1
|
Carreto-Binaghi LE, Nieto-Ponce M, Palencia-Reyes A, Chávez-Domínguez RL, Blancas-Zaragoza J, Franco-Mendoza P, García-Ramos MA, Hernández-Lázaro CI, Torres M, Carranza C. Validation of the Enzyme-Linked ImmunoSpot Analytic Method for the Detection of Human IFN-γ from Peripheral Blood Mononuclear Cells in Response to the SARS-CoV-2 Spike Protein. Biomolecules 2024; 14:1286. [PMID: 39456219 PMCID: PMC11506497 DOI: 10.3390/biom14101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3+, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Milton Nieto-Ponce
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Andrea Palencia-Reyes
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Rodolfo L. Chávez-Domínguez
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Jessica Blancas-Zaragoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Pablo Franco-Mendoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Montserrat A. García-Ramos
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia I. Hernández-Lázaro
- Laboratorio Clinico, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Martha Torres
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| |
Collapse
|
2
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
3
|
Waerlop G, Leroux-Roels G, Pagnon A, Begue S, Salaun B, Janssens M, Medaglini D, Pettini E, Montomoli E, Gianchecchi E, Lambe T, Godfrey L, Bull M, Bellamy D, Amdam H, Bredholt G, Cox RJ, Clement F. Proficiency tests to evaluate the impact on assay outcomes of harmonized influenza-specific Intracellular Cytokine Staining (ICS) and IFN-ɣ Enzyme-Linked ImmunoSpot (ELISpot) protocols. J Immunol Methods 2023; 523:113584. [PMID: 37918618 DOI: 10.1016/j.jim.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-ɣ (IFN-ɣ) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-ɣ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-ɣ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-ɣ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-ɣ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium.
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Anke Pagnon
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | - Sarah Begue
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | | | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi srl, 53100 Siena, Italy
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK
| | - Maireid Bull
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Håkon Amdam
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
van Duijn J, Stieh D, Fernandez N, King D, Gilmour J, Tolboom J, Callewaert K, Willems W, Pau MG, De Rosa SC, McElrath MJ, Barouch DH, Hayes P. Mosaic HIV-1 vaccination induces anti-viral CD8 + T cell functionality in the phase 1/2a clinical trial APPROACH. J Virol 2023; 97:e0112623. [PMID: 37811993 PMCID: PMC10617392 DOI: 10.1128/jvi.01126-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The functionality of CD8+ T cells against human immunodeficiency virus-1 (HIV-1) antigens is indicative of HIV-progression in both animal models and people living with HIV. It is, therefore, of interest to assess CD8+ T cell responses in a prophylactic vaccination setting, as this may be an important component of the immune system that inhibits HIV-1 replication. T cell responses induced by the adenovirus serotype 26 (Ad26) mosaic vaccine regimen were assessed previously by IFN-γ ELISpot and flow cytometric assays, yet these assays only measure cytokine production but not the capacity of CD8+ T cells to inhibit replication of HIV-1. In this study, we demonstrate direct anti-viral function of the clinical Ad26 mosaic vaccine regimen through ex vivo inhibition of replication of diverse clades of HIV-1 isolates in the participant's own CD4+ T cells.
Collapse
Affiliation(s)
| | - Daniel Stieh
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jeroen Tolboom
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | | | | | - Maria G. Pau
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
5
|
Michelo CM, Fiore-Gartland A, Dalel JA, Hayes P, Tang J, McGowan E, Kilembe W, Fernandez N, Gilmour J, Hunter E. Cohort-Specific Peptide Reagents Broaden Depth and Breadth Estimates of the CD8 T Cell Response to HIV-1 Gag Potential T Cell Epitopes. Vaccines (Basel) 2023; 11:472. [PMID: 36851349 PMCID: PMC9961105 DOI: 10.3390/vaccines11020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents representative of consensus and global sequences. CD8 T-cells from twenty-six HIV-1+ PBMC donor samples, obtained at 1-year post estimated date of infection, were evaluated. ELISpot assays compared responses to 15mer consensus (n = 121), multivalent-global (n = 320), and 10mer multivalent cohort-specific (n = 300) PTE peptides, all mapping to the Gag antigen. Responses to 38 consensus, 71 global, and 62 cohort-specific PTEs were confirmed, with sixty percent of common global and cohort-specific PTEs corresponding to consensus sequences. Both global and cohort-specific peptides exhibited broader epitope coverage compared to commonly used consensus reagents, with mean breadth estimates of 3.2 (global), 3.4 (cohort) and 2.2 (consensus) epitopes. Global or cohort peptides each identified unique epitope responses that would not be detected if these peptide pools were used alone. A peptide set designed around specific virologic and immunogenetic characteristics of a target cohort can expand the detection of CD8 T-cell responses to epitopes in circulating viruses, providing a novel way to better define the host response to HIV-1 with implications for vaccine development.
Collapse
Affiliation(s)
- Clive M. Michelo
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jama A. Dalel
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - William Kilembe
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Eric Hunter
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
6
|
Curreli C, Di Salvatore V, Russo G, Pappalardo F, Viceconti M. A Credibility Assessment Plan for an In Silico Model that Predicts the Dose-Response Relationship of New Tuberculosis Treatments. Ann Biomed Eng 2023; 51:200-210. [PMID: 36115895 PMCID: PMC9483464 DOI: 10.1007/s10439-022-03078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Tuberculosis is one of the leading causes of death in several developing countries and a public health emergency of international concern. In Silico Trials can be used to support innovation in the context of drug development reducing the duration and the cost of the clinical experimentations, a particularly desirable goal for diseases such as tuberculosis. The agent-based Universal Immune System Simulator was used to develop an In Silico Trials environment that can predict the dose-response of new therapeutic vaccines against pulmonary tuberculosis, supporting the optimal design of clinical trials. But before such in silico methodology can be used in the evaluation of new treatments, it is mandatory to assess the credibility of this predictive model. This study presents a risk-informed credibility assessment plan inspired by the ASME V&V 40-2018 technical standard. Based on the selected context of use and regulatory impact of the technology, a detailed risk analysis is described together with the definition of all the verification and validation activities and related acceptability criteria. The work provides an example of the first steps required for the regulatory evaluation of an agent-based model used in the context of drug development.
Collapse
Affiliation(s)
- Cristina Curreli
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | | | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Mimesis srl, Catania, Italy
| | | | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
7
|
Files JK, Sterrett S, Henostroza S, Fucile C, Maroney K, Fram T, Mallal S, Kalams S, Carlson J, Rosenberg A, Erdmann N, Bansal A, Goepfert PA. HLA-II-Associated HIV-1 Adaptation Decreases CD4 + T-Cell Responses in HIV-1 Vaccine Recipients. J Virol 2022; 96:e0119122. [PMID: 36000845 PMCID: PMC9472760 DOI: 10.1128/jvi.01191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Epitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4+ T-cell responses in HIV-positive (HIV+) individuals. Many such escaped CD4+ T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4+ T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes. When evaluated in separate peptide pools, vaccine-encoded adapted epitopes (AE) induced CD4+ T-cell responses less frequently than nonadapted epitopes (NAE). We also demonstrated that in a polyvalent vaccine, where both forms of the same epitope were encoded, AE were less immunogenic. NAE-specific CD4+ T cells had increased, albeit low, levels of interferon gamma (IFN-γ) cytokine production. Single-cell transcriptomic analyses showed that NAE-specific CD4+ T cells expressed interferon-related genes, while AE-specific CD4+ T cells resembled a Th2 phenotype. Importantly, the magnitude of NAE-specific CD4+ T-cell responses, but not that of AE-specific responses, was found to positively correlate with Env-specific antibodies in a vaccine efficacy trial. Together, these findings show that HLA-II-associated viral adaptation reduces CD4+ T-cell responses in HIV-1 vaccine recipients and suggest that vaccines encoding a significant number of AE may not provide optimal B-cell help for HIV-specific antibody production. IMPORTANCE Despite decades of research, an effective HIV-1 vaccine remains elusive. Vaccine strategies leading to the generation of broadly neutralizing antibodies are likely needed to provide the best opportunity of generating a protective immune response against HIV-1. Numerous studies have demonstrated that T-cell help is necessary for effective antibody generation. However, immunogen sequences from recent HIV-1 vaccine efficacy trials include CD4+ T-cell epitopes that have evidence of immune escape. Our study shows that these epitopes, termed adapted epitopes, elicit lower frequencies of CD4+ T-cell responses in recipients from multiple HIV-1 vaccine trials. Additionally, the counterparts to these epitopes, termed nonadapted epitopes, elicited CD4+ T-cell responses that correlated with Env-specific antibodies in one efficacy trial. These results suggest that vaccine-encoded adapted epitopes dampen CD4+ T-cell responses, potentially impacting both HIV-specific antibody production and efficacious vaccine efforts.
Collapse
Affiliation(s)
- Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sebastian Henostroza
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Maroney
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Alexander Rosenberg
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul A. Goepfert
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Browne DJ, Kelly AM, Brady JL, Doolan DL. A high-throughput screening RT-qPCR assay for quantifying surrogate markers of immunity from PBMCs. Front Immunol 2022; 13:962220. [PMID: 36110843 PMCID: PMC9469018 DOI: 10.3389/fimmu.2022.962220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoassays that quantitate cytokines and other surrogate markers of immunity from peripheral blood mononuclear cells (PBMCs), such as flow cytometry or Enzyme-Linked Immunosorbent Spot (ELIspot), allow highly sensitive measurements of immune effector function. However, those assays consume relatively high numbers of cells and expensive reagents, precluding comprehensive analyses and high-throughput screening (HTS). To address this issue, we developed a sensitive and specific reverse transcription-quantitative PCR (RT-qPCR)-based HTS assay, specifically designed to quantify surrogate markers of immunity from very low numbers of PBMCs. We systematically evaluated the volumes and concentrations of critical reagents within the RT-qPCR protocol, miniaturizing the assay and ultimately reducing the cost by almost 90% compared to current standard practice. We assessed the suitability of this cost-optimized RT-qPCR protocol as an HTS tool and determined the assay exceeds HTS uniformity and signal variance testing standards. Furthermore, we demonstrate this technique can effectively delineate a hierarchy of responses from as little as 50,000 PBMCs stimulated with CD4+ or CD8+ T cell peptide epitopes. Finally, we establish that this HTS-optimized protocol has single-cell analytical sensitivity and a diagnostic sensitivity equivalent to detecting 1:10,000 responding cells (i.e., 100 Spot Forming Cells/106 PBMCs by ELIspot) with over 90% accuracy. We anticipate this assay will have widespread applicability in preclinical and clinical studies, especially when samples are limited, and cost is an important consideration.
Collapse
|
9
|
Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J. Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 2021; 16:e0260118. [PMID: 34788349 PMCID: PMC8598018 DOI: 10.1371/journal.pone.0260118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects' cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.
Collapse
Affiliation(s)
- Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lucas Black
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Vanaja Kakarla
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Matt Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Bansal A, Gehre MN, Qin K, Sterrett S, Ali A, Dang Y, Abraham S, Costanzo MC, Venegas LA, Tang J, Manjunath N, Brockman MA, Yang OO, Kan-Mitchell J, Goepfert PA. HLA-E-restricted HIV-1-specific CD8+ T cell responses in natural infection. J Clin Invest 2021; 131:148979. [PMID: 34228645 PMCID: PMC8363272 DOI: 10.1172/jci148979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E-restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E-restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E-restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mika N. Gehre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ayub Ali
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - Ying Dang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Margaret C. Costanzo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Leon A. Venegas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - N. Manjunath
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | | - Otto O. Yang
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Michelo CM, Dalel JA, Hayes P, Fernandez N, Fiore-Gartland A, Kilembe W, Tang J, Streatfield C, Gilmour J, Hunter E. Comprehensive epitope mapping using polyclonally expanded human CD8 T cells and a two-step ELISpot assay for testing large peptide libraries. J Immunol Methods 2021; 491:112970. [PMID: 33529681 PMCID: PMC8008507 DOI: 10.1016/j.jim.2021.112970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 02/01/2023]
Abstract
The genetic diversity of circulating HIV-1 strains poses a major barrier to the design, development and evaluation of HIV-1 vaccines. The assessment of both vaccine- and natural infection-elicited T cell responses is commonly done with multivalent peptides that are designed to maximally capture the diversity of potential T cell epitopes (PTEs) observed in natural circulating sequences. However, depending on the sequence diversity of viral subtypes and number of the HIV immunogens under investigation, PTE estimates, including HLA-guided computational methods, can easily generate enormous peptide libraries. Evaluation of T cell epitope specificity using such extensive peptide libraries is usually limited by sample availability, even for high-throughput and robust epitope mapping techniques like ELISpot assays. Here we describe a novel, two-step protocol for in-vitro polyclonal expansion of CD8 T cells from a single vial of frozen PBMC, which facilitated the screening 441 HIV-1 Gag peptides for immune responses among 32 HIV-1 positive subjects and 40 HIV-1 negative subjects for peptide qualification. Using a pooled-peptide mapping strategy, epitopes were mapped in two sequential ELISpot assays; the first ELISpot screened 33 large peptide pools using CD8 T cells expanded for 7 days, while the second step tested pool-matrix peptides to identify individual peptides using CD8 T cells expanded for 10 days. This comprehensive epitope screening established the breadth and magnitude of HIV-1 Gag-specific CD8 T cells and further revealed the extent of immune responses to variable/polymorphic epitopes.
Collapse
Affiliation(s)
- Clive M Michelo
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jama A Dalel
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Natalia Fernandez
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - William Kilembe
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Claire Streatfield
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Eric Hunter
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
12
|
Langat RK, Farah B, Indangasi J, Ogola S, Omosa-Manyonyi G, Anzala O, Bizimana J, Tekirya E, Ngetsa C, Silwamba M, Muyanja E, Chetty P, Jangano M, Hills N, Gilmour J, Dally L, Cox JH, Hayes P. Performance of International AIDS Vaccine Initiative African clinical research laboratories in standardised ELISpot and peripheral blood mononuclear cell processing in support of HIV vaccine clinical trials. Afr J Lab Med 2021; 10:1056. [PMID: 33833946 PMCID: PMC8014752 DOI: 10.4102/ajlm.v10i1.1056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/23/2020] [Indexed: 11/28/2022] Open
Abstract
Background Standardisation of procedures for performing cellular functional assays across laboratories participating in multicentre clinical trials is key for generating comparable and reliable data. Objective This article describes the performance of accredited laboratories in Africa and Europe on testing done in support of clinical trials. Methods For enzyme-linked immunospot assay (ELISpot) proficiency, characterised peripheral blood mononuclear cells (PBMCs) obtained from 48 HIV-negative blood donors in Johannesburg, South Africa, were sent to participating laboratories between February 2010 and February 2014. The PBMCs were tested for responses against cytomegalovirus, Epstein Barr and influenza peptide pools in a total of 1751 assays. In a separate study, a total of 1297 PBMC samples isolated from healthy HIV-negative participants in clinical trials of two prophylactic HIV vaccine candidates in Kenya, Uganda, Rwanda and Zambia were analysed for cell viability, cell yield and cell recovery from frozen PBMCs. Results Most (99%) of the 1751 ELISpot proficiency assays had data within acceptable ranges with low responses to mock stimuli. No significant statistical difference were observed in ELISpot responses at the five laboratories actively conducting immunological analyses. Of the 1297 clinical trial PBMCs processed, 94% had cell viability above 90% and 96% had cell yield above 0.7 million per mL of blood in freshly isolated cells. All parameters were within the predefined acceptance criteria. Conclusion We demonstrate that multiple laboratories can generate reliable, accurate and comparable data by using standardised procedures, having regular training, having regular equipment maintenance and using centrally sourced reagents.
Collapse
Affiliation(s)
- Robert K Langat
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya.,International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Bashir Farah
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Jackton Indangasi
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Simon Ogola
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Gloria Omosa-Manyonyi
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | | | | | - Caroline Ngetsa
- Kenya Medical Research Institute Centre for Geographical Medicine Research Coast, Mombasa, Kenya
| | | | - Enoch Muyanja
- Ugandan Virus Research Institute-IAVI, Entebbe, Uganda
| | - Paramesh Chetty
- International AIDS Vaccine Initiative, Johannesburg, South Africa
| | | | - Nancy Hills
- School of Medicine, University of California, San Francisco, California, United States
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Len Dally
- Emmes Corporation, Rockville, Maryland, United States
| | - Josephine H Cox
- Clinical Trials Program, Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Peter Hayes
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
13
|
Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS One 2017; 12:e0187440. [PMID: 29091947 PMCID: PMC5665600 DOI: 10.1371/journal.pone.0187440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022] Open
Abstract
Introduction Live peripheral blood mononuclear cells (PBMCs) can be frozen and thawed for later analyses by adding and removing a cryoprotectant, such as dimethyl sulfoxide (DMSO). Laboratories across the world use various procedures, but published evidence of optimal thawing procedures is scarce. Materials and methods PBMCs were separated from blood collected from healthy Danish blood donors, and stored at -80°C after adding of DMSO. The essential steps in the thawing procedure were modified and performance was evaluated by flow cytometry with respect to the percentage and total yield of viable PMBCs. Results The best-performing washing medium was Roswell Park Memorial Institute (RPMI) 1640 at 37°C with 20% fetal bovine serum. When using 10 mL washing medium in a 15-mL Falcon tube, samples should be centrifuged for at least 10 minutes at 500 g. We failed to detect any differences between the tested methods of mixing PBMCs with washing medium. Likewise, neither the thawing duration nor centrifugation temperature (20°C and 37°C) had any effect. PBMCs could be incubated (rested) for up to eight hours in a 37°C 5% CO2 incubator without affecting cell counts, but incubating PBMCs for 16 hours significantly decreased viability and recovery. In general, high viability was not necessarily associated with high recovery. Conclusion Changing the thawing procedure significantly impacted PBMC viability and live cell recovery. Evaluating both viability and live PBMC recovery are necessary to evaluate method performance. Investigation of differential loss of PBMC subtypes and phenotypic changes during thawing and incubation requires further evaluation.
Collapse
|
14
|
Huang Y, Pantaleo G, Tapia G, Sanchez B, Zhang L, Trondsen M, Hovden AO, Pollard R, Rockstroh J, Ökvist M, Sommerfelt MA. Cell-Mediated Immune Predictors of Vaccine Effect on Viral Load and CD4 Count in a Phase 2 Therapeutic HIV-1 Vaccine Clinical Trial. EBioMedicine 2017; 24:195-204. [PMID: 28970080 PMCID: PMC5652289 DOI: 10.1016/j.ebiom.2017.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
Background In a placebo-controlled trial of the peptide-based therapeutic HIV-1 p24Gag vaccine candidate Vacc-4x, participants on combination antiretroviral therapy (cART) received six immunizations over 18 weeks, followed by analytical treatment interruption (ATI) between weeks 28 and 52. Cell-mediated immune responses were investigated as predictors of Vacc-4x effect (VE) on viral load (VL) and CD4 count during ATI. Methods All analyses of week 28 responses and fold-changes relative to baseline considered per-protocol participants (Vacc-4x:placebo = 72:32) resuming cART after week 40. Linear regression models with interaction tests were used. VE was estimated as the Vacc-4x–placebo difference in log10-transformed VL (VEVL) or CD4 count (VECD4). Findings A lower fold-change of CD4+ T-cell proliferation was associated with VECD4 at week 48 (p = 0.036, multiplicity adjusted q = 0.036) and week 52 (p = 0.040, q = 0.080). A higher fold-change of IFN-γ in proliferation supernatants was associated with VEVL at week 44 (p = 0.047, q = 0.07). A higher fold-change of TNF-α was associated with VEVL at week 44 (p = 0.045, q = 0.070), week 48 (p = 0.028, q = 0.070), and week 52 (p = 0.037, q = 0.074). A higher fold-change of IL-6 was associated with VEVL at week 48 (p = 0.017, q = 0.036). TNF-α levels (> median) were associated with VECD4 at week 48 (p = 0.009, q = 0.009). Interpretation These exploratory analyses highlight the potential value of investigating biomarkers in T-cell proliferation supernatants for VE in clinical studies. Ex vivo CD4+ T-cell proliferation was predictive of Vacc-4x effect. IFN-γ, TNF-α and IL-6 secretion in T-cell proliferation supernatants were predictive of Vacc-4x effect. Such immune predictors could be utilized to mitigate risks associated with cART interruption towards HIV cure.
No immune correlates or predictors of therapeutic vaccine effect (i.e. a reduction in viral load compared to placebo on treatment interruption) for human immunodeficiency virus (HIV)-1 are known. We investigated a broad array of cytokines/chemokines produced in T-cell proliferation supernatants from a placebo-controlled clinical study of a therapeutic HIV vaccine. Although such supernatants do not provide cell type-specific readouts, the cytokines/chemokines studied included T-helper (Th)1, Th2, growth factor, immuno-modulatory and pro-inflammatory functions. Specifically, we found that, IFN-γ, TNF-α and IL-6 secretion correlated with vaccine effect, suggesting such supernatants could represent important sample material not previously considered for the identification of immune markers of vaccine effect.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH10-527, CH-1011 Lausanne, Switzerland.
| | - Gonzalo Tapia
- Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH10-527, CH-1011 Lausanne, Switzerland.
| | - Brittany Sanchez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA.
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, M2-C200, WA, USA.
| | | | | | - Richard Pollard
- University of California, Davis School of Medicine, 4150 V Street, Suite G500 PSSB, 95817 Sacramento, CA, USA.
| | - Jürgen Rockstroh
- Oberarzt an der Medizinischen Universitätsklinik, Innere-Rheuma-Tropen Ambulanz, Sigmund-Freud-Str. 25, 53105 Bonn, Venusberg, Germany.
| | - Mats Ökvist
- Bionor Pharma AS, P.O. Box 1477 Vika, NO-0116 Oslo, Norway.
| | | |
Collapse
|
15
|
Sumonwiriya M, Paris DH, Sunyakumthorn P, Anantatat T, Jenjaroen K, Chumseng S, Im-erbsin R, Tanganuchitcharnchai A, Jintaworn S, Blacksell SD, Chowdhury FR, Kronsteiner B, Teparrukkul P, Burke RL, Lombardini ED, Richards AL, Mason CJ, Jones JW, Day NPJ, Dunachie SJ. Strong interferon-gamma mediated cellular immunity to scrub typhus demonstrated using a novel whole cell antigen ELISpot assay in rhesus macaques and humans. PLoS Negl Trop Dis 2017; 11:e0005846. [PMID: 28892515 PMCID: PMC5608426 DOI: 10.1371/journal.pntd.0005846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 09/21/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023] Open
Abstract
Scrub typhus is a febrile infection caused by the obligate intracellular bacterium Orientia tsutsugamushi, which causes significant morbidity and mortality across the Asia-Pacific region. The control of this vector-borne disease is challenging due to humans being dead-end hosts, vertical maintenance of the pathogen in the vector itself, and a potentially large rodent reservoir of unclear significance, coupled with a lack of accurate diagnostic tests. Development of an effective vaccine is highly desirable. This however requires better characterization of the natural immune response of this neglected but important disease. Here we implement a novel IFN-γ ELISpot assay as a tool for studying O. tsutsugamushi induced cellular immune responses in an experimental scrub typhus rhesus macaque model and human populations. Whole cell antigen for O. tsutsugamushi (OT-WCA) was prepared by heat inactivation of Karp-strain bacteria. Rhesus macaques were infected intradermally with O. tsutsugamushi. Freshly isolated peripheral blood mononuclear cells (PBMC) from infected (n = 10) and uninfected animals (n = 5) were stimulated with OT-WCA, and IFN-γ secreting cells quantitated by ELISpot assay at five time points over 28 days. PBMC were then assayed from people in a scrub typhus-endemic region of Thailand (n = 105) and responses compared to those from a partially exposed population in a non-endemic region (n = 14), and to a naïve population in UK (n = 12). Mean results at Day 0 prior to O. tsutsugamushi infection were 12 (95% CI 0-25) and 15 (2-27) spot-forming cells (SFC)/106 PBMC for infected and control macaques respectively. Strong O. tsutsugamushi-specific IFN-γ responses were seen post infection, with ELISpot responses 20-fold higher than baseline at Day 7 (mean 235, 95% CI 200-270 SFC/106 PBMC), 105-fold higher at Day 14 (mean 1261, 95% CI 1,097-1,425 SFC/106 PBMC), 125-fold higher at Day 21 (mean 1,498, 95% CI 1,496-1,500 SFC/106 PBMC) and 118-fold higher at Day 28 (mean 1,416, 95% CI 1,306-1,527 SFC/106 PBMC). No significant change was found in the control group at any time point compared to baseline. Humans from a scrub typhus endemic region of Thailand had mean responses of 189 (95% CI 88-290) SFC/106 PBMC compared to mean responses of 40 (95% CI 9-71) SFC/106 PBMC in people from a non-endemic region and 3 (95% CI 0-7) SFC/106 PBMC in naïve controls. In summary, this highly sensitive assay will enable field immunogenicity studies and further characterization of the host response to O. tsutsugamushi, and provides a link between human and animal models to accelerate vaccine development.
Collapse
Affiliation(s)
| | - Daniel H. Paris
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Tippawan Anantatat
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suchintana Chumseng
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rawiwan Im-erbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Suthatip Jintaworn
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Fazle R. Chowdhury
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Barbara Kronsteiner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Prapit Teparrukkul
- Department of Medicine, Sappasithiprasong Hospital, Ubon Ratchathani, Thailand
| | - Robin L. Burke
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Eric D. Lombardini
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Allen L. Richards
- Department of Viral & Rickettsial Diseases, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Preventive Medicine and Biometrics Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carl J. Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - James W. Jones
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Susanna J. Dunachie
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Ford T, Wenden C, Mbekeani A, Dally L, Cox JH, Morin M, Winstone N, Hill AVS, Gilmour J, Ewer KJ. Cryopreservation-related loss of antigen-specific IFNγ producing CD4 + T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy. Vaccine 2017; 35:1898-1906. [PMID: 28285985 PMCID: PMC5387668 DOI: 10.1016/j.vaccine.2017.02.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/19/2022]
Abstract
Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3–5-fold reduction of malaria antigen-specific IFNγ-producing CD3+CD4+ effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8+ T cells are relatively unaffected, as well as CD4+ T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines.
Collapse
Affiliation(s)
- Tom Ford
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK.
| | - Claire Wenden
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Alison Mbekeani
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Len Dally
- EMMES Corporation, Rockville, MD, USA
| | - Josephine H Cox
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK
| | | | - Nicola Winstone
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, UK
| | - Jill Gilmour
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Katie J Ewer
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, UK
| |
Collapse
|
17
|
Joseph S, Quinn K, Greenwood A, Cope AV, McKay PF, Hayes PJ, Kopycinski JT, Gilmour J, Miller AN, Geldmacher C, Nadai Y, Ahmed MIM, Montefiori DC, Dally L, Bouliotis G, Lewis DJM, Tatoud R, Wagner R, Esteban M, Shattock RJ, McCormack S, Weber J. A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes. Front Immunol 2017; 8:149. [PMID: 28275375 PMCID: PMC5319954 DOI: 10.3389/fimmu.2017.00149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen.
Collapse
Affiliation(s)
- Sarah Joseph
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London , London , UK
| | - Killian Quinn
- Department of Medicine, Imperial College London , London , UK
| | | | - Alethea V Cope
- Department of Medicine, Imperial College London , London , UK
| | - Paul F McKay
- Department of Medicine, Imperial College London , London , UK
| | - Peter J Hayes
- IAVI Human Immunology Laboratory, Imperial College London , London , UK
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London , London , UK
| | - Aleisha N Miller
- ICTU, Department of Public Health, Imperial College London , London , UK
| | - Christof Geldmacher
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | - Yuka Nadai
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | - Mohamed I M Ahmed
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | | | - Len Dally
- The EMMES Corporation , Rockville, MD , USA
| | - George Bouliotis
- ICTU, Department of Public Health, Imperial College London , London , UK
| | - David J M Lewis
- Clinical Research Centre, University of Surrey, Guildford, UK; Clinical Research Facility, Imperial College Healthcare NHS Trust, London, UK
| | - Roger Tatoud
- Department of Medicine, Imperial College London , London , UK
| | - Ralf Wagner
- University of Regensburg and University Hospital Regensburg , Regensburg , Germany
| | | | | | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London , London , UK
| | - Jonathan Weber
- Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
18
|
Adenovirus-based HIV-1 vaccine candidates tested in efficacy trials elicit CD8+ T cells with limited breadth of HIV-1 inhibition. AIDS 2016; 30:1703-12. [PMID: 27088318 DOI: 10.1097/qad.0000000000001122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The ability of HIV-1 vaccine candidates MRKAd5, VRC DNA/Ad5 and ALVAC/AIDSVAX to elicit CD8 T cells with direct antiviral function was assessed and compared with HIV-1-infected volunteers. DESIGN Adenovirus serotype 5 (Ad5)-based regimens MRKAd5 and VRC DNA/Ad5, designed to elicit HIV-1-specific T cells, are immunogenic but failed to prevent infection or impact on viral loads in volunteers infected subsequently. Failure may be due in part to a lack of CD8 T cells with effective antiviral functions. METHODS An in-vitro viral inhibition assay tested the ability of bispecific antibody expanded CD8 T cells from peripheral blood mononuclear cells to inhibit replication of a multiclade panel of HIV-1 isolates in autologous CD4 T cells. HIV-1 proteins recognized by CD8 T cells were assessed by IFNγ enzyme-linked immunospot assay. RESULTS Ad5-based regimens elicited CD8 T cells that inhibited replication of HIV-1 IIIB isolate with more limited inhibition of other isolates. IIIB isolate Gag and Pol genes have high sequence identities (>96%) to vector HIV-1 gene inserts, and these were the predominant HIV-1 proteins recognized by CD8 T cells. Virus inhibition breadth was greater in antiretroviral naïve HIV-1-infected volunteers naturally controlling viremia (plasma viral load < 10 000/ml). HIV-1-inhibitory CD8 T cells were not elicited by the ALVAC/AIDSVAX regimen. CONCLUSION The Ad5-based regimens, although immunogenic, elicited CD8 T cells with limited HIV-1-inhibition breadth. Effective T-cell-based vaccines should presumably elicit broader HIV-1-inhibition profiles. The viral inhibition assay can be used in vaccine design and to prioritize promising candidates with greater inhibition breadth for further clinical trials.
Collapse
|
19
|
Körber N, Behrends U, Hapfelmeier A, Protzer U, Bauer T. Validation of an IFNγ/IL2 FluoroSpot assay for clinical trial monitoring. J Transl Med 2016; 14:175. [PMID: 27297580 PMCID: PMC4906590 DOI: 10.1186/s12967-016-0932-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022] Open
Abstract
Background The FluoroSpot assay, an advancement of the ELISpot assay, enables simultaneous measurement of different analytes secreted at a single-cell level. This allows parallel detection of several cytokines secreted by immune cells upon antigen recognition. Easier standardization, higher sensitivity and reduced labour intensity render FluoroSpot assays an interesting alternative to flow-cytometry based assays for analysis of clinical samples. While the use of immunoassays to study immunological primary and secondary endpoints becomes increasingly attractive, assays used require pre-trial validation. Here we describe the assay validation (precision, specificity and linearity) of a FluoroSpot immunological endpoint assay detecting Interferon γ (IFNγ) and Interleukin 2 (IL2) for use in clinical trial immune monitoring. Methods We validated an IFNγ/IL2 FluoroSpot assay to determine Epstein-Barr virus (EBV)-specific cellular immune responses (IFNγ, IL2 and double positive IFNγ + IL2 responses), using overlapping peptide pools corresponding to EBV-proteins BZLF1 and EBNA3A. Assay validation was performed using cryopreserved PBMC of 16 EBV-seropositive and 6 EBV-seronegative donors. Precision was assessed by (i) testing 16 donors using three replicates per assay (intra-assay precision/repeatability) (ii) using two plates in parallel (intermediate precision/plate-to-plate variability) and (iii) by performing the assays on three different days (inter-assay precision/reproducibility). In addition, we determined specificity, linearity and quantification limits of the assay. Further we tested precision across the two assay systems, IFNγ/IL2 FluoroSpot and the corresponding enzymatic single cytokine ELISpot. Results The validation revealed: (1) a high intra-assay precision (coefficient of variation (CV) 9.96, 8.85 and 13.05 %), intermediate precision (CV 6.48, 10.20 and 12.97 %) and reproducibility (CV 20.81 %, 12,75 % and 12.07 %) depending on the analyte and antigen used; (2) a specificity of 100 %; (3) a linearity with R2 values from 0.93 to 0.99 depending on the analyte. The testing of the precision across the two assay systems, adduced a concordance correlation coefficient pc = 0.99 for IFNγ responses and pc = 0.93 for IL2 responses, indicating a large agreement between both assay methods. Conclusions The validated primary endpoint assay, an EBV peptide pool specific IFNγ/IL2 FluoroSpot assay was found to be suitable for the detection of EBV-specific immune responses subject to the requirement of standardized assay procedure and data analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0932-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Uta Behrends
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany.,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Schneckenburgerstr. 8, 81675, Munich, Germany. .,Clinical Cooperation Group, Immune Monitoring, Helmholtz Zentrum München/Technische Universität München, Munich, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
20
|
A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults. PLoS One 2015; 10:e0134287. [PMID: 26252526 PMCID: PMC4529153 DOI: 10.1371/journal.pone.0134287] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Strategies to enhance the immunogenicity of DNA vaccines in humans include i) co-administration of molecular adjuvants, ii) intramuscular administration followed by in vivo electroporation (IM/EP) and/or iii) boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study. METHODS Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG) plasmid DNA (pDNA) vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12) (GENEVAX IL-12) given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM. RESULTS All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs) were reported. T cell and antibody response rates after HIVMAG (x3) prime-Ad35 (x1) boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ) ELISPOT responses was highest after HIVMAG (x3) without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS) were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3) prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected. CONCLUSION The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected. TRIAL REGISTRATION ClinicalTrials.gov NCT01496989.
Collapse
|
21
|
A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults. PLoS One 2015; 10:e0125954. [PMID: 25961283 PMCID: PMC4427332 DOI: 10.1371/journal.pone.0125954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445
Collapse
|
22
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
23
|
High Reproducibility of ELISPOT Counts from Nine Different Laboratories. Cells 2015; 4:21-39. [PMID: 25585297 PMCID: PMC4381207 DOI: 10.3390/cells4010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.
Collapse
|
24
|
Stepping up ELISpot: Multi-Level Analysis in FluoroSpot Assays. Cells 2014; 3:1102-15. [PMID: 25437440 PMCID: PMC4276915 DOI: 10.3390/cells3041102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
ELISpot is one of the most commonly used immune monitoring assays, which allows the functional assessment of the immune system at the single cell level. With its outstanding sensitivity and ease of performance, the assay has recently advanced from the mere single function cell analysis to multifunctional analysis by implementing detection reagents that are labeled with fluorophores (FluoroSpot), allowing the detection of secretion patterns of two or more analytes in a single well. However, the automated evaluation of such assays presents various challenges for image analysis. Here we dissect the technical and methodological requirements for a reliable analysis of FluoroSpot assays, introduce important quality control measures and provide advice for proper interpretation of results obtained by automated imaging systems.
Collapse
|
25
|
Chudley L, McCann KJ, Coleman A, Cazaly AM, Bidmon N, Britten CM, van der Burg SH, Gouttefangeas C, Jandus C, Laske K, Maurer D, Romero P, Schröder H, Stynenbosch LFM, Walter S, Welters MJP, Ottensmeier CH. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining. Cancer Immunol Immunother 2014; 63:1199-211. [PMID: 25134947 PMCID: PMC4209099 DOI: 10.1007/s00262-014-1593-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/01/2014] [Indexed: 10/31/2022]
Abstract
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Collapse
Affiliation(s)
- Lindsey Chudley
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Katy J. McCann
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Adam Coleman
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Angelica M. Cazaly
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - Nicole Bidmon
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Cedrik M. Britten
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cecile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | - Camilla Jandus
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | | | - Pedro Romero
- Translational Tumour Immunology, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Helene Schröder
- Translational Oncology, University Medical Center, Johannes-Gutenberg University GmbH, Mainz, Germany
| | | | | | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christian H. Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, Experimental Cancer Medicine Centre, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- Somers Cancer Research Building (Mailpoint 824), Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| |
Collapse
|
26
|
Bourguignon P, Clément F, Renaud F, Le Bras V, Koutsoukos M, Burny W, Moris P, Lorin C, Collard A, Leroux-Roels G, Roman F, Janssens M, Vandekerckhove L. Processing of blood samples influences PBMC viability and outcome of cell-mediated immune responses in antiretroviral therapy-naïve HIV-1-infected patients. J Immunol Methods 2014; 414:1-10. [PMID: 25224748 DOI: 10.1016/j.jim.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Abstract
Intracellular cytokine staining (ICS) assay is increasingly used in vaccine clinical trials to measure antigen-specific T-cell mediated immune (CMI) responses in cryopreserved peripheral blood mononuclear cells (PBMCs) and whole blood. However, recent observations indicate that several parameters involved in blood processing can impact PBMC viability and CMI responses, especially in antiretroviral therapy (ART)-naïve HIV-1-infected individuals. In this phase I study (NCT01610427), we collected blood samples from 22 ART-naïve HIV-1-infected adults. PBMCs were isolated and processed for ICS assay. The individual and combined effects of the following parameters were investigated: time between blood collection and PBMC processing (time-to-process: 2, 7 or 24 h); time between PBMC thawing and initiation of in vitro stimulation with HIV-1 antigens (resting-time: 0, 2, 6 and 18 h); and duration of antigen-stimulation in PBMC cultures (stimulation-time: 6h or overnight). The cell recovery after thawing, cell viability after ICS and magnitude of HIV-specific CD8(+) T-cell responses were considered to determine the optimal combination of process conditions. The impact of time-to-process (2 or 4 h) on HIV-specific CD8(+) T-cell responses was also assessed in a whole blood ICS assay. A higher quality of cells in terms of recovery and viability (up to 81% and >80% respectively) was obtained with shorter time-to-process (less than 7 h) and resting-time (less than 2 h) intervals. Longer (overnight) rather than shorter (6 h) stimulation-time intervals increased the frequency of CD8(+)-specific T-cell responses using ICS in PBMCs without change of the functionality. The CD8(+) specific T-cell responses detected using fresh whole blood showed a good correlation with the responses detected using frozen PBMCs. Our results support the need of standardized procedures for the evaluation of CMI responses, especially in HIV-1-infected, ART-naïve patients.
Collapse
Affiliation(s)
| | - Frédéric Clément
- Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Frédéric Renaud
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Vivien Le Bras
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | | | - Wivine Burny
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Philippe Moris
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Clarisse Lorin
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Alix Collard
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - François Roman
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Michel Janssens
- GlaxoSmithKline Vaccines, Rue de l'institut 89, Rixensart 1330, Belgium.
| | - Linos Vandekerckhove
- ARC (AIDS Reference Center), Department of Internal Medicine, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Kopycinski J, Hayes P, Ashraf A, Cheeseman H, Lala F, Czyzewska-Khan J, Spentzou A, Gill DK, Keefer MC, Excler JL, Fast P, Cox J, Gilmour J. Broad HIV epitope specificity and viral inhibition induced by multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2014; 9:e90378. [PMID: 24609066 PMCID: PMC3946500 DOI: 10.1371/journal.pone.0090378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
A correlation between in vivo and in vitro virus control mediated by CD8+ T-cell populations has been demonstrated by CD8 T-cell-mediated inhibition of HIV-1 and SIV replication in vitro in peripheral blood mononuclear cells (PBMCs) from infected humans and non-human primates (NHPs), respectively. Here, the breadth and specificity of T-cell responses induced following vaccination with replication-defective adenovirus serotype 35 (Ad35) vectors containing a fusion protein of Gag, reverse transcriptase (RT), Integrase (Int) and Nef (Ad35-GRIN) and Env (Ad35-ENV), derived from HIV-1 subtype A isolates, was assessed in 25 individuals. The vaccine induced responses to a median of 4 epitopes per vaccinee. We correlated the CD8 responses to conserved vs. variable regions with the ability to inhibit a panel of 7 HIV-1 isolates representing multiple clades in a virus inhibition assay (VIA). The results indicate that targeting immunodominant responses to highly conserved regions of the HIV-1 proteome may result in an increased ability to inhibit multiple clades of HIV-1 in vitro. The data further validate the use of the VIA to screen and select future HIV vaccine candidates. Moreover, our data suggest that future T cell-focused vaccine design should aim to induce immunodominant responses to highly conserved regions of the virus.
Collapse
Affiliation(s)
- Jakub Kopycinski
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
- * E-mail:
| | - Peter Hayes
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Ambreen Ashraf
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Hannah Cheeseman
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Francesco Lala
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Justyna Czyzewska-Khan
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Aggeliki Spentzou
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Dilbinder K. Gill
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Michael C. Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | | | - Josephine Cox
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
28
|
Statistical methods for the assessment of EQAPOL proficiency testing: ELISpot, Luminex, and Flow Cytometry. J Immunol Methods 2014; 409:72-81. [PMID: 24456626 DOI: 10.1016/j.jim.2014.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/20/2013] [Accepted: 01/10/2014] [Indexed: 11/21/2022]
Abstract
In September 2011 Duke University was awarded a contract to develop the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) External Quality Assurance Program Oversight Laboratory (EQAPOL). Through EQAPOL, proficiency testing programs are administered for Interferon-γ (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot), Intracellular Cytokine Staining Flow Cytometry (ICS) and Luminex-based cytokine assays. One of the charges of the EQAPOL program was to apply statistical methods to determine overall site performance. We utilized various statistical methods for each program to find the most appropriate for assessing laboratory performance using the consensus average as the target value. Accuracy ranges were calculated based on Wald-type confidence intervals, exact Poisson confidence intervals, or via simulations. Given the nature of proficiency testing data, which has repeated measures within donor/sample made across several laboratories; the use of mixed effects models with alpha adjustments for multiple comparisons was also explored. Mixed effects models were found to be the most useful method to assess laboratory performance with respect to accuracy to the consensus. Model based approaches to the proficiency testing data in EQAPOL will continue to be utilized. Mixed effects models also provided a means of performing more complex analyses that would address secondary research questions regarding within and between laboratory variability as well as longitudinal analyses.
Collapse
|
29
|
Schmidt C, Jaoko W, Omosa-Manyonyi G, Kaleebu P, Mpendo J, Nanvubya A, Karita E, Bayingana R, Bekker LG, Chomba E, Kilembe W, Nchabeleng M, Nyombayire J, Stevens G, Chetty P, Lehrman J, Cox J, Allen S, Dally L, Smith C, Fast PE. Long-term follow-up of study participants from prophylactic HIV vaccine clinical trials in Africa. Hum Vaccin Immunother 2013; 10:714-23. [PMID: 24374365 DOI: 10.4161/hv.27559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long-term safety is critical for the development and later use of a vaccine to prevent HIV/AIDS. Likewise, the persistence of vaccine-induced antibodies and their impact on HIV testing must be established. IAVI has sponsored several Phase I and IIA HIV vaccine trials enrolling healthy, HIV-seronegative African volunteers. Plasmid DNA and viral vector based vaccines were tested. No vaccine-related serious adverse events were reported. After completion of vaccine trials conducted between 2001-2007, both vaccine and placebo recipients were offered enrolment into an observational long-term follow-up study (LTFU) to monitor potential late health effects and persistence of immune responses. At scheduled 6-monthly clinic visits, a health questionnaire was administered; clinical events were recorded and graded for severity. Blood was drawn for HIV testing and cellular immune assays. 287 volunteers were enrolled; total follow-up after last vaccination was 1463 person years (median: 5.2 years). Ninety-three (93)% of volunteers reported good health at their last LTFU visit. Infectious diseases and injuries accounted for almost 50% of the 175 reported clinical events, of which over 95% were mild or moderate in severity. There were 30 six pregnancies, six incident HIV infections and 14 volunteers reported cases of social harm. Persistence of immune responses was rare. No safety signal was identified. No potentially vaccine-related medical condition, no immune mediated disease, or malignancy was reported. HIV vaccines studied in these trials had a low potential of induction of persisting HIV antibodies.
Collapse
Affiliation(s)
| | - Walter Jaoko
- Kenya AIDS Vaccine Initiative (KAVI); University of Nairobi, Kenya
| | | | | | | | | | | | | | | | - Elwyn Chomba
- Zambia Emory HIV Research Program (ZEHRP); Lusaka, Zambia
| | | | - Maphoshane Nchabeleng
- Department of Medical Microbiology; University of Limpopo, Medunsa Campus; Pretoria, South Africa
| | | | - Gwynn Stevens
- IAVI; Clinical (Immunology) Laboratory; Parktown, South Africa
| | - Paramesh Chetty
- IAVI; Clinical (Immunology) Laboratory; Parktown, South Africa
| | | | - Josephine Cox
- IAVI; Human Immunology Laboratory (HIL); Imperial College; London, UK
| | | | - Len Dally
- EMMES: The EMMES Corporation; Rockville, MD USA
| | - Carol Smith
- EMMES: The EMMES Corporation; Rockville, MD USA
| | | |
Collapse
|
30
|
Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol 2013; 2013:637649. [PMID: 24319467 PMCID: PMC3844203 DOI: 10.1155/2013/637649] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay has advanced into a useful and widely applicable tool for the evaluation of T-cell responses in both humans and animal models of diseases and/or vaccine candidates. Using synthetic peptides (either individually or as overlapping peptide mixtures) or whole antigens, total lymphocyte or isolated T-cell subset responses can be assessed either after short-term stimulation (standard ELISPOT) or after their expansion during a 10-day culture (cultured ELISPOT). Both assays detect different antigen-specific immune responses allowing the analysis of effector memory T cells and central memory T cells. This paper describes the principle of ELISPOT assays and discusses their application in the evaluation of immune correlates of clinical interest with a focus on the vaccine field.
Collapse
|
31
|
Kløverpris HN, Jackson A, Handley A, Hayes P, Gilmour J, Riddell L, Chen F, Atkins M, Boffito M, Walker BD, Ackland J, Sullivan M, Goulder P. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals. PLoS One 2013; 8:e74389. [PMID: 24124451 PMCID: PMC3790804 DOI: 10.1371/journal.pone.0074389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022] Open
Abstract
Background HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation. Methodology We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS). Results The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16). Conclusion/Significance Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required. Name of Registry ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search
Collapse
Affiliation(s)
- Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: ,
| | - Akil Jackson
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northhamptonshire Healthcare National Health Service Trust, Northhampton General Hospital, Cliftonville, Northhampton, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Mark Atkins
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Marta Boffito
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Maryland, Chevy Chase, Maryland, United States of America
| | - Jim Ackland
- Global Biosolutions, Craigeburn, Victoria, Australia
| | - Mark Sullivan
- Medicines Development, Melbourne, Victoria, Australia
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
32
|
Mehendale S, Thakar M, Sahay S, Kumar M, Shete A, Sathyamurthi P, Verma A, Kurle S, Shrotri A, Gilmour J, Goyal R, Dally L, Sayeed E, Zachariah D, Ackland J, Kochhar S, Cox JH, Excler JL, Kumaraswami V, Paranjape R, Ramanathan VD. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised Trial in HIV-uninfected Indian volunteers. PLoS One 2013; 8:e55831. [PMID: 23418465 PMCID: PMC3572184 DOI: 10.1371/journal.pone.0055831] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
Study Design A randomized, double-blind, placebo controlled phase I trial. Methods The trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of prime-boost vaccination regimens with either 2 doses of ADVAX, a DNA vaccine containing Chinese HIV-1 subtype C env gp160, gag, pol and nef/tat genes, as a prime and 2 doses of TBC-M4, a recombinant MVA encoding Indian HIV-1 subtype C env gp160, gag, RT, rev, tat, and nef genes, as a boost in Group A or 3 doses of TBC-M4 alone in Group B participants. Out of 16 participants in each group, 12 received vaccine candidates and 4 received placebos. Results Both vaccine regimens were found to be generally safe and well tolerated. The breadth of anti-HIV binding antibodies and the titres of anti-HIV neutralizing antibodies were significantly higher (p<0.05) in Group B volunteers at 14 days post last vaccination. Neutralizing antibodies were detected mainly against Tier-1 subtype B and C viruses. HIV-specific IFN-γ ELISPOT responses were directed mostly to Env and Gag proteins. Although the IFN-γ ELISPOT responses were infrequent after ADVAX vaccinations, the response rate was significantly higher in group A after 1st and 2nd MVA doses as compared to the responses in group B volunteers. However, the priming effect was short lasting leading to no difference in the frequency, breadth and magnitude of IFN-γELISPOT responses between the groups at 3, 6 and 9 months post-last vaccination. Conclusions Although DNA priming resulted in enhancement of immune responses after 1st MVA boosting, the overall DNA prime MVA boost was not found to be immunologically superior to homologous MVA boosting. Trial Registration Clinical Trial Registry CTRI/2009/091/000051
Collapse
|
33
|
Safety and immunogenicity of DNA prime and modified vaccinia ankara virus-HIV subtype C vaccine boost in healthy adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:397-408. [PMID: 23345581 DOI: 10.1128/cvi.00637-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-γ ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4(+) phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A.
Collapse
|
34
|
Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, Bunce CA, Hay CM, Welsh S, Komaroff W, Hachaambwa L, Tarragona-Fiol T, Sayeed E, Zachariah D, Ackland J, Loughran K, Barin B, Cormier E, Cox JH, Fast P, Excler JL. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 2012; 7:e41936. [PMID: 22870265 PMCID: PMC3411704 DOI: 10.1371/journal.pone.0041936] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022] Open
Abstract
Background We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. Methods Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles. Results No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. Conclusion/Significance Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional. Trial Registration ClinicalTrials.gov NCT00851383
Collapse
Affiliation(s)
- Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mutua G, Sanders E, Mugo P, Anzala O, Haberer JE, Bangsberg D, Barin B, Rooney JF, Mark D, Chetty P, Fast P, Priddy FH. Safety and adherence to intermittent pre-exposure prophylaxis (PrEP) for HIV-1 in African men who have sex with men and female sex workers. PLoS One 2012; 7:e33103. [PMID: 22511916 PMCID: PMC3325227 DOI: 10.1371/journal.pone.0033103] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little is known about safety of and adherence to intermittent HIV PrEP regimens, which may be more feasible than daily dosing in some settings. We present safety and adherence data from the first trial of an intermittent PrEP regimen among Kenyan men who have sex with men (MSM) and female sex workers (FSW). METHODS/PRINCIPAL FINDINGS MSM and FSW were randomized to daily oral FTC/TDF or placebo, or intermittent (Monday, Friday and within 2 hours after sex, not to exceed one dose per day) oral FTC/TDF or placebo in a 2:1:2:1 ratio; volunteers were followed monthly for 4 months. Adherence was assessed with the medication event monitoring system (MEMS). Sexual activity data were collected via daily text message (SMS) queries and timeline followback interviews with a one-month recall period. Sixty-seven men and 5 women were randomized into the study. Safety was similar among all groups. Median MEMS adherence rates were 83% [IQR: 63-92] for daily dosing and 55% [IQR:28-78] for fixed intermittent dosing (p = 0.003), while adherence to any post-coital doses was 26% [IQR:14-50]. SMS response rates were low, which may have impaired measurement of post-coital dosing adherence. Acceptability of PrEP was high, regardless of dosing regimen. CONCLUSIONS/SIGNIFICANCE Adherence to intermittent dosing regimens, fixed doses, and in particular coitally-dependent doses, may be more difficult than adherence to daily dosing. However, intermittent dosing may still be appropriate for PrEP if intracellular drug levels, which correlate with prevention of HIV acquisition, can be attained with less than daily dosing and if barriers to adherence can be addressed. Additional drug level data, qualitative data on adherence barriers, and better methods to measure sexual activity are necessary to determine whether adherence to post-coital PrEP could be comparable to more standard regimens. TRIAL REGISTRATION ClinicalTrials.gov NCT00971230.
Collapse
Affiliation(s)
- Gaudensia Mutua
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | - Eduard Sanders
- Kenya Medical Research Institute, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Headington, United Kingdom
| | - Peter Mugo
- Kenya Medical Research Institute, Kilifi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | - Jessica E. Haberer
- Massachusetts General Hospital Center for Global Health, Boston, Massachusetts, United States of America
| | - David Bangsberg
- Massachusetts General Hospital Center for Global Health, Boston, Massachusetts, United States of America
| | - Burc Barin
- The EMMES Corporation, Rockville, Maryland, United States of America
| | | | - David Mark
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Paramesh Chetty
- International AIDS Vaccine Initiative, Johannesburg, South Africa
| | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Frances H. Priddy
- International AIDS Vaccine Initiative, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
During more than 25 years of application in immunological sciences, ELISPOT has been established as a routine, robust, versatile, and reliable assay. From basic research to clinical immune monitoring, ELISPOT is being used to address the quantification and (to a lesser extent) functional characterization of immune cells secreting different molecules in the context of health and disease, immune intervention, and therapy in humans and other species [Kalyuzhny (Ed.) (2005) Handbook of Elispot: methods and protocols, Vol. 302, Humana Press Inc., Totowa, NJ]. Over the last decade, ELISPOT assays have been increasingly implemented as an immune-monitoring tool in clinical trials [Schmittel et al. J Immunother 23:289-295, 2000; Whiteside Immunol Invest 29:149-162, 2000; Nagata et al. Ann N Y Acad Sci 1037:10-15, 2004; Cox et al. (2005) Cellular immune assays for evaluation of vaccine efficacy in developing countries., In Manual of Clinical Immunology Laboratory (Rose, N. R., Hamilton, R. G., and Detrick, B., Eds.), p 301, ASM Press, Washington, DC; Cox et al. Methods 38:274-282, 2006]. While the principles of the original protocol have changed little since its first introduction [Czerkinsky J Immunol Methods 110:29-36, 1988], individual laboratories have adapted assay procedures based on experimental needs, availability of reagents and equipment, obtained recommendations, and gained experience, leading to a wide disparity of applied ELISPOT protocols with inevitable consequences. This chapter addresses the resulting challenges for ELISPOT use in clinical trial settings, and discusses the influence of harmonization strategies as a tool for overcoming these challenges. Furthermore, harmonization is discussed in the context of assay standardization and validation strategies.
Collapse
|
37
|
Butterfield LH, Potter DM, Kirkwood JM. Multiplex serum biomarker assessments: technical and biostatistical issues. J Transl Med 2011; 9:173. [PMID: 21989127 PMCID: PMC3200183 DOI: 10.1186/1479-5876-9-173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/11/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Identification of predictive and prognostic biomarkers for patients with disease and undergoing different therapeutic options is a very active area of investigation. Many of these studies seek biomarkers among circulating proteins accessed in blood. Many levels of standardization in materials and procedures have been identified which can impact the resulting data. METHODS Here, we have observed unexpected variability in levels of commonly tested analytes in serum which were processed and stored under standardized conditions. We have identified apparent changes in cytokine, chemokine and growth factor levels detected by multiplex Luminex assay in melanoma patient and healthy donor serum samples, over storage time at -80°C. Controls included Luminex kit standards, multiplexed cytokine standards and WHO cytokine controls. Data were analyzed by Wilcoxon rank-sum testing and Spearman's test for correlations. RESULTS The interpretation of these changes is confounded by lot-to-lot kit standard curve reagent changes made by a single manufacturer of Luminex kits. CONCLUSIONS This study identifies previously unknown sources of variation in a commonly used biomarker assay, and suggests additional levels of controls needed for identification of true changes in circulating protein levels.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
| | - Douglas M Potter
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- Depament of Biostatistics, University of Pittsburgh, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, 5117 Centre Avenue, suite 1.27, Pittsburgh, PA 15213, USA
| |
Collapse
|
38
|
Conlan JW. Tularemia vaccines: recent developments and remaining hurdles. Future Microbiol 2011; 6:391-405. [PMID: 21526941 DOI: 10.2217/fmb.11.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a facultative intracellular bacterial pathogen of humans and other mammals. Its inhaled infectious dose is very low and can result in very high mortality. Historically, subsp. tularensis was developed as a biological weapon and there are now concerns about its abuse as such by terrorists. A live attenuated vaccine developed pragmatically more than half a century ago from the less virulent holarctica subsp. is the sole prophylactic available, but it remains unlicensed. In recent years several other potential live, killed and subunit vaccine candidates have been developed and tested in mice for their efficacy against respiratory challenge with subsp. tularensis. This article will review these vaccine candidates and the development hurdles they face.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| |
Collapse
|
39
|
Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 2011; 10:299-306. [PMID: 21434798 DOI: 10.1586/erv.10.169] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme-linked immunosorbent spot (ELISpot) assay is one of the most commonly used methods to measure antigen-specific T cells in both mice and humans. Some of the primary reasons for the popularity of the method are that ELISpot is highly quantitative, can measure a broad range of magnitudes of response and is capable of assessing critical cellular immune-related activities such as IFN-γ secretion and granzyme B release. Furthermore, ELISpot is adaptable not only to the evaluation of a variety of T-cell functions, but also to B cells and innate immune cells. It is no wonder that ELISpot has evolved from a research tool to a clinical assay. Recent Phase I and II studies of cancer vaccines, tested in a variety of malignancies, have suggested that ELISpot may be a useful biomarker assay to predict clinical benefit after therapeutic immune modulation. This article will discuss the most common applications of ELISpot, overview the efforts that have been undertaken to standardize the assay and apply the method in the analysis of human clinical trials, and describe some important steps in the process of developing a clinical-grade ELISpot.
Collapse
Affiliation(s)
- Meredith Slota
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, 815 Mercer Street, University of Washington, Seattle, WA 98058, USA
| | | | | | | |
Collapse
|
40
|
Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Håkansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML. Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res 2011; 17:3064-76. [PMID: 21558394 DOI: 10.1158/1078-0432.ccr-10-2234] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To facilitate development of innovative immunotherapy approaches, especially for treatment concepts exploiting the potential benefits of personalized therapy, there is a need to develop and validate tools to identify patients who can benefit from immunotherapy. Despite substantial effort, we do not yet know which parameters of antitumor immunity to measure and which assays are optimal for those measurements. EXPERIMENTAL DESIGN The iSBTc-SITC (International Society for Biological Therapy of Cancer-Society for Immunotherapy of Cancer), FDA (Food and Drug Administration), and NCI (National Cancer Institute) partnered to address these issues for immunotherapy of cancer. Here, we review the major challenges, give examples of approaches and solutions, and present our recommendations. RESULTS AND CONCLUSIONS Although specific immune parameters and assays are not yet validated, we recommend following standardized (accurate, precise, and reproducible) protocols and use of functional assays for the primary immunologic readouts of a trial; consideration of central laboratories for immune monitoring of large, multi-institutional trials; and standardized testing of several phenotypic and functional potential potency assays specific to any cellular product. When reporting results, the full QA (quality assessment)/QC (quality control) should be conducted and selected examples of truly representative raw data and assay performance characteristics should be included. Finally, to promote broader analysis of multiple aspects of immunity, and gather data on variability, we recommend that in addition to cells and serum, RNA and DNA samples be banked (under standardized conditions) for later testing. We also recommend that sufficient blood be drawn to allow for planned testing of the primary hypothesis being addressed in the trial, and that additional baseline and posttreatment blood is banked for testing novel hypotheses (or generating new hypotheses) that arise in the field.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gill DK, Huang Y, Levine GL, Sambor A, Carter DK, Sato A, Kopycinski J, Hayes P, Hahn B, Birungi J, Tarragona-Fiol T, Wan H, Randles M, Cooper AR, Ssemaganda A, Clark L, Kaleebu P, Self SG, Koup R, Wood B, McElrath MJ, Cox JH, Hural J, Gilmour J. Equivalence of ELISpot assays demonstrated between major HIV network laboratories. PLoS One 2010; 5:e14330. [PMID: 21179404 PMCID: PMC3001861 DOI: 10.1371/journal.pone.0014330] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/22/2010] [Indexed: 12/29/2022] Open
Abstract
Background The Comprehensive T Cell Vaccine Immune Monitoring Consortium (CTC-VIMC) was created to provide standardized immunogenicity monitoring services for HIV vaccine trials. The ex vivo interferon-gamma (IFN-γ) ELISpot is used extensively as a primary immunogenicity assay to assess T cell-based vaccine candidates in trials for infectious diseases and cancer. Two independent, GCLP-accredited central laboratories of CTC-VIMC routinely use their own standard operating procedures (SOPs) for ELISpot within two major networks of HIV vaccine trials. Studies are imperatively needed to assess the comparability of ELISpot measurements across laboratories to benefit optimal advancement of vaccine candidates. Methods We describe an equivalence study of the two independently qualified IFN-g ELISpot SOPs. The study design, data collection and subsequent analysis were managed by independent statisticians to avoid subjectivity. The equivalence of both response rates and positivity calls to a given stimulus was assessed based on pre-specified acceptance criteria derived from a separate pilot study. Findings Detection of positive responses was found to be equivalent between both laboratories. The 95% C.I. on the difference in response rates, for CMV (−1.5%, 1.5%) and CEF (−0.4%, 7.8%) responses, were both contained in the pre-specified equivalence margin of interval [−15%, 15%]. The lower bound of the 95% C.I. on the proportion of concordant positivity calls for CMV (97.2%) and CEF (89.5%) were both greater than the pre-specified margin of 70%. A third CTC-VIMC central laboratory already using one of the two SOPs also showed comparability when tested in a smaller sub-study. Interpretation The described study procedure provides a prototypical example for the comparison of bioanalytical methods in HIV vaccine and other disease fields. This study also provides valuable and unprecedented information for future vaccine candidate evaluations on the comparison and pooling of ELISpot results generated by the CTC-VIMC central core laboratories.
Collapse
Affiliation(s)
- Dilbinder K Gill
- International AIDS Vaccine Initiative Human Immunology Laboratory, Imperial College, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Belló I, Cilio CM, Wong FS, Schloot NC. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin Exp Immunol 2010; 163:33-49. [PMID: 20939860 DOI: 10.1111/j.1365-2249.2010.04272.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autoimmune T cell responses directed against insulin-producing β cells are central to the pathogenesis of type 1 diabetes (T1D). Detection of such responses is therefore critical to provide novel biomarkers for T1D 'immune staging' and to understand the mechanisms underlying the disease. While different T cell assays are being developed for these purposes, it is important to optimize and standardize methods for processing human blood samples for these assays. To this end, we review data relevant to critical parameters in peripheral blood mononuclear cell (PBMC) isolation, (cryo)preservation, distribution and usage for detecting antigen-specific T cell responses. Based on these data, we propose recommendations on processing blood samples for T cell assays and identify gaps in knowledge that need to be addressed. These recommendations may be relevant not only for the analysis of T cell responses in autoimmune disease, but also in cancer and infectious disease, particularly in the context of clinical trials.
Collapse
Affiliation(s)
- R Mallone
- INSERM U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, Paris cedex 14, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weinberg A, Song LY, Wilkening CL, Fenton T, Hural J, Louzao R, Ferrari G, Etter PE, Berrong M, Canniff JD, Carter D, Defawe OD, Garcia A, Garrelts TL, Gelman R, Lambrecht LK, Pahwa S, Pilakka-Kanthikeel S, Shugarts DL, Tustin NB. Optimization of storage and shipment of cryopreserved peripheral blood mononuclear cells from HIV-infected and uninfected individuals for ELISPOT assays. J Immunol Methods 2010; 363:42-50. [PMID: 20888337 DOI: 10.1016/j.jim.2010.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/10/2010] [Accepted: 09/23/2010] [Indexed: 11/16/2022]
Abstract
Functional immunologic assays using cryopreserved peripheral blood mononuclear cells (PBMC) are influenced by blood processing, storage and shipment. The objective of this study was to compare the viability, recovery and ELISPOT results of PBMC stored and shipped in liquid nitrogen (LN/LN) or stored in LN and shipped on dry ice (LN/DI) or stored at -70°C for 3 to 12 weeks and shipped on DI (70/DI 3 to 12); and to assess the effect of donor HIV infection status on the interaction between storage/shipment and the outcome measures. PBMC from 12 HIV-infected and 12 uninfected donors showed that LN/LN conferred higher viability and recovery than LN/DI or 70/DI 3, 6, 9 or 12. LN/DI PBMC had higher viability than any 70/DI PBMC. The PBMC viability and recovery linearly decreased with the duration of storage at -70°C from 3 to 12 weeks. This effect was more pronounced in samples from HIV-infected than uninfected donors. Results of ELISPOT assays using CMV pp65, CEF and Candida albicans antigens were qualitatively and quantitatively similar across LN/LN, LN/DI and 70/DI 3. However, ELISPOT values significantly decreased with the duration of storage at -70°C both in HIV-infected and uninfected donors. ELISPOT results also decreased with PBMC viability <70%.
Collapse
Affiliation(s)
- Adriana Weinberg
- Infectious Diseases, University of Colorado Denver, Aurora, CO, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jaoko W, Karita E, Kayitenkore K, Omosa-Manyonyi G, Allen S, Than S, Adams EM, Graham BS, Koup RA, Bailer RT, Smith C, Dally L, Farah B, Anzala O, Muvunyi CM, Bizimana J, Tarragona-Fiol T, Bergin PJ, Hayes P, Ho M, Loughran K, Komaroff W, Stevens G, Thomson H, Boaz MJ, Cox JH, Schmidt C, Gilmour J, Nabel GJ, Fast P, Bwayo J. Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS One 2010; 5:e12873. [PMID: 20877623 PMCID: PMC2943475 DOI: 10.1371/journal.pone.0012873] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial Registration ClinicalTrials.gov NCT00124007
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adolescent
- Adult
- Antibodies, Viral/immunology
- Double-Blind Method
- Drug-Related Side Effects and Adverse Reactions
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Male
- Middle Aged
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Young Adult
- gag Gene Products, Human Immunodeficiency Virus/adverse effects
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/adverse effects
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Walter Jaoko
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Etienne Karita
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | | | - Susan Allen
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Soe Than
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Elizabeth M. Adams
- Vaccine Clinical Research Branch (VCRB), Vaccine Research Program (VRP)/Division of AIDS (DAIDS)/National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Carol Smith
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Len Dally
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Bashir Farah
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Claude M. Muvunyi
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | - Jean Bizimana
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | - Philip J. Bergin
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Martin Ho
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Kelley Loughran
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Wendy Komaroff
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Gwynneth Stevens
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Helen Thomson
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Mark J. Boaz
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Josephine H. Cox
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Claudia Schmidt
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gary J. Nabel
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
- * E-mail:
| | - Job Bwayo
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| |
Collapse
|
45
|
Vardas E, Kaleebu P, Bekker LG, Hoosen A, Chomba E, Johnson PR, Anklesaria P, Birungi J, Barin B, Boaz M, Cox J, Lehrman J, Stevens G, Gilmour J, Tarragona T, Hayes P, Lowenbein S, Kizito E, Fast P, Heald AE, Schmidt C. A phase 2 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 vaccine based on adeno-associated virus. AIDS Res Hum Retroviruses 2010; 26:933-42. [PMID: 20666584 DOI: 10.1089/aid.2009.0242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recombinant vaccine, tgAAC09, based on an adeno-associated virus serotype 2 (AAV2) vector encoding HIV-1 subtype C Gag, protease, and part of reverse transcriptase, induced robust T cell and antibody responses in nonhuman primates. In a previous phase I study in 80 healthy HIV-seronegative European and Indian adults, the vaccine was generally safe, well tolerated, and modestly immunogenic when administered once at doses up to 3 x 10(11) DRP. This phase II double-blind, randomized, placebo-controlled trial tested two administrations and a higher dosage of tgAAC009. Ninety-one healthy HIV-seronegative adults from three African countries were given one of three dosage levels of tgAAC09 (3 x 10(10), 3 x 10(11), or 3 x 10(12) DRP) intramuscularly, either at a 6- or 12-month interval; follow-up was 18 months. Overall, 65% and 57% of vaccine recipients experienced local and systemic signs and symptoms, respectively, most being mild. Frequency and severity were not dose related and were similar to those in placebo recipients. No vaccine-related serious adverse events were reported. Overall, HIV-specific T cell responses were detected by IFN-gamma ELISPOT in 17/69 (25%) vaccine recipients with 38% (10/26) responders in the highest dosage group. The response rate improved significantly with boosting at 6, but not 12 months, in the 3 x 10(11) and 3 x 10(12) dosage groups only. Neutralizing antibody titers to the AAV2 did not alter the frequency of immune responses to HIV. Two doses of tgAAC09 were well tolerated at the dosage levels given. Fewer than half the recipients of the highest vaccine dosage, 3 x 10(12) DRP, had T cell responses to HIV.
Collapse
Affiliation(s)
- Eftyhia Vardas
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Pontiano Kaleebu
- Uganda Virus Research Institute—International AIDS Vaccine Initiative (UVRI-IAVI) HIV Vaccine Program, Entebbe, Uganda
- MRC-UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | - Anwar Hoosen
- Department of Medical Microbiology, Medunsa, Pretoria, South Africa
| | - Elwyn Chomba
- Zambia Emory HIV Research Program, Lusaka, Zambia
| | - Philip R. Johnson
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and Columbus Children's Research Institute, Columbus, Ohio
| | | | - Josephine Birungi
- Uganda Virus Research Institute—International AIDS Vaccine Initiative (UVRI-IAVI) HIV Vaccine Program, Entebbe, Uganda
| | - Burc Barin
- The EMMES Corporation, Rockville, Maryland
| | - Mark Boaz
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Josephine Cox
- International AIDS Vaccine Initiative, New York, New York
| | | | - Gwynn Stevens
- IAVI Southern Africa Regional Office, Johannesburg, South Africa
| | - Jill Gilmour
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Tony Tarragona
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Peter Hayes
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Sarah Lowenbein
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Eva Kizito
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, UK
| | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York
| | | | | |
Collapse
|
46
|
Chen J, Bruns AH, Donnelly HK, Wunderink RG. Comparative in vitro stimulation with lipopolysaccharide to study TNFα gene expression in fresh whole blood, fresh and frozen peripheral blood mononuclear cells. J Immunol Methods 2010; 357:33-7. [DOI: 10.1016/j.jim.2010.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 01/25/2010] [Accepted: 03/04/2010] [Indexed: 11/24/2022]
|
47
|
Parida SK, Magalhaes I, Dubois P, Janetzki S. Training in immunology of relevance to global health issues in resource poor settings. Eur J Immunol 2010; 40:1228-31. [DOI: 10.1002/eji.201090022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Patrice Dubois
- Immunovacc Consulting, Brussels, Belgium and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
48
|
Quality monitoring of HIV-1-infected and uninfected peripheral blood mononuclear cell samples in a resource-limited setting. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:910-8. [PMID: 20200187 DOI: 10.1128/cvi.00492-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccine and natural history studies are critically dependent on the ability to isolate, cryopreserve, and thaw peripheral blood mononuclear cell (PBMC) samples with a high level of quality and reproducibility. Here we characterize the yield, viability, phenotype, and function of PBMC from HIV-1-infected and uninfected Ugandans and describe measures to ascertain reproducibility and sample quality at the sites that perform cryopreservation. We have developed a comprehensive internal quality control program to monitor processing, including components of method validation. Quality indicators for real-time performance assessment included the time from venipuncture to cryopreservation, time for PBMC processing, yield of PBMC from whole blood, and viability of the PBMC before cryopreservation. Immune phenotype analysis indicated lowered B-cell frequencies following processing and cryopreservation for both HIV-1-infected and uninfected subjects (P < 0.007), but all other major lymphocyte subsets were unchanged. Long-term cryopreservation did not impact function, as unstimulated specimens exhibited low background and all specimens responded to staphylococcal enterotoxin B (SEB) by gamma interferon and interleukin-2 production, as measured by intracellular cytokine staining. Samples stored for more than 3 years did not decay with regard to yield or viability, regardless of HIV-1 infection status. These results demonstrate that it is possible to achieve the high level of quality necessary for vaccine trials and natural history studies in a resource-limited setting and provide strategies for laboratories to monitor PBMC processing performance.
Collapse
|
49
|
Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine. PLoS One 2010; 5:e8816. [PMID: 20111599 PMCID: PMC2810329 DOI: 10.1371/journal.pone.0008816] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/11/2009] [Indexed: 01/30/2023] Open
Abstract
Background We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B'/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers. Methodology/Principal Findings ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1×107 (low), 5×107 (mid), or 2.5×108 pfu (high)] volunteers were randomized in a 3∶1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNγ ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA. ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNγ ELISpot response rate to any HIV antigen was 0/12 (0%) in the placebo group, 3/12 (25%) in the low dosage group, 6/12 (50%) in the mid dosage group, and 8/13 (62%) in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%), 8/13 (62%), 6/12 (50%) and 10/13 (77%) in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement with the ability to neutralize HIV-1 SF162 in vitro. Two volunteers mounted antibodies that were able to neutralize clade-matched viruses. Conclusions/Significance ADMVA was well-tolerated and elicited durable humoral and cellular immune responses. Trial Registration Clinicaltrials.gov NCT00252148
Collapse
|
50
|
Vasan S, Schlesinger SJ, Huang Y, Hurley A, Lombardo A, Chen Z, Than S, Adesanya P, Bunce C, Boaz M, Boyle R, Sayeed E, Clark L, Dugin D, Schmidt C, Song Y, Seamons L, Dally L, Ho M, Smith C, Markowitz M, Cox J, Gill DK, Gilmour J, Keefer MC, Fast P, Ho DD. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine. PLoS One 2010; 5:e8617. [PMID: 20111582 PMCID: PMC2799527 DOI: 10.1371/journal.pone.0008617] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/11/2009] [Indexed: 01/20/2023] Open
Abstract
Background We conducted a Phase I dose escalation trial of ADVAX, a DNA-based candidate HIV-1 vaccine expressing Clade C/B' env, gag, pol, nef, and tat genes. Sequences were derived from a prevalent circulating recombinant form in Yunnan, China, an area of high HIV-1 incidence. The objective was to evaluate the safety and immunogenicity of ADVAX in human volunteers. Methodology/Principal Findings ADVAX or placebo was administered intramuscularly at months 0, 1 and 3 to 45 healthy volunteers not at high risk for HIV-1. Three dosage levels [0.2 mg (low), 1.0 mg (mid), and 4.0 mg (high)] were tested. Twelve volunteers in each dosage group were assigned to receive ADVAX and three to receive placebo in a double-blind design. Subjects were followed for local and systemic reactogenicity, adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA. Cellular immunogenicity was assessed by a validated IFNγ ELISpot assay and intracellular cytokine staining. ADVAX was safe and well-tolerated, with no vaccine-related serious adverse events. Local and systemic reactogenicity events were reported by 64% and 42% of vaccine recipients, respectively. The majority of events were mild. The IFNγ ELISpot response rates to any HIV antigen were 0/9 (0%) in the placebo group, 3/12 (25%) in the low-dosage group, 4/12 (33%) in the mid-dosage group, and 2/12 (17%) in the high-dosage group. Overall, responses were generally transient and occurred to each gene product, although volunteers responded to single antigens only. Binding antibodies to gp120 were not detected in any volunteers, and HIV seroconversion did not occur. Conclusions/Significance ADVAX delivered intramuscularly is safe, well-tolerated, and elicits modest but transient cellular immune responses. Trial Registration Clinicaltrials.gov NCT00249106
Collapse
Affiliation(s)
- Sandhya Vasan
- Aaron Diamond AIDS Research Center, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|