understanding of these mechanisms provides critical knowledge for rational design of vaccines and therapeutic immune strategies.
Collapse
Affiliation(s)
- David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, CNRS, University of Lyon, UMR_5286, LabEx DEVweCAN, Lyon, France
| | - Inca Kusters
- Sanofi Pasteur, 2 Avenue du Pont Pasteur, 69367 Lyon Cedex 07, France
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institute Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Tom H M Ottenhoff
- Group Immunology and Immunogenetics of Bacterial Infectious Diseases, Dept. of Infectious Diseases, Leiden University Medical Center, Bldg. 1, Rm # C-05-43 Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Mitra Saaadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| |
Collapse
|
20
|
Li F, Kang H, Li J, Zhang D, Zhang Y, Dannenberg AM, Liu X, Niu H, Ma L, Tang R, Han X, Gan C, Ma X, Tan J, Zhu B. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection. Scand J Immunol 2017; 85:425-432. [PMID: 28426145 DOI: 10.1111/sji.12556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Abstract
To screen effective antigens as therapeutic subunit vaccines against Mycobacterium latent infection, we did bioinformatics analysis and literature review to identify effective antigens and evaluated the immunogenicity of five antigens highly expressed in dormant bacteria, which included Rv2031c (HspX), Rv2626c (Hrp1), Rv2007c (FdxA), Rv1738 and Rv3130c. Then, several fusion proteins such as Rv2007c-Rv2626c (F6), Rv2031c-Rv1738-Rv1733c (H83), ESAT6-Rv1738-Rv2626c (LT40), ESAT6-Ag85B-MPT64<190-198> -Mtb8.4 (EAMM), and EAMM-Rv2626c (LT70) were constructed and their therapeutic effects were evaluated in pulmonary Mycobacterium bovis Bacilli Calmette-Guérin (BCG) - latently infected rabbit or mouse models. The results showed that EAMM and F6 plus H83 had therapeutic effect against BCG latent infection in the rabbit model, respectively, and that the combination of EAMM with F6 plus H83 significantly reduced the bacterial load. In addition, the fusion proteins LT40 and LT70 consisting of multistage antigens showed promising therapeutic effects in the mouse model. We conclude that subunit vaccines consisting of both latency and replicating-associated antigens show promising therapeutic effects in BCG latent infection animal models.
Collapse
Affiliation(s)
- F Li
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H Kang
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - J Li
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - D Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Y Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A M Dannenberg
- Departments of Environmental Health Sciences, Epidemiology, Molecular Microbiology and Immunologyand Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - X Liu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H Niu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - L Ma
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - R Tang
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - X Han
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu University of Chinese Medicine, Lanzhou, China
| | - C Gan
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - X Ma
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - J Tan
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - B Zhu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Coppola M, Arroyo L, van Meijgaarden KE, Franken KL, Geluk A, Barrera LF, Ottenhoff THM. Differences in IgG responses against infection phase related Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Tuberculosis (Edinb) 2017; 106:25-32. [PMID: 28802401 DOI: 10.1016/j.tube.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) occurs in only 3-10% of Mycobacterium tuberculosis (Mtb) infected individuals, suggesting that natural immunity can contain Mtb infection, although this remains poorly understood. Next to T-cells, a potentially protective role for B-cells and antibodies has emerged recently. However, the Mtb antigens involved remain ill-defined. Here, we investigated in a TB-endemic setting IgG levels against 15 Mtb antigens, representing various phases of Mtb infection and known to be potent human T-cell antigens. IgG levels against ESAT6/CFP10, Rv0440, Rv0867c, Rv1737c, Rv2029c, Rv2215, Rv2389c, Rv3616c and Mtb purified protein derivative (PPD) were higher in TB patients than in endemic and non-endemic controls. The only exception was Rv1733c that was preferentially recognized by antibodies from endemic controls compared to TB patients and non-endemic controls, suggesting a potential correlation with control of TB infection and progression. In patients, IgG levels against Ag85B and Rv2029c correlated with Mtb loads, while immunoglobulins against Rv0440 differed between genders. Our results support the potential role of certain Mtb antigen-(Rv1733c) specific antibodies in the control of TB infection and progression, while other Mtb antigen-specific antibodies correlate with TB disease activity and bacillary loads. The findings for Rv1733c agree with previous T-cell results and have implications for including antibody-mediated immunity in designing new strategies to control TB.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands.
| | - Leonar Arroyo
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Krista E van Meijgaarden
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Kees Lmc Franken
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Annemieke Geluk
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| | - Luis F Barrera
- Grupo de Inmunología Cellular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Tom H M Ottenhoff
- Dept. of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300, RC Leiden, The Netherlands
| |
Collapse
|
22
|
Coppola M, van Meijgaarden KE, Franken KLMC, Commandeur S, Dolganov G, Kramnik I, Schoolnik GK, Comas I, Lund O, Prins C, van den Eeden SJF, Korsvold GE, Oftung F, Geluk A, Ottenhoff THM. New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium Tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles. Sci Rep 2016; 6:37793. [PMID: 27892960 PMCID: PMC5125271 DOI: 10.1038/srep37793] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
New strategies are needed to develop better tools to control TB, including identification of novel antigens for vaccination. Such Mtb antigens must be expressed during Mtb infection in the major target organ, the lung, and must be capable of eliciting human immune responses. Using genome-wide transcriptomics of Mtb infected lungs we developed data sets and methods to identify IVE-TB (in-vivo expressed Mtb) antigens expressed in the lung. Quantitative expression analysis of 2,068 Mtb genes from the predicted first operons identified the most upregulated IVE-TB genes during in-vivo pulmonary infection. By further analysing high-level conservation among whole-genome sequenced Mtb-complex strains (n = 219) and algorithms predicting HLA-class-Ia and II presented epitopes, we selected the most promising IVE-TB candidate antigens. Several of these were recognized by T-cells from in-vitro Mtb-PPD and ESAT6/CFP10-positive donors by proliferation and multi-cytokine production. This was validated in an independent cohort of latently Mtb-infected individuals. Significant T-cell responses were observed in the absence of IFN-γ-production. Collectively, the results underscore the power of our novel antigen discovery approach in identifying Mtb antigens, including those that induce unconventional T-cell responses, which may provide important novel tools for TB vaccination and biomarker profiling. Our generic approach is applicable to other infectious diseases.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregory Dolganov
- Department Microbiology Immunology, Stanford Univ. School of Medicine, Stanford, USA
| | - Igor Kramnik
- Department Immunology Infectious Diseases, Harvard School of Public Health, Boston, USA
| | - Gary K Schoolnik
- Department Microbiology Immunology, Stanford Univ. School of Medicine, Stanford, USA
| | - Inaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Ole Lund
- Dept. Systems Biology, Technical Univ., Denmark
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gro E Korsvold
- Department of Infectious Disease Immunology, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Fredrik Oftung
- Department of Infectious Disease Immunology, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
24
|
Prosser G, Brandenburg J, Reiling N, Barry CE, Wilkinson RJ, Wilkinson KA. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect 2016; 19:177-192. [PMID: 27780773 PMCID: PMC5335906 DOI: 10.1016/j.micinf.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines.
Collapse
Affiliation(s)
- Gareth Prosser
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Clifton Earl Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom; Department of Medicine, Imperial College, London, W2 1PG, United Kingdom.
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom
| |
Collapse
|
25
|
Rubio Reyes P, Parlane NA, Wedlock DN, Rehm BHA. Immunogencity of antigens from Mycobacterium tuberculosis self-assembled as particulate vaccines. Int J Med Microbiol 2016; 306:624-632. [PMID: 27756533 DOI: 10.1016/j.ijmm.2016.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
Traditional approaches to vaccine development have failed to identify better vaccines to replace or supplement BCG for the control of tuberculosis (TB). Subunit vaccines offer a safer and more reproducible alternative for the prevention of diseases. In this study, the immunogenicity of bacterially derived polyester beads displaying three different Rv antigens of Mycobacterium tuberculosis was evaluated. Polyester beads displaying the antigens Rv1626, Rv2032, Rv1789, respectively, were produced in an endotoxin-free Escherichia coli strain. Beads were formulated with the adjuvant DDA and subcutaneously administered to C57BL/6 mice. Cytokine responses were evaluated by CBA and antibody responses by ELISA. Specificity of the IgG response was assessed by immunoblotting cell lysates of the vaccine production strains using sera from the vaccinated mice. Mice vaccinated with beads displaying Rv1626 had significantly greater IgG1 responses compared to mice vaccinated with Rv1789 beads and greater IgG2 responses than the group vaccinated with Rv2032 beads (p<0.05). Immunoblotting of antisera from these mice indicated the antibody responses were Rv1626 antigen-specific and there was no detectable immune response to the polyester component of the vaccine. Overall, this study suggested that selected TB antigens derived from reverse vaccinology approaches can be displayed on polyester beads to produce antigen-specific immune responses potentially relevant to the prevention of TB.
Collapse
Affiliation(s)
- Patricia Rubio Reyes
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
26
|
Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy. Vaccine 2016; 34:5677-5688. [PMID: 27693020 DOI: 10.1016/j.vaccine.2016.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterial cause of tuberculosis, is a leading infectious agent worldwide. The development of a new vaccine against Mtb is essential to control global spread of tuberculosis, since the current vaccine BCG is not very effective and antibiotic resistance is a serious, burgeoning problem. ESAT-6 is a secreted protein of Mtb, which is absent in BCG but has been implicated in inducing protective immunity against Mtb. Peptide based subunit vaccines are attractive due to their safety and high specificity in eliciting immune responses, but small synthetic peptides are usually not very immunogenic. We have designed a novel subunit vaccine for Mtb by using simple lipid (palmitic acid) modified derivatives of peptides from ESAT-6 protein corresponding to dominant human T cell epitopes and examined their ability to stimulate protective immunity against Mtb by intranasal and subcutaneous immunization in mice. We also investigated how individual TLR agonists as adjuvants (PolyI:C, MPL and GDQ) contribute to enhancing the induced immune responses and resulting protective efficacy of our vaccine. We observed that single C-terminal palmitoyl-lysine modified lipopeptides derived from ESAT-6 induce significant cellular immune responses on their own upon mucosal and subcutaneous immunizations. Intriguingly, a combination of immunogenic lipopeptides of ESAT-6 antigen exhibited local (pulmonary) and systemic immune responses along with efficient protective efficacy when administered intranasally or subcutaneously. Surprisingly, combination of ESAT-6 derived lipopeptides with a TLR-4 agonist (MPL) enhanced protection, whereas TLR-3 (Poly I:C) and TLR-7/8 agonists (gardiquimod, GDQ) led to reduced protection associated with specific local and systemic immune modulation. Our studies demonstrate the potential of ESAT-6 derived lipopeptides as a promising vaccine candidate against Mtb, and emphasize that selection of adjuvant is critical for the success of vaccines. These findings demonstrate the promise of synthetic lipopeptides as the basis of a subunit vaccine for TB.
Collapse
|
27
|
Induction of Unconventional T Cells by a Mutant Mycobacterium bovis BCG Strain Formulated in Cationic Liposomes Correlates with Protection against Mycobacterium tuberculosis Infections of Immunocompromised Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:638-47. [PMID: 27226281 DOI: 10.1128/cvi.00232-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Earlier studies aimed at defining protective immunity induced by Mycobacterium bovis BCG immunization have largely focused on the induction of antituberculosis CD4(+) and CD8(+) T cell responses. Here we describe a vaccine consisting of a BCGΔmmaA4 deletion mutant formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with d-(+)-trehalose 6,6'-dibehenate (TDB) (DDA/TDB) adjuvant (A4/Adj) that protected TCRδ(-/-) mice depleted of CD4(+), CD8(+), and NK1.1(+) T cells against an aerosol challenge with M. tuberculosis These mice were significantly protected relative to mice immunized with a nonadjuvanted BCGΔmmaA4 (BCG-A4) mutant and nonvaccinated controls at 2 months and 9 months postvaccination. In the absence of all T cells following treatment with anti-Thy1.2 antibody, the immunized mice lost the ability to control the infection. These results indicate that an unconventional T cell population was mediating protection in the absence of CD4(+), CD8(+), NK1.1(+), and TCRγδ T cells and could exhibit memory. Focusing on CD4(-) CD8(-) double-negative (DN) T cells, we found that these cells accumulated in the lungs postchallenge significantly more in A4/Adj-immunized mice and induced significantly greater frequencies of pulmonary gamma interferon (IFN-γ)-producing cells than were seen in the nonvaccinated or nonadjuvanted BCG control groups. Moreover, pulmonary DN T cells from the A4/Adj group exhibited significantly higher IFN-γ integrated median fluorescence intensity (iMFI) values than were seen in the control groups. We also showed that enriched DN T cells from mice immunized with A4/Adj could control mycobacterial growth in vitro significantly better than naive whole-spleen cells. These results suggest that formulating BCG in DDA/TDB adjuvant confers superior protection in immunocompromised mice and likely involves the induction of long-lived memory DN T cells.
Collapse
|
28
|
Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016; 102:73-82. [PMID: 26596558 DOI: 10.1016/j.addr.2015.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
There is an urgent need for a new and improved vaccine against tuberculosis for controlling this disease that continues to pose a global health threat. The current research strategy is to replace the present BCG vaccine or boost BCG-immunity with subunit vaccines such as viral vectored- or protein-based vaccines. The use of recombinant proteins holds a number of production advantages including ease of scalability, but requires an adjuvant inducing cell-mediated immune responses. A number of promising novel adjuvant formulations have recently been designed and show evidence of induction of cellular immune responses in humans. A common trait of effective TB adjuvants including those already in current clinical testing is a two-component approach combining a delivery system with an appropriate immunomodulator. This review summarizes the status of current TB adjuvant research with a focus on the division of labor between delivery systems and immunomodulators.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
29
|
Liu X, Peng J, Hu L, Luo Y, Niu H, Bai C, Wang Q, Li F, Yu H, Wang B, Chen H, Guo M, Zhu B. A multistage mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother 2016; 12:1670-7. [PMID: 26901244 DOI: 10.1080/21645515.2016.1141159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To develop an effective subunit vaccine which could target tubercle bacilli with different metabolic states and provide effective protective immunity, we fused antigens ESAT6, Ag85B, peptide 190-198 of MPT64, and Mtb8.4 mainly expressed by proliferating bacteria and latency-associated antigen Rv2626c together to construct a multistage protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-Rv2626c (LT70 for short) with the molecular weight of 70 kDa. The human T-cell responses to LT70 and other antigens were analyzed. The immune responses of LT70 in the adjuvant of DDA and Poly I:C and its protective efficacy against Mycobacterium tuberculosis (M. tuberculosis) infection in C57BL/6 mice were evaluated. The results showed that LT70 was stably produced in Escherichia coli and could be purified by successive salting-out and chromatography. LT70 could be strongly recognized by human T cells from TB patients and persons who are supposed latently infected with M. tuberculosis. The subunit vaccine LT70 generated strong antigen-specific humoral and cell-mediated immunity, and induced higher protective efficacy (5.41±0.37 Log10 CFU in lung) than traditional vaccine Bacillus Calmette-Guerin (6.01±0.33 Log10 CFU) and PBS control (6.53±0.26 Log10 CFU) at 30 weeks post vaccination (10 weeks post-challenge) against M. tuberculosis infection (p < 0.05). These findings suggested that LT70 would be a promising subunit vaccine candidate against M. tuberculosis infection.
Collapse
Affiliation(s)
- Xun Liu
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Jinxiu Peng
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Lina Hu
- c Lanzhou Institute of Biological Products , Lanzhou , China
| | - Yanping Luo
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Hongxia Niu
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Chunxiang Bai
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Qian Wang
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Fei Li
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Hongjuan Yu
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Bingxiang Wang
- c Lanzhou Institute of Biological Products , Lanzhou , China
| | - Huiyu Chen
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Ming Guo
- d ABSL-3 Lab, Wuhan University , Wuhan , China
| | - Bingdong Zhu
- a Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China.,b Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| |
Collapse
|
30
|
Singh M, Vaidya A. Translational synthetic biology. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:191-195. [PMID: 28392851 DOI: 10.1007/s11693-015-9181-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022]
Abstract
Synthetic biology is a recent scientific approach towards engineering biological systems from both pre-existing and novel parts. The aim is to introduce computational aided design approach in biology leading to rapid delivery of useful applications. Though the term reprogramming has been frequently used in the synthetic biology community, currently the technological sophistication only allows for a probabilistic approach instead of a precise engineering approach. Recently, several human health applications have emerged that suggest increased usage of synthetic biology approach in developing novel drugs. This mini review discusses recent translational developments in the field and tries to identify some of the upcoming future developments.
Collapse
Affiliation(s)
- Mamta Singh
- Symbiosis School of Biomedical Sciences (SSBS), Symbiosis International University (SIU), Symbiosis Knowledge Village, Lavale, Mulshi, Pune, 412115 India
| | - Anuradha Vaidya
- Symbiosis School of Biomedical Sciences (SSBS), Symbiosis International University (SIU), Symbiosis Knowledge Village, Lavale, Mulshi, Pune, 412115 India
| |
Collapse
|