1
|
Lye PY, Noor SM, Shohaimi SA, Junoh NF, Tan SC, Iwamoto S, Kotani E, Norazmi MN, Nagamine T, Mori H, Liew MW. Process development for quantitation and vaccine efficacy assessment of recombinant hemagglutinin-neuraminidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Pérez-Hernández M, Gadea I, Escribano J, Tabarés E, Gómez-Sebastián S. Expression and characterization of the gD protein of HSV-2 fused to the tetramerization domain of the transcription factor p53. Protein Expr Purif 2015. [DOI: 10.1016/j.pep.2015.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Gómez-Sebastián S, Nuñez MC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R, Kahl A, Wigdorovitz A, Parreño V, Escribano JM. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol 2012; 12:59. [PMID: 22953695 PMCID: PMC3444942 DOI: 10.1186/1472-6750-12-59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background Single-domain antibodies (sdAbs), also known as nanobodies or VHHs, are characterized by high stability and solubility, thus maintaining the affinity and therapeutic value provided by conventional antibodies. Given these properties, VHHs offer a novel alternative to classical antibody approaches. To date, VHHs have been produced mainly in E. coli, yeast, plants and mammalian cells. To apply the single-domain antibodies as a preventive or therapeutic strategy to control rotavirus infections in developing countries (444,000 deaths in children under 5 years of age) has to be minimized their production costs. Results Here we describe the highly efficient expression of functional VHHs by the Improved Baculovirus Expression System (IBES® technology), which uses a baculovirus expression vector in combination with Trichoplusia ni larvae as living biofactories. Two VHHs, named 3B2 and 2KD1, specific for the inner capsid protein VP6 of Group A rotavirus, were expressed in insect larvae. The IBES® technology achieved very high expression of 3B2 and 2KD1, reaching 2.62% and 3.63% of the total soluble protein obtained from larvae, respectively. These expression levels represent up to 257 mg/L of protein extract after insect processing (1 L extract represents about 125 g of insect biomass or about 375 insect larvae). Larva-derived antibodies were fully functional when tested in vitro and in vivo, neutralizing Group A rotaviruses and protecting offspring mice against rotavirus-induced diarrhea. Conclusions Our results open up the possibility of using insects as living biofactories (IBES® technology) for the cost-efficient production of these and other fully functional VHHs to be used for diagnostic or therapeutic purposes, thereby eliminating concerns regarding the use of bacterial or mammalian cells. To the best of our knowledge, this is the first time that insects have been used as living biofactories to produce a VHH molecule.
Collapse
Affiliation(s)
- Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zoth SC, Gómez E, Carballeda JM, Carrillo E, Berinstein A. Expression of a secreted version of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Vet Diagn Invest 2011; 23:519-23. [DOI: 10.1177/1040638711404153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus (NDV) constitutes, together with the fusion glycoprotein, the main surface antigen of this avian pathogen, which causes a highly contagious disease, relevant economically worldwide. The purpose of this work was to obtain the HN glycoprotein as a soluble antigen in culture supernatants of recombinant baculovirus-infected Spodoptera frugiperda (Sf9) cells and to evaluate its application to the development of a recombinant enzyme-linked immunosorbent assay (rELISA) for the analysis of chicken sera. A transfer vector for baculovirus containing the sequence of a melittin signal peptide was constructed and the sequence coding for HN protein without its own signal peptide was cloned. The recombinant protein was secreted and recovered easily from the culture medium of Sf9-infected cells. The recombinant protein was evaluated as antigen for ELISA coating the plates with the recovered HN using 79 positive and 142 negative samples. The Cohen kappa value resulted 0.91, indicating excellent agreement between the rELISA and the hemagglutinin inhibition tests. The rELISA was also compared with a commercial ELISA, finding high levels of agreement between both assays. The present results show that the cloning strategy developed yielded the HN protein free in the cell culture supernatant and that the recombinant protein retained its reactivity with anti-NDV HN antibodies in chicken sera.
Collapse
Affiliation(s)
- Silvina Chimeno Zoth
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina (Chimeno Zoth, Gómez, Carballeda, Carrillo, Berinstein)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad de Buenos Aires, Argentina (Chimeno Zoth, Carballeda, Carrillo, Berinstein)
| | - Evangelina Gómez
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina (Chimeno Zoth, Gómez, Carballeda, Carrillo, Berinstein)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad de Buenos Aires, Argentina (Chimeno Zoth, Carballeda, Carrillo, Berinstein)
| | - Juan Manuel Carballeda
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina (Chimeno Zoth, Gómez, Carballeda, Carrillo, Berinstein)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad de Buenos Aires, Argentina (Chimeno Zoth, Carballeda, Carrillo, Berinstein)
| | - Elisa Carrillo
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina (Chimeno Zoth, Gómez, Carballeda, Carrillo, Berinstein)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad de Buenos Aires, Argentina (Chimeno Zoth, Carballeda, Carrillo, Berinstein)
| | - Analía Berinstein
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnologia Agropecuaria, Castelar, Buenos Aires, Argentina (Chimeno Zoth, Gómez, Carballeda, Carrillo, Berinstein)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad de Buenos Aires, Argentina (Chimeno Zoth, Carballeda, Carrillo, Berinstein)
| |
Collapse
|
6
|
Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53. [PMID: 20843198 DOI: 10.1586/erm.10.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identification of pathogens or antibody response to pathogens in human and animals modulates the treatment strategies for naive population and subsequent infections. Diseases can be controlled and even eradicated based on the epidemiology and effective prophylaxis, which often depends on development of efficient diagnostics. In addition, combating newly emerging diseases in human as well as animal healthcare is challenging and is dependent on developing safe and efficient diagnostics. Detection of antibodies directed against specific antigens has been the method of choice for documenting prior infection. Other than zoonosis, development of inexpensive vaccines and diagnostics is a unique problem in animal healthcare. The advent of recombinant DNA technology and its application in the biotechnology industry has revolutionized animal healthcare. The use of recombinant DNA technology in animal disease diagnosis has improved the rapidity, specificity and sensitivity of various diagnostic assays. This is because of the absence of host cellular proteins in the recombinant derived antigen preparations that dramatically decrease the rate of false-positive reactions. Various recombinant products are used for disease diagnosis in veterinary medicine and this article discusses recombinant-based viral disease diagnostics currently used for detection of pathogens in livestock and poultry.
Collapse
|
7
|
Millán AFS, Gómez-Sebastián S, Nuñez MC, Veramendi J, Escribano JM. Human papillomavirus-like particles vaccine efficiently produced in a non-fermentative system based on insect larva. Protein Expr Purif 2010; 74:1-8. [PMID: 20600940 DOI: 10.1016/j.pep.2010.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC-Gobierno de Navarra), Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | |
Collapse
|