1
|
Gonwong S, Mason CJ, Chuenchitra T, Khanijou P, Islam D, Ruamsap N, Kana K, Tabprasit S, Vesely BA, Demons ST, Waters NC, Swierczewski BE, Crawford JM, Jones JW. Nationwide Seroprevalence of Scrub Typhus, Typhus, and Spotted Fever in Young Thai Men. Am J Trop Med Hyg 2022; 106:tpmd201512. [PMID: 35378507 PMCID: PMC9128670 DOI: 10.4269/ajtmh.20-1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2022] [Indexed: 11/07/2022] Open
Abstract
Scrub typhus group (STG), typhus group (TG), and spotted fever group (SFG) rickettsiae are pathogens distributed worldwide and are important causes of febrile illnesses in southeast Asia. The levels of rickettsioses burden and distribution in Thai communities are still unclear. Nonspecific symptoms, limit diagnostic capacity and underdiagnoses contribute to the absence of clarity. The objective of this study was to determine the nationwide IgG seroprevalence of STG, TG, and SFG by ELISA in repository sera from the Royal Thai Army recruits collected during 2007-2008 and 2012 to estimate rickettsiae exposure in young Thai men to better understand rickettsiae exposure distribution in the Thai population. IgG seroprevalence of STG, Orientia tsutsugamushi; TG, Rickettsia typhi; and SFG, R. rickettsii was 12.4%, 6.8%, and 3.3% in 2007-2008 and 31.8%, 4.2%, and 4.5% in 2012, respectively. The STG had the highest seroprevalence of Rickettsia assessed, with the highest regional seroprevalence found in southern Thailand. The STG seroprevalence changed significantly from 2007 to 2008 (P value < 0.05), which corresponds with morbidity rate of scrub typhus from the last decade in Thailand. We were unable to determine the causality for seroprevalence changes between the two periods due to the limitation in sample numbers for intervening years and limited information available for archived specimens. Additional research would be required to determine agency. However, study results do confirm Rickettsia endemicity in Thailand lends weight to reports of increasing STG seroprevalence. It also corroborates the need to raise rickettsial disease awareness and educate the general public in prevention measures.
Collapse
Affiliation(s)
- Siriphan Gonwong
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J. Mason
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Dilara Islam
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nattaya Ruamsap
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Khunakorn Kana
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Brian A. Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Norman C. Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - John M. Crawford
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - James W. Jones
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
2
|
Parada C, Neri-Badillo IC, Vallecillo AJ, Segura E, Silva-Miranda M, Guzmán-Gutiérrez SL, Ortega PA, Coronado-Aceves EW, Cancino-Villeda L, Torres-Larios A, Aceves Sánchez MDJ, Flores Valdez MA, Espitia C. New Insights into the Methylation of Mycobacterium tuberculosis Heparin Binding Hemagglutinin Adhesin Expressed in Rhodococcus erythropolis. Pathogens 2021; 10:pathogens10091139. [PMID: 34578171 PMCID: PMC8467707 DOI: 10.3390/pathogens10091139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host–pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.
Collapse
Affiliation(s)
- Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Isabel Cecilia Neri-Badillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca 010220, Ecuador
| | - Erika Segura
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Mayra Silva-Miranda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Silvia Laura Guzmán-Gutiérrez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Ciudad de México 03940, Mexico
| | - Paola A. Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Enrique Wenceslao Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Laura Cancino-Villeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Michel de Jesús Aceves Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Mario Alberto Flores Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; (M.d.J.A.S.); (M.A.F.V.)
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.P.); (I.C.N.-B.); (A.J.V.); (E.S.); (M.S.-M.); (S.L.G.-G.); (P.A.O.); (E.W.C.-A.); (L.C.-V.)
- Correspondence:
| |
Collapse
|
3
|
Chao CC, Zhang Z, Belinskaya T, Chen HW, Ching WM. Leptospirosis and Rickettsial Diseases Sero-Conversion Surveillance Among U.S. Military Personnel in Honduras. Mil Med 2021; 187:802-807. [PMID: 33861353 DOI: 10.1093/milmed/usab120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Leptospirosis and rickettsial diseases are global zoonotic diseases. In severe infection cases, mortality can range from 10% to 30%. Currently most epidemiological data available are based on outbreak investigations and hospital-based studies from endemic countries. The U.S. soldiers at military bases in these countries are highly vulnerable due to the fact that most of them are immunologically naïve to these pathogens. No risk assessment of leptospirosis and rickettsial diseases among U.S. military personnel in Honduras is currently available. This study was aimed at determining the prevalence of leptospirosis and rickettsial diseases in U.S. military personnel deployed to Honduras using serological assays. MATERIALS AND METHODS A cohort of pre- and post-deployment sera from the most recent 1,000 military personnel stationed in Honduras for at least 6 months between 2000 and 2016 was identified for this study. Serum specimens from these eligible subjects were retrieved. All post-deployment serum specimens were screened at a dilution of 1:100 for the presence of IgG antibodies to Leptospira and Rickettsia pathogens. The pre-deployment sera from those individuals with post-deployment IgG antibodies above cutoff (i.e., seropositive) were tested to determine seroconversion. Seroconversion was defined as conversion of an optical density value from below the cutoff (i.e., negative) in a pre-deployed specimen to above the cutoff (i.e., positive) in a post-deployed specimen at a titer of 100. RESULTS The seropositive post-deployment specimens for antibodies against Leptospira (causing leptospirosis), Rickettsia typhi (causing murine typhus [MT]), spotted fever group rickettsioses (SFGR, causing SFG Rickettsia), Orientia tsutsugamushi (causing scrub typhus [ST]), and Coxiella burnetii (causing Q fever [QF]) were 11.6%, 11.3%, 6%, 5.6%, and 8.0%, respectively. The seroconverted rate in those assigned to Honduras from 2000 to 2016 was 7.3%, 1.9%, 3.9%, 4.3%, and 2.7% for leptospirosis, MT, SFGR, ST, and QF, respectively. Among the seroconverted specimens, 27 showed seroconversion of at least two antibodies. These seroconverted individuals accounted for 8.8% (3 out of 34) of the personnel who looked for medical attention during their deployment. CONCLUSIONS Our results suggest a leptospirosis seroconversion rate of 7.3%, which is higher than the 0.9% and 3.9% seroconversion in Korea and Japan, respectively. The higher rate of seroconversion indicates potential risk of Leptospira exposure. Additional testing of water samples in the pools and pits around the training sites to locate the infected areas is important to eliminate or reduce future exposure to Leptospira during trainings. The rates of seroconversion for ST, MT, spotted fever Rickettsia, and QF were 4.3%, 1.9%, 3.9%, and 2.7%, respectively, indicating the potential exposure to a variety of rickettsial-related pathogens. Testing of vectors for rickettsial pathogens in the areas could inform effective vector control countermeasures to prevent exposure. Proper precaution and protective measures are needed to better protect military personnel deployed to Honduras.
Collapse
Affiliation(s)
- Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zhiwen Zhang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tatyana Belinskaya
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Hua-Wei Chen
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Rozo M, Schully KL, Philipson C, Fitkariwala A, Nhim D, Som T, Sieng D, Huot B, Dul S, Gregory MJ, Heang V, Vaughn A, Vantha T, Prouty AM, Chao CC, Zhang Z, Belinskaya T, Voegtly LJ, Cer RZ, Bishop-Lilly KA, Duplessis C, Lawler JV, Clark DV. An Observational Study of Sepsis in Takeo Province Cambodia: An in-depth examination of pathogens causing severe infections. PLoS Negl Trop Dis 2020; 14:e0008381. [PMID: 32804954 PMCID: PMC7430706 DOI: 10.1371/journal.pntd.0008381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/11/2020] [Indexed: 01/20/2023] Open
Abstract
The world's most consequential pathogens occur in regions with the fewest diagnostic resources, leaving the true burden of these diseases largely under-represented. During a prospective observational study of sepsis in Takeo Province Cambodia, we enrolled 200 patients over an 18-month period. By coupling traditional diagnostic methods such as culture, serology, and PCR to Next Generation Sequencing (NGS) and advanced statistical analyses, we successfully identified a pathogenic cause in 46.5% of our cohort. In all, we detected 25 infectious agents in 93 patients, including severe threat pathogens such as Burkholderia pseudomallei and viral pathogens such as Dengue virus. Approximately half of our cohort remained undiagnosed; however, an independent panel of clinical adjudicators determined that 81% of those patients had infectious causes of their hospitalization, further underscoring the difficulty of diagnosing severe infections in resource-limited settings. We garnered greater insight as to the clinical features of severe infection in Cambodia through analysis of a robust set of clinical data.
Collapse
Affiliation(s)
- Michelle Rozo
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland, United States of America
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin L. Schully
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland, United States of America
| | - Casandra Philipson
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, United States of America
- Defense Threat Reduction Agency, Fort Belvoir, Virginia, United States of America
| | | | | | - Tin Som
- Chenda Polyclinic, Phnom Penh, Cambodia
| | - Darith Sieng
- Lucerent Clinical Solutions, Phnom Penh, Cambodia
| | - Bora Huot
- Chenda Polyclinic, Phnom Penh, Cambodia
| | - Sokha Dul
- Chenda Polyclinic, Phnom Penh, Cambodia
| | | | - Vireak Heang
- U.S. Naval Medical Research Unit TWO (NAMRU-2), Phnom Penh, Cambodia
| | - Andrew Vaughn
- U.S. Naval Medical Research Unit TWO (NAMRU-2), Phnom Penh, Cambodia
| | - Te Vantha
- Takeo Provincial Referral Hospital, Takeo, Cambodia
| | - Angela M. Prouty
- U.S. Naval Medical Research Unit TWO (NAMRU-2), Phnom Penh, Cambodia
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Naval Medical Research Center-Silver Spring, Silver Spring, Maryland, United States of America
| | - Zhiwen Zhang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center-Silver Spring, Silver Spring, Maryland, United States of America
| | - Tatyana Belinskaya
- Viral and Rickettsial Diseases Department, Naval Medical Research Center-Silver Spring, Silver Spring, Maryland, United States of America
| | - Logan J. Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, United States of America
- Leidos, Reston, Virginia, United States of America
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, United States of America
- Leidos, Reston, Virginia, United States of America
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, United States of America
| | - Chris Duplessis
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland, United States of America
| | - James V. Lawler
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland, United States of America
- Global Center for Health Security at Nebraska and Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Danielle V. Clark
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland, United States of America
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Abeykoon AH, Noinaj N, Choi BE, Wise L, He Y, Chao CC, Wang G, Gucek M, Ching WM, Chock PB, Buchanan SK, Yang DCH. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia. J Biol Chem 2016; 291:19962-74. [PMID: 27474738 DOI: 10.1074/jbc.m116.723460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation.
Collapse
Affiliation(s)
- Amila H Abeykoon
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907,
| | - Bok-Eum Choi
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Lindsay Wise
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Yi He
- Laboratory of Biochemistry and
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910
| | | | | | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910
| | | | - Susan K Buchanan
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - David C H Yang
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
6
|
De Silva JR, Lau YL, Fong MY. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3) for Detection of Human Malaria. PLoS One 2016; 11:e0158998. [PMID: 27391270 PMCID: PMC4938616 DOI: 10.1371/journal.pone.0158998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022] Open
Abstract
Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
Collapse
Affiliation(s)
- Jeremy Ryan De Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Tropical Disease Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail:
| | - Mun-Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Tropical Disease Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PLoS One 2015; 10:e0124664. [PMID: 25909586 PMCID: PMC4409375 DOI: 10.1371/journal.pone.0124664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.
Collapse
|
8
|
Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 2015; 33:985-92. [PMID: 25597943 DOI: 10.1016/j.vaccine.2015.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Two surface proteins of Rickettsia rickettsii, outer membrane protein B (OmpB) and adhesion 2 (Adr2), have been recognized as protective antigens. Herein, the immunization with both OmpB and Adr2 was performed in mice so as to explore whether their combination could induce an enhanced immunoprotection against R. rickettsii infection. METHODS C3H/HeN mice were immunized with recombinant protein rAdr2 or/and rOmp-4, a fragment derived from OmpB, and then mice were challenged with R. rickettsii. After which rickettsial loads in mice were measured by quantitative PCR. The specific antibodies in mouse sera were determined by ELISA and antigen-specific cytokines secretion by mouse T cells were analyzed in vitro. RESULTS After challenge with R. rickettsii, the mice immunized with rAdr2 or/and rOmpB-4 had significant lower rickettsial load in livers, spleens, or lungs compared to PBS mock-immunized mice. Particularly, the load in lungs of mice immunized with both rAdr2 and rOmpB-4 was significantly lower than that with either of them. High levels of specific antibodies were detected in sera from mice immunized with rAdr2 or/and rOmpB-4, but the ratios of specific IgG2a to IgG1 induced by their combination were significantly higher than that by either rAdr2 or rOmpB-4. Following stimulation with rAdr2 or/and rOmpB-4, the INF-γ secreted by CD4(+) T cells from infected mice was significantly higher than that by cognate cells from uninfected mice. And the TNF-α secreted by CD4(+) or CD8(+) T cells from infected mice was markedly greater than that by cognate cells from uninfected mice after stimulation by their combination but not either of them. CONCLUSION The combination of rAdr2 and rOmpB-4 conferred an enhanced protection against R. rickettsii infection in mice, which was mainly dependent on a stronger Th1-oriented immunoresponse with greater INF-γ and TNF-α secretion by antigen-specific T cells and specific IgG2a elicited by the combination.
Collapse
Affiliation(s)
- Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China; Department of Clinical Laboratory, The 105th Hospital of PLA, Hefei, Anhui 230031, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| |
Collapse
|
9
|
Witchell TD, Eshghi A, Nally JE, Hof R, Boulanger MJ, Wunder EA, Ko AI, Haake DA, Cameron CE. Post-translational modification of LipL32 during Leptospira interrogans infection. PLoS Negl Trop Dis 2014; 8:e3280. [PMID: 25356675 PMCID: PMC4214626 DOI: 10.1371/journal.pntd.0003280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world's most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin. Methodology/Principal Findings Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32. Conclusions/Significance The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira. Leptospirosis, caused by pathogenic Leptospira spp., constitutes an increasing global public health threat. Humans are accidental hosts, and acquire the disease primarily from contact with water sources that have been contaminated with urine from infected animals. Rats are asymptomatic carriers of infection and are critical for disease transmission to humans, particularly in urban slum environments. In this study, investigation of Leptospira directly isolated from the urine of infected rats showed acetylation or tri-methylation of the highly abundant leptospiral lipoprotein, LipL32. In comparison, Leptospira grown in culture did not result in any LipL32 lysine modifications. A synthetic peptide derived from LipL32 that incorporated a tri-methylated lysine modification exhibited less reactivity with serum from leptospirosis patients compared to an unmodified version of the peptide, suggesting LipL32 modifications may alter protein recognition by the immune response. This study reports, for the first time, modification of a Leptospira protein during infection, and suggests these modifications may have a functional consequence that contributes to bacterial persistence during infection.
Collapse
Affiliation(s)
- Timothy D. Witchell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jarlath E. Nally
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - David A. Haake
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
10
|
Eremeeva ME, Shpynov SN, Tokarevich NK. MODERN APPROACHES TO LABORATORY DIAGNOSIS OF RICKETTSIAL DISEASES. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2014. [DOI: 10.15789/2220-7619-2014-2-113-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract. We present a concise review of contemporary laboratory methods for diagnosis of rickettsioses with special emphasis on diseases known in Russian Federation. Classic and emerging rickettsioses are transmitted by a diverse and expanding group of arthropod vectors including ticks, fleas, lice and mites. While epidemiological and clinical clues can provide information important for initial suspicion of rickettsial infection, sensitive and specific laboratory methods are necessary for providing probable or confirmed diagnosis of the rickettsial infection. Accurate and rapid confirmation of rickettsial infection is important for ensuring proper clinical care and prompt initiation of antibiotic therapy. Correct identification of the etiology of rickettsial diseases is also important for early identification of clustered cases, novel foci of infections, and for timely initiation of public health responses to these potentially fatal infections.
Collapse
|
11
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
12
|
Abeykoon A, Wang G, Chao CC, Chock PB, Gucek M, Ching WM, Yang DCH. Multimethylation of Rickettsia OmpB catalyzed by lysine methyltransferases. J Biol Chem 2014; 289:7691-701. [PMID: 24497633 PMCID: PMC3953280 DOI: 10.1074/jbc.m113.535567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Indexed: 01/05/2023] Open
Abstract
Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence.
Collapse
Affiliation(s)
- Amila Abeykoon
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Guanghui Wang
- the Proteomics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Chien-Chung Chao
- the Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, and
| | - P. Boon Chock
- the Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | - Marjan Gucek
- the Proteomics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei-Mei Ching
- the Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, and
| | - David C. H. Yang
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| |
Collapse
|
13
|
Takhampunya R, Tippayachai B, Promsathaporn S, Leepitakrat S, Monkanna T, Schuster AL, Melendrez MC, Paris DH, Richards AL, Richardson JH. Characterization based on the 56-Kda type-specific antigen gene of Orientia tsutsugamushi genotypes isolated from Leptotrombidium mites and the rodent host post-infection. Am J Trop Med Hyg 2014; 90:139-46. [PMID: 24297814 PMCID: PMC3886410 DOI: 10.4269/ajtmh.13-0393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/08/2013] [Indexed: 11/07/2022] Open
Abstract
Abstract. Characterization of the 56-kDa type-specific antigen (TSA) genes of Orientia tsutsugamushi (OT) from three naturally infected, laboratory-reared mite colonies comprising three species (Leptotrombidium deliense [Ld], Leptotrombidium imphalum [Li], and Leptotrombidium chiangraiensis [Lc]) has revealed the presence of single and coexisting OT genotypes found in individual chiggers. The Karp genotype was found in all of the chiggers examined, whereas Gilliam and UT302 genotypes were only observed in combination with the Karp genotype. From analysis of these OT genotypes after transmission from chiggers to mice it was determined that with the Lc and Li mites, the OT genotype composition in the rodent spleens post-infection had not changed and therefore resembled that observed in the feeding chiggers. However, only the Karp genotype was found in rodents after feeding by Ld chiggers carrying Karp and Gilliam genotypes. The current findings reveal a complex association among the host, pathogen, and vector.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, United States Army Medical Component - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
15
|
Abeykoon AH, Chao CC, Wang G, Gucek M, Yang DCH, Ching WM. Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia. J Bacteriol 2012; 194:6410-8. [PMID: 23002218 PMCID: PMC3497471 DOI: 10.1128/jb.01379-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022] Open
Abstract
Rickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB. However, no rickettsial lysine methyltransferase has been characterized. Bioinformatic analysis of genomic DNA sequences of Rickettsia identified putative lysine methyltransferases. The genes of the potential methyltransferases were synthesized, cloned, and expressed in Escherichia coli, and expressed proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The methyltransferase activities of the purified proteins were analyzed by methyl incorporation of radioactively labeled S-adenosylmethionine into recombinant fragments of OmpB. Two putative recombinant methyltransferases (rRP789 and rRP027-028) methylated recombinant OmpB fragments. The specific activity of rRP789 is 10- to 30-fold higher than that of rRP027-028. Western blot analysis using specific antibodies against trimethyl lysine showed that both rRP789 and rRP027-028 catalyzed trimethylation of recombinant OmpB fragments. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis showed that rRP789 catalyzed mono-, di-, and trimethylation of lysine, while rRP027-028 catalyzed exclusively trimethylation. To our knowledge, rRP789 and rRP027-028 are the first biochemically characterized lysine methyltransferases of outer membrane proteins from Gram-negative bacteria. The production and characterization of rickettsial lysine methyltransferases provide new tools to investigate the mechanism of methylation of OmpB, effects of methylation on the structure and function of OmpB, and development of methylated OmpB-based diagnostic assays and vaccine candidates.
Collapse
Affiliation(s)
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Guanghui Wang
- Proteomics Core Facility, NHLBI, Bethesda, Maryland, USA
| | - Marjan Gucek
- Proteomics Core Facility, NHLBI, Bethesda, Maryland, USA
| | - David C. H. Yang
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Eshghi A, Pinne M, Haake DA, Zuerner RL, Frank A, Cameron CE. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32. MICROBIOLOGY-SGM 2011; 158:622-635. [PMID: 22174381 DOI: 10.1099/mic.0.054767-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.
Collapse
Affiliation(s)
- Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Marija Pinne
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Research Service, 151, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - David A Haake
- Division of Infectious Diseases, 111F, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Richard L Zuerner
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center (NADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Ames, IA, USA
| | - Ami Frank
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center (NADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Ames, IA, USA
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
17
|
Chao CC, Huber ES, Porter TB, Zhang Z, Ching WM. Analysis of the cross-reactivity of various 56 kDa recombinant protein antigens with serum samples collected after Orientia tsutsugamushi infection by ELISA. Am J Trop Med Hyg 2011; 84:967-72. [PMID: 21633035 DOI: 10.4269/ajtmh.2011.10-0545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Orientia tsutsugamushi, the etiologic agent of scrub typhus, has a highly expressed and immunodominant 56-kD outer membrane protein. This protein is one of the leading candidates for diagnosis and vaccine development for scrub typhus. Previous studies using recombinant 56-kD protein (r56s) derived from Karp strain (Kpr56) in a mouse model have shown good homologous protection but only moderate to poor heterologous protection. We evaluated the cross-reactivity of recombinant 56-kD proteins from Karp, Kato, Gilliam, TA763, and three chimeric 56-kD proteins. Not all r56s are equally reactive with strain-specific serum samples. These data provide a first glance of how reactive these r56s are toward the antiserum of different strains and which r56 exhibits the broadest reactivity. A formulation of this combination has the potential to provide broad protection against the heterologous challenge and to be used in a highly sensitive diagnostic assay.
Collapse
Affiliation(s)
- Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910, USA.
| | | | | | | | | |
Collapse
|
18
|
Forshey BM, Stewart A, Morrison AC, Gálvez H, Rocha C, Astete H, Eza D, Chen HW, Chao CC, Montgomery JM, Bentzel DE, Ching WM, Kochel TJ. Epidemiology of spotted fever group and typhus group rickettsial infection in the Amazon basin of Peru. Am J Trop Med Hyg 2010; 82:683-90. [PMID: 20348519 DOI: 10.4269/ajtmh.2010.09-0355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A seroprevalence study for IgG antibodies against spotted fever group (SFGR) and typhus group (TGR) Rickettsia among humans and domestic pets was conducted in the city of Iquitos, located in the Amazon basin of Peru. Of 1,195 human sera analyzed, 521 (43.6%) and 123 (10.3%) were positive for SFGR and TGR antibodies, respectively. District of residence and participant age were associated with antibody positivity for both groups, whereas rodent sightings in the home were associated with TGR antibody positivity. Of the 71 canines tested, 42 (59.2%) were positive for SFGR antibodies, and two (2.8%) were positive for TGR antibodies; one active SFGR infection was detected by polymerase chain reaction. An uncharacterized SFGR species was detected in 95.9% (71/74) of Ctenocephalides felis pools collected from domestic pets. These data suggest that rickettsial transmission is widespread in Iquitos. Rickettsia species should be further explored as potential causes of acute febrile illnesses in the region.
Collapse
Affiliation(s)
- Brett M Forshey
- U.S. Naval Medical Research Center Detachment, Iquitos and Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park S, Hwang KJ, Chu H, Park SH, Shim SK, Choi YS, Kim JS, Park MY. Inhibition of Orientia tsutsugamushi infection by a truncated recombinant 56-kDa outer membrane protein. Lett Appl Microbiol 2010; 50:445-51. [PMID: 20302599 DOI: 10.1111/j.1472-765x.2010.02814.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The objective of this study was to evaluate recombinant 56-kDa outer membrane protein as a potential inhibitor to infection from Orientia tsutsugamushi. METHODS AND RESULTS The 56-kDa protein was cloned and expressed in an Escherichia coli system, and the degree of target cell attachment to immobilized 56-kDa protein was measured in a cell adhesion assay. The results showed that the 56-kDa protein has an ability to attach HeLa cells. Furthermore, treatment of target cells with a truncated 56-kDa 1-418 (amino acid residues) protein inhibited target cell infection by O. tsutsugamushi, demonstrated with an indirect immunofluorescence antibody assay. CONCLUSIONS The truncated 56-kDa protein (a.a. 1-418) plays an important role in O. tsutsugamushi infection, and the 56-kDa protein could be useful and effective in the inhibition of O. tsutsugamushi attachment and infection. SIGNIFICANCE AND IMPACT OF THE STUDY The attachment of the 56-kDa protein to target cells was directly determined by in vitro adherence test, and the invasion of target cells by O. tsutsugamushi was inhibited by treating the target cells with a truncated 56-kDa protein.
Collapse
Affiliation(s)
- S Park
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|