1
|
Bamouh Z, Semmate N, Mouahid M, Kerbal I, Tadlaoui KO, Elharrak M. Safety and efficacy of 9R live attenuated vaccine against fowl typhoid in partridge's species. Vaccine 2024; 42:126413. [PMID: 39393168 DOI: 10.1016/j.vaccine.2024.126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Fowl typhoid is a significant avian disease worldwide affecting mainly chickens, turkeys and other bird species, such as partridges. In Morocco, the disease causes a high mortality rate in farmed partridges. Vaccination of partridges is a priority to preserve the breed however; the vaccine has never been evaluated in this species. The study was conducted to assess safety and efficacy of a locally produced Salmonella 9R live vaccine in partridges. Groups of vaccinated partridges received the vaccine at 6 weeks of age, followed by a second injection 6 weeks after. The challenge test was performed at 14 weeks with Salmonella gallinarum MSG1 virulent strain. The challenge demonstrated 65 % protection in vaccinated challenged partridges, with a reduction in organ invasion compared to unvaccinated control birds, which exhibited 70,6 % mortality. The live attenuated 9R vaccine, could be safely used to reduce flock losses and contribute to the reduction of infection.
Collapse
Affiliation(s)
- Zohra Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - Noha Semmate
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | | | - Ismail Kerbal
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - Khalid Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - Mehdi Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
2
|
He T, Hu X, Mi J, Hu H, Wang H, Qi X, Gao L, Zhang Y, Liu C, Wang S, Chen Y, Wang X, Yang G, Gao Y, Cui H. Ligilactobacillus salivarius XP132 with antibacterial and immunomodulatory activities inhibits horizontal and vertical transmission of Salmonella Pullorum in chickens. Poult Sci 2024; 103:104086. [PMID: 39098298 PMCID: PMC11342773 DOI: 10.1016/j.psj.2024.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Probiotics are increasingly recognized for their capacity to combat pathogenic bacteria. In this study, we isolated a strain of Ligilactobacillus salivarius XP132 from the gut microbiota of healthy chickens. This strain exhibited resistance to low pH and bile salts, auto-aggregation capabilities, and the ability to co-aggregate with pathogenic Salmonella. The in vitro antibacterial activity of Ligilactobacillus salivarius XP132 was tested using an Oxford cup antibacterial test, and the results showed that Ligilactobacillus salivarius XP132 exhibited broad-spectrum antibacterial activity, with especially strong antibacterial activity against Salmonella. In animal experiments with white feather broilers and specific-pathogens-free (SPF) chickens, we orally administered 1 × 109 CFU XP132 live bacteria per chicken per day, and detected the content of Salmonella in the liver, spleen, intestinal contents, and eggs of the chickens by RT-qPCR. Oral administration of Lactobacillus salivarius XP132 group significantly reduced the levels of Salmonella in chicken liver, spleen, intestinal contents and eggs, and the oral administration of Ligilactobacillus salivarius XP132 significantly inhibited the horizontal and vertical transmission of Salmonella in SPF chickens and white-feathered broilers. After oral administration of XP132, the production of chicken serum anti-infective cytokine IFN-γ was also significantly up-regulated, thereby enhancing the host's ability to resist infection. In addition, the production of various serum inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α, was down-regulated, leading to significant amelioration of the inflammatory response induced by S. Pullorum in chickens. These findings suggest that Ligilactobacillus salivarius XP132 possesses potent antibacterial and immunomodulatory properties that effectively prevent both horizontal and vertical transmission of Salmonella Pullorum, highlighting its potential as a valuable tool for the prevention and control of Salmonella disease.
Collapse
Affiliation(s)
- Tana He
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xinyun Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jielan Mi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongjiao Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024:eesp00042023. [PMID: 39023252 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pérez Jorge G, Gontijo M, Silva MFE, Goes ICRDS, Jaimes-Florez YP, Coser LDO, Rocha FJS, Giorgio S, Brocchi M. Attenuated mutants of Salmonella enterica Typhimurium mediate melanoma regression via an immune response. Exp Biol Med (Maywood) 2024; 249:10081. [PMID: 38974834 PMCID: PMC11224151 DOI: 10.3389/ebm.2024.10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
The lack of effective treatment options for an increasing number of cancer cases highlights the need for new anticancer therapeutic strategies. Immunotherapy mediated by Salmonella enterica Typhimurium is a promising anticancer treatment. Candidate strains for anticancer therapy must be attenuated while retaining their antitumor activity. Here, we investigated the attenuation and antitumor efficacy of two S. enterica Typhimurium mutants, ΔtolRA and ΔihfABpmi, in a murine melanoma model. Results showed high attenuation of ΔtolRA in the Galleria mellonella model, and invasion and survival in tumor cells. However, it showed weak antitumor effects in vitro and in vivo. Contrastingly, lower attenuation of the attenuated ΔihfABpmi strain resulted in regression of tumor mass in all mice, approximately 6 days after the first treatment. The therapeutic response induced by ΔihfABpmi was accompanied with macrophage accumulation of antitumor phenotype (M1) and significant increase in the mRNAs of proinflammatory mediators (TNF-α, IL-6, and iNOS) and an apoptosis inducer (Bax). Our findings indicate that the attenuated ΔihfABpmi exerts its antitumor activity by inducing macrophage infiltration or reprogramming the immunosuppressed tumor microenvironment to an activated state, suggesting that attenuated S. enterica Typhimurium strains based on nucleoid-associated protein genes deletion could be immunotherapeutic against cancer.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Research Group: Statistics and Mathematical Modeling Applied to Educational Quality, University of Sucre, Sincelejo, Sucre, Colombia
| | - Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke Medicine Cir, Durham, NC, United States
| | - Marina Flóro e Silva
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Yessica Paola Jaimes-Florez
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
- GIMBIO Group, Department of Microbiology, Faculty of Basic Sciences, Universidad de Pamplona, Pamplona, Colombia
| | - Lilian de Oliveira Coser
- Departamento de Biologia Estrutural e Funcional, Laboratório de Regeneração Nervosa, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
| | - Francisca Janaína Soares Rocha
- Área Acadêmica de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas—UNICAMP, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
5
|
Hu Z, Ojima S, Zhu Z, Yu X, Sugiyama M, Haneda T, Okamura M, Ono HK, Hu DL. Salmonella pathogenicity island-14 is a critical virulence factor responsible for systemic infection in chickens caused by Salmonella gallinarum. Front Vet Sci 2024; 11:1401392. [PMID: 38846788 PMCID: PMC11153813 DOI: 10.3389/fvets.2024.1401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Salmonella enterica serovar Gallinarum (S. gallinarum) is an important host-specific pathogen that causes fowl typhoid, a severe systemic, septicemic, and fatal infection, in chickens. S. gallinarum causes high morbidity and mortality in chickens and poses a significant burden and economic losses to the poultry industry in many developing countries. However, the virulence factors and mechanisms of S. gallinarum-induced systemic infection in chickens remain poorly understood. In this study, we constructed a Salmonella pathogenicity island-14 (SPI-14) mutant strain (mSPI-14) of S. gallinarum and evaluated the pathogenicity of mSPI-14 in the chicken systemic infection model. The mSPI-14 exhibited the same level of bacterial growth and morphological characteristics but significantly reduced resistance to bile acids compared with the wild-type (WT) strain in vitro. The virulence of mSPI-14 was significantly attenuated in the chicken oral infection model in vivo. Chickens infected with WT showed typical clinical symptoms of fowl typhoid, with all birds succumbing to the infection within 6 to 9 days post-inoculation, and substantial increases in bacterial counts and significant pathological changes in the liver and spleen were observed. In contrast, all mSPI-14-infected chickens survived, the bacterial counts in the organs were significantly lower, and no significant pathological changes were observed in the liver and spleen. The expression of interleukin (IL)-1β, IL-12, CXCLi1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the liver of mSPI-14-infected chickens were significantly lower than those in the WT-infected chickens. These results indicate that SPI-14 is a crucial virulence factor in systemic infection of chickens, and avirulent mSPI-14 could be used to develop a new attenuated live vaccine to prevent S. gallinarum infection in chickens.
Collapse
Affiliation(s)
- Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Masashi Okamura
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| |
Collapse
|
6
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
7
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
8
|
Cellular immune response after vaccination with Salmonella Gallinarum 9R in laying hens and addition of aflatoxin and absorbent in the feed. Res Vet Sci 2023; 154:37-43. [PMID: 36434851 DOI: 10.1016/j.rvsc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Salmonella Gallinarum greatly impacts commercial flocks and vaccination with S. Gallinarum 9R (SG9R) is one of the most effective control strategies in some countries. However, mycotoxins can affect immunization success. Herein, we measured the cellular immune response in SG9R-vaccinated hens, quantified the impact of aflatoxins on the immune response, and determined whether the anti-mycotoxin additive (adsorbent) influences immunity after vaccination. One-day-old chicks of commercial laying hens were raised until 49 days of age and were assigned to six groups. T1 (control group): control diet (no detectable concentration of aflatoxin), no vaccine or adsorbent. T2: vaccine SG-9R at day 28, aflatoxins 2.5 ppm from day 1 to day 49, and adsorbent 2.5 Kg/ton. T3: control diet and vaccine. T4: aflatoxins and vaccine. T5: control diet and aflatoxins. T6: aflatoxins and adsorbent. Body weights were evaluated on days 1, 31, and 41. Cellular immune response was evaluated by flow cytometry at 31, 41, and 49 days of age. T lymphocytes, B lymphocytes, monocytes, phagocytic monocytes and heterophils were evaluated. Aflatoxins suppressed peripheral and mucosal helper T lymphocytes, and mucosal cytotoxic T lymphocytes in vaccinated birds (T2 and T4). However, inclusion of the adsorbent in the feed of vaccinated birds neutralized the effects of aflatoxin (T6). The concentration of immune cells may show differences after SG9R vaccination, particularly an increase in the monocyte concentration. The SG9R vaccine reduced the concentration of activated cytotoxic T lymphocytes, making this marker a good parameter to analyze before and three weeks after immunization.
Collapse
|
9
|
Zhang JF, Shang K, Wei B, Lee YJ, Park JY, Jang HK, Cha SY, Kang M. Evaluation of Safety and Protective Efficacy of a waaJ and spiC Double Deletion Korean Epidemic Strain of Salmonella enterica Serovar Gallinarum. Front Vet Sci 2021; 8:756123. [PMID: 34869728 PMCID: PMC8635151 DOI: 10.3389/fvets.2021.756123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
With an aim to develop a highly attenuated and strongly immunogenic distinguishable vaccine candidate, a waaJ (a gene involved in the synthesis of lipopolysaccharide) and spiC (a virulence gene) double deletion Korean epidemic strain of S. enterica ser. Gallinarum (SG005) was constructed. Our results showed that the growth and biochemical characteristics were not altered by this double deletion. The double deletion strain contained dual markers. One was a bacteriological marker (rough phenotype) and the other was a serological marker helping distinguish infected chickens from vaccinated chickens. The double deletion strain showed good genetic stability and reduced resistance to environmental stresses in vitro; furthermore, it was extremely safe and highly avirulent in broilers. Single intramuscular or oral immunization of 7-day-old broilers with the double deletion strain could stimulate the body to produce antibody levels similar to the conventional vaccine strain SG9R. In addition, against a lethal wild-type challenge, it conferred effective protection that was comparable to that seen in the group vaccinated with SG9R. In conclusion, this double deletion strain may be an effective vaccine candidate for controlling S. enterica ser. Gallinarum infection in broilers.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Yea-Jin Lee
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Jong-Yeol Park
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
10
|
Revolledo L. Vaccines and vaccination against fowl typhoid and pullorum disease: An overview and approaches in developing countries. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfx066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis. Sci Rep 2017; 7:10915. [PMID: 28883503 PMCID: PMC5589760 DOI: 10.1038/s41598-017-11334-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023] Open
Abstract
RfaH enhances transcription of a select group of operons controlling bacterial surface features such as lipopolysaccharide (LPS). Previous studies have suggested that rfaH may be required for Yersinia pseudotuberculosis resistance to antimicrobial chemokines and survival during mouse infections. In order to further investigate the role of RfaH in LPS synthesis, resistance to host defense peptides, and virulence of Yersinia, we constructed ΔrfaH mutants of Y. pseudotuberculosis IP32953 and Y. pestis KIM6+. Loss of rfaH affected LPS synthesis in both species, resulting in a shorter core oligosaccharide. Susceptibility to polymyxin and the antimicrobial chemokine CCL28 was increased by loss of rfaH in Y. pseudotuberculosis but not in Y. pestis. Transcription of genes in the ddhD-wzz O-antigen gene cluster, but not core oligosaccharide genes, was reduced in ΔrfaH mutants. In addition, mutants with disruptions in specific ddhD-wzz O-antigen cluster genes produced LPS that was indistinguishable from the ΔrfaH mutant. This suggests that both Y. pseudotuberculosis and Y. pestis produce an oligosaccharide core with a single O-antigen unit attached in an RfaH-dependent fashion. Despite enhanced sensitivity to host defense peptides, the Y. pseudotuberculosis ΔrfaH strain was not attenuated in mice, suggesting that rfaH is not required for acute infection.
Collapse
|
12
|
Vaccination with a ΔnorD ΔznuA Brucella abortus mutant confers potent protection against virulent challenge. Vaccine 2016; 34:5290-5297. [PMID: 27639282 DOI: 10.1016/j.vaccine.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There remains a need for an improved livestock vaccine for brucellosis since conventional vaccines are only ∼70% efficacious, making some vaccinated animals susceptible to Brucella infections. To address this void, a vaccine capable of evoking protective immunity, while still being sufficiently attenuated to produce minimal disease, is sought. In this pursuit, the ΔnorD ΔznuA B. abortus-lacZ (termed as znBAZ) was developed to be devoid of functional norD and znuA B. abortus genes, and to contain the lacZ as a marker gene. The results show that znBAZ is highly attenuated in mouse and human macrophages, and completely cleared from mouse spleens within eight weeks post-vaccination. Producing less splenic inflammation, znBAZ is significantly more protective than the conventional RB51 vaccine by more than four orders of magnitude. Vaccination with znBAZ elicits elevated numbers of IFN-γ+, TNF-α+, and polyfunctional IFN-γ+ TNF-α+ CD4+ and CD8+ T cells in contrast to RB51-vaccinated mice, which show reduced numbers of proinflammatory cytokine-producing T cells. These results demonstrate that znBAZ is a highly efficacious vaccine candidate capable of eliciting diverse T cell subsets that confer protection against parenteral challenge with virulent, wild-type B. abortus.
Collapse
|
13
|
Liu Q, Liu Q, Zhao X, Liu T, Yi J, Liang K, Kong Q. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice. Int J Mol Sci 2016; 17:416. [PMID: 27011167 PMCID: PMC4813267 DOI: 10.3390/ijms17030416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium). Outer membrane proteins (OMPs) from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46) induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4–30 kDa.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 2015; 179:2-14. [PMID: 25888312 DOI: 10.1016/j.vetmic.2015.03.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
In bacteria-host interactions, competition for iron is critical for the outcome of the infection. As a result of its redox properties, this metal is essential for the growth and proliferation of most living organisms, including pathogenic bacteria. This metal is also potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. Iron acquisition and storage control is mediated in most bacteria by the global ferric uptake regulator (Fur) and iron-responsive small regulatory non-coding RNAs (RyhB in the model organism Escherichia coli). While the role of these regulators in iron homeostasis is well documented in both pathogenic and non-pathogenic bacteria, many recent studies also demonstrate that these regulators are involved in the virulence of pathogenic bacteria. By sensing iron availability in the environment, Fur and RyhB are able to regulate, either directly or indirectly via other transcriptional regulators or modulation of intracellular iron concentration, many virulence determinants of pathogenic bacteria. Iron is thus both a nutritional and regulatory element, allowing bacteria to adapt to various host environments by adjusting expression of virulence factors. In this review, we present evidences that Fur and RyhB are the major regulators of this adaptation, as they are involved in diverse functions ranging from iron homeostasis to regulation of virulence by mediating key pathogen responses such as invasion of eukaryotic cells, toxin production, motility, quorum sensing, stress resistance or biofilm formation. Therefore, Fur and RyhB play a major role in regulating an adaptative response during bacterial infections, making them important targets in the fight against pathogenic bacteria.
Collapse
|