1
|
Dandapat S, Bindu S, Sharma GK, Panickan S, Nandi S, Saikumar G, Dhama K. Development and evaluation of a chicken embryo fibroblast cell culture based live attenuated Indian strain duck plague vaccine. Vet Q 2024; 44:1-12. [PMID: 38726839 PMCID: PMC11089916 DOI: 10.1080/01652176.2024.2350668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/27/2024] [Indexed: 05/15/2024] Open
Abstract
Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.
Collapse
Affiliation(s)
- Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Gaurav Kumar Sharma
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sivasankar Panickan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sukdeb Nandi
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G. Saikumar
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
He S, Tian B, Cao H, Wang M, Cai D, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Mao S, Zhao X, Huang J, Zhu D, Jia R, Chen S, Liu M, Cheng A. CCCP inhibits DPV infection in DEF cells by attenuating DPV manipulated ROS, apoptosis, and mitochondrial stability. Poult Sci 2024; 103:103446. [PMID: 38377689 PMCID: PMC10891340 DOI: 10.1016/j.psj.2024.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Duck plague virus (DPV) is extremely infectious and lethal, so antiviral drugs are urgently needed. Our previous study shows that DPV infection with duck embryo fibroblast (DEF) induces reactive oxygen species (ROS) changes and promotes apoptosis. In this study, we tested the antiviral effect of the carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a common mitochondrial autophagy inducer. Our results demonstrated a dose-dependent anti-DPV effect of CCCP, CCCP-treatment blocked the intercellular transmission of DPV after infection, and we also proved that CCCP could have an antiviral effect up to 48 hpi. The addition of CCCP reversed the DPV-induced ROS changes, CCCP can inhibit virus-induced apoptosis; meanwhile, CCCP can affect mitochondrial fusion and activate mitophagy to inhibit DPV. In conclusion, CCCP can be an effective antiviral candidate against DPV.
Collapse
Affiliation(s)
- Shuyi He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Huanhuan Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Dongjie Cai
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - XinXin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China.
| |
Collapse
|
3
|
Wu Y, Liu L, Zhang M, Zhan H, Wang C, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. A Recombinant Duck Plague Virus Containing the ICP27 Deletion Marker Provides Robust Protection in Ducks. Microbiol Spectr 2023; 11:e0098323. [PMID: 37404171 PMCID: PMC10434260 DOI: 10.1128/spectrum.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Duck plague virus (DPV) is a member of Alphaherpesvirus genus and poses a major threat to waterfowl breeding. Genetic engineered vaccines that are capable of distinguishing naturally infected from vaccine-immunized animals are useful for eradicating duck plague. In this study, reverse genetics was used to develop an ICP27-deficient strain (CHv-ΔICP27), and its potential as a marker vaccination candidate was evaluated. The results showed that the CHv-ΔICP27 generated in this study exhibited good genetic stability in vitro and was highly attenuated both in vivo and in vitro. The level of neutralizing antibody generated by CHv-ΔICP27 was comparable to that induced by a commercial DPV vaccine, suggesting that it could protect ducks from virulent DPV attack. By using molecular identification techniques such as PCR, restriction fragment length polymorphism, immunofluorescence, Western blotting, and others, it is possible to differentiate the CHv-ΔICP27 from wild-type strains. Moreover, ICP27 can also be a potential target for the genetic engineering vaccine development of alphavirus or perhaps the entire herpesvirus family members due to the highly conservative of ICP27 protein in all herpesvirus family members. IMPORTANCE The development of distinguishable marker vaccines from natural infection is a key step toward eradicating duck plague. Here, we generated a recombinant DPV that carries an ICP27 deletion marker that could be easily distinguished from wild-type strain by molecular biological methods. It was highly attenuated in vitro and in vivo and could provide comparable protection to ducks after a single dose of immunizations, as commercial vaccines did. Our findings support the use of the ICP27-deficient virus as a marker vaccine for DPV control and future eradication.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Lu Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mengya Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Haichuan Zhan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Chenjia Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| |
Collapse
|
4
|
Liang Z, Guo J, Yuan S, Cheng Q, Zhang X, Liu Z, Wang C, Li Z, Hou B, Huang S, Wen F. Pathological and Molecular Characterization of a Duck Plague Outbreak in Southern China in 2021. Animals (Basel) 2022; 12:ani12243523. [PMID: 36552444 PMCID: PMC9774102 DOI: 10.3390/ani12243523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Duck plague (DP) is a highly contagious viral disease in ducks caused by the duck plague virus (DPV). The DPV, a member of Herpesviridae, poses a severe threat to the waterfowl farming industry worldwide. In this study, we reported a recent outbreak of DPV in domestic laying ducks at 310 days of age from southern China in December 2021. The gross lesion, histopathologic examination, molecular detection, and genetic characterization studies of DPV are described here. As a result, gross lesions such as an enlarged congestive spleen and liver were observed. Liver with vacuolar degeneration and small vacuoles and spleen with hemosiderosis were remarkable microscopic findings. Our results suggested that the liver had the highest viral load, followed by the trachea, pancreas, kidney, brain, spleen, and heart. In addition, DPV was successfully isolated in chicken embryo fibroblast cell culture and designated as DP-GD-305-21. The UL2, UL12, UL41, UL47, and LORF11 genes of DP-GD-305-21 shared a high nucleotide homology with the Chinese virulent (CHv) strain and the Chinese variant (CV) strain. In conclusion, this study reports the isolation and molecular characterization of DPV from a recent outbreak in southern China. Our results contributed to the understanding of the pathological and molecular characterization of currently circulating DPV in China.
Collapse
Affiliation(s)
- Zhipeng Liang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Correspondence: (J.G.); (F.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xinyu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhun Liu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528231, China
- Correspondence: (J.G.); (F.W.)
| |
Collapse
|
5
|
Kong J, Feng K, Zhao Q, Chen Y, Wang J, Chen S, Shao G, Liao L, Li Y, Xie Z, Zhang X, Xie Q. Pathogenicity and transmissibility studies on live attenuated duck enteritis virus vaccine in non-target species. Front Microbiol 2022; 13:979368. [DOI: 10.3389/fmicb.2022.979368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
In the second half of 2021, a highly pathogenic case occurred in a mixed chicken and duck family farm in Guangdong, China. After the duck flocks were immunized with live attenuated duck enteritis virus vaccine (live attenuated DEV vaccine), the chickens of the same farm showed clinical symptoms similar to duck enteritis, such as pericardial effusion, hepatic hemorrhagic spots, kidney enlargement, and intestinal bleeding, with mass mortality. The infection model of target animal tested, as well as the non-target species, was established according to the risk of live attenuated DEV vaccine and transmission in chickens. Live attenuated DEV vaccine was initially replicated in host animals, released the virus, and effectively colonized in the common environment, according to birds challenged experiments. There was evidence to suggest the mode of transmission of duck enteritis virus, and horizontal transmission is the main route of DEV transmission. In addition, high levels of virus titer were detected in chicken embryos and different tissues of SPF chickens. Different degrees of pathological damage occurred in the tissue of chickens. After the SPF chickens were inoculated with live attenuated DEV vaccine, different degrees of virulence were exhibited, pointing to a potential risk to other domestic bird species.
Collapse
|
6
|
Apinda N, Muenthaisong A, Chomjit P, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Yao Y, Nair V, Sthitmatee N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing Pasteurella multocida OmpH Gene. Vaccines (Basel) 2022; 10:vaccines10081358. [PMID: 36016245 PMCID: PMC9415155 DOI: 10.3390/vaccines10081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Duck enteritis virus and Pasteurella multocida are major duck pathogens that induce duck plague and fowl cholera, respectively, in ducks and other waterfowl populations, leading to high levels of morbidity and mortality. Immunization with live attenuated DEV vaccine containing P. multocida outer membrane protein H (OmpH) can provide the most effective protection against these two infectious diseases in ducks. We have recently reported the construction of recombinant DEV expressing P. multocida ompH gene using the CRISPR/Cas9 gene editing strategy with the goal of using it as a bivalent vaccine that can simultaneously protect against both infections. Here we describe the findings of our investigation into the systemic immune responses, potency and clinical protection induced by the two recombinant DEV-ompH vaccine constructs, where one copy each of the ompH gene was inserted into the DEV genome at the UL55-LORF11 and UL44-44.5 intergenic regions, respectively. Our study demonstrated that the insertion of the ompH gene exerted no adverse effect on the DEV parental virus. Moreover, ducklings immunized with the rDEV-ompH-UL55 and rDEV-ompH-UL44 vaccines induced promising levels of P. multocida OmpH-specific as well as DEV-specific antibodies and were completely protected from both diseases. Analysis of the humoral and cellular immunity confirmed the immunogenicity of both recombinant vaccines, which provided strong immune responses against DEV and P. multocida. This study not only provides insights into understanding the immune responses of ducks to recombinant DEV-ompH vaccines but also demonstrates the potential for simultaneous prevention of viral and bacterial infections using viral vectors expressing bacterial immunogens.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Muenthaisong
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Paweena Chomjit
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kanokwan Sangkakam
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Amarin Rittipornlertrak
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pongpisid Koonyosying
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
7
|
Kumar J, Dandapat S, Panickan S, Kumar A, Singh M, Bindu S, Dhama K. Expression profiles of toll like receptors, MHC and cytokine genes along with viral load in organs of ducklings infected with an Indian isolate of duck enteritis virus. Microb Pathog 2022; 165:105502. [PMID: 35339656 DOI: 10.1016/j.micpath.2022.105502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
A comprehensive study on the pathogenicity and host immune response was conducted in White Pekin ducklings after experimental infection with an Indian isolate of duck enteritis virus (DEV). The virus was found to be highly pathogenic and pantropic, which rapidly multiplied in various organs, mainly in the spleen and liver showing higher viral load with severe pathological lesions and caused 100% mortality. Expression profiles of immune gene transcripts in tissues (liver, spleen, brain) revealed upregulation of proinflammatory cytokines IFN-α, IFN- β, IL-1β, IL-6 and also iNOS with stimulation of TLRs (TLR-2, 3, 21). IFN-α was robustly upregulated (p < 0.05) especially in liver, might be playing role in antiviral innate immunity. Further, massive upregulation of MHC class-I (p < 0.01), expression of Th1 cytokines (IFN-γ & IL-2) and certain Th2 cytokines (IL-4 & IL-10) suggests stimulation of cell mediated as well as humoral immunity. To our knowledge, we are reporting first time about the robust upregulation of MHC class-I in spleen, liver and brain along with expression of certain cytokines in the peripheral blood mononuclear cells (PBMCs) during experimental DEV infection.
Collapse
Affiliation(s)
- Jyoti Kumar
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India; ICAR Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India.
| | - Sivasankar Panickan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| |
Collapse
|
8
|
He T, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Gao Q, Yu Y, Zhang L, Liu Y. Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-β production via mRNA degradation activity. Vet Res 2022; 53:22. [PMID: 35303942 PMCID: PMC8932288 DOI: 10.1186/s13567-022-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown. In this study, we first found that the DPV UL41 protein inhibited duck interferon-β (IFN-β) production mediated by RIG-I and melanoma differentiation-associated gene 5 (MDA5) by broadly downregulating the mRNA levels of important adaptor molecules, such as RIG-I, MDA5, mitochondrial antiviral signalling protein (MAVS), stimulator of interferon gene (STING), TANK-binding kinase 1 (TBK1), and interferon regulatory factor (IRF) 7. The conserved sites of the UL41 protein, E229, D231, and D232, were responsible for this activity. Furthermore, the DPV CHv-BAC-ΔUL41 mutant virus induced more duck IFN-β and IFN-stimulated genes (Mx, OASL) production in duck embryo fibroblasts (DEFs) than DPV CHv-BAC parent virus. Our findings provide insights into the molecular mechanism underlying DPV immune evasion.
Collapse
Affiliation(s)
- Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| |
Collapse
|
9
|
Shen B, Li Y, Cheng A, Wang M, Wu Y, Yang Q, Jia R, Tian B, Ou X, Mao S, Sun D, Zhang S, Zhu D, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Pan L. The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Front Microbiol 2021; 12:744408. [PMID: 34925260 PMCID: PMC8674210 DOI: 10.3389/fmicb.2021.744408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Duck plague virus (DPV) can cause high morbidity and mortality in many waterfowl species within the order Anseriformes. The DPV genome contains 78 open reading frames (ORFs), among which the LORF2, LORF3, LORF4, LORF5, and SORF3 genes are unique genes of avian herpesvirus. In this study, to investigate the role of this unique LORF5 gene in DPV proliferation, we generated a recombinant virus that lacks the LORF5 gene by a two-step red recombination system, which cloned the DPV Chinese virulent strain (DPV CHv) genome into a bacterial artificial chromosome (DPV CHv-BAC); the proliferation law of LORF5-deleted mutant virus on DEF cells and the effect of LORF5 gene on the life cycle stages of DPV compared with the parent strain were tested. Our data revealed that the LORF5 gene contributes to the cell-to-cell transmission of DPV but is not relevant to virus invasion, replication, assembly, and release formation. Taken together, this study sheds light on the role of the avian herpesvirus-specific gene LORF5 in the DPV proliferation life cycle. These findings lay the foundation for in-depth functional studies of the LORF5 gene in DPV or other avian herpesviruses.
Collapse
Affiliation(s)
- Bingjie Shen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunjiao Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Affiliation(s)
- L. A. Arias-Sosa
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Alex L. Rojas
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
11
|
Li T, Li R, Zhang T, Zhang H, Song X, Zhai X, Wang J, Xing B, Hou X, Wei L. Identification, cloning, and characterization of Cherry Valley duck CD4 and its antiviral immune responses. Poult Sci 2021; 100:101262. [PMID: 34273645 PMCID: PMC8287243 DOI: 10.1016/j.psj.2021.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
CD4 protein is a single chain transmembrane glycoprotein and has a broad functionality beyond cell-mediated immunity. In this study, we cloned the full-length coding sequence (CDS) of duck CD4 (duCD4) and analyzed its sequence and structure, and expression levels in several tissues. It consists of 1,449 nucleotides and encodes a 482 amino acid protein. The putative protein of duCD4 consisted of an N-terminal signal peptide, three immunoglobulins and one immunoglobulins-like domain in its central, one terminal transmembrane region, and a C-terminal domain of the CD4 T cell receptor. The duCD4 also has the typical signature “CXC” of CD4s. The multiple sequence alignment suggests duCD4 has four potential N-glycosylation sites and the phylogenetic analysis suggests duCD4 shares greater similarity with avian than other vertebrates. Quantitative real-time PCR analysis showed that duCD4 mRNA transcripts are widely distributed in the healthy Cherry Valley duck, and the highest level in the thymus. During the virus infection, the obvious change of duCD4 expression was observed in the spleen, lung and brain, which suggesting that duCD4 could be involved in the host's immune response to multiple types of viruses. Our research studied the characterization, tissue distribution, and antiviral immune responses of duCD4.
Collapse
Affiliation(s)
- Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rong Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City, Shandong Province 271000, China
| | - Huihui Zhang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xingdong Song
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xiaolan Hou
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City, Shandong Province 271000, China.
| |
Collapse
|
12
|
Khan KA, Islam MA, Sabuj AAM, Bashar MA, Islam MS, Hossain MG, Hossain MT, Saha S. Molecular characterization of duck plague virus from selected Haor areas of Bangladesh. Open Vet J 2021; 11:42-51. [PMID: 33898283 PMCID: PMC8057227 DOI: 10.4314/ovj.v11i1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.
Collapse
Affiliation(s)
- Kamrul Ahmed Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdullah Al Momen Sabuj
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Abul Bashar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
13
|
He T, Wang M, Cheng A, Yang Q, Jia R, Wu Y, Huang J, Chen S, Zhao XX, Liu M, Zhu D, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B, Liu Y, Yu Y, Zhang L, Pan L, Chen X. Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN-β signalling by interacting with STAT1. Vet Res 2020; 51:135. [PMID: 33176874 PMCID: PMC7656727 DOI: 10.1186/s13567-020-00859-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae subfamily. The characteristics of some DEV genes have been reported. However, information regarding the DEV UL47 gene is limited. In this study, we identified the DEV UL47 gene encoding a late structural protein located in the nucleus of infected cells. We further found that two domains of DEV pUL47, amino acids (aa) 40 to 50 and 768 to 777, could function as nuclear localization sequence (NLS) to guide the nuclear localization of pUL47 and nuclear translocation of heterologous proteins, including enhanced green fluorescent protein (EGFP) and beta-galactosidase (β-Gal). Moreover, pUL47 significantly inhibited polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced interferon beta (IFN-β) production and downregulated interferon-stimulated gene (ISG) expression, such as Mx and oligoadenylate synthetase-like (OASL), by interacting with signal transducer and activator of transcription-1 (STAT1).
Collapse
Affiliation(s)
- Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - XinJian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| |
Collapse
|
14
|
Hou X, Liu G, Zhang H, Hu X, Zhang X, Han F, Cui H, Luo J, Guo R, Li R, Li N, Wei L. High-mobility group box 1 protein (HMGB1) from Cherry Valley duck mediates signaling pathways and antiviral activity. Vet Res 2020; 51:12. [PMID: 32070432 PMCID: PMC7027276 DOI: 10.1186/s13567-020-00742-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023] Open
Abstract
High-mobility group box 1 protein (HMGB1) shows endogenous damage-associated molecular patterns (DAMPs) and is also an early warning protein that activates the body's innate immune system. Here, the full-length coding sequence of HMGB1 was cloned from the spleen of Cherry Valley duck and analyzed. We find that duck HMGB1(duHMGB1) is mostly located in the nucleus of duck embryo fibroblast (DEF) cells under normal conditions but released into the cytoplasm after lipopolysaccharide (LPS) stimulation. Knocking-down or overexpressing duHMGB1 had no effect on the baseline apoptosis rate of DEF cells. However, overexpression increased weakly apoptosis after LPS activation. In addition, overexpression strongly activated the IFN-I/IRF7 signaling pathway in DEF cells and significantly increased the transcriptional level of numerous pattern recognition receptors (PRRs), pro-inflammatory cytokines (IL-6, TNF-α), IFNs and antiviral molecules (OAS, PKR, Mx) starting from 48 h post-transfection. Overexpression of duHMGB1 strongly impacted duck virus replication, either by inhibiting it from the first stage of infection for novel duck reovirus (NDRV) and at late stage for duck Tembusu virus (DTMUV) or duck plague virus (DPV), or promoting replication at early stage for DTMUV and DPV infection. Importantly, data from duHMGB1 overexpression and knockdown experiments, time-dependent DEF cells transcriptional immune responses suggest that duHMGB1 and RIG-I receptor might cooperate to promote the expression of antiviral proteins after NDRV infection, as a potential mechanism of duHMGB1-mediated antiviral activity.
Collapse
Affiliation(s)
- Xiaolan Hou
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Gen Liu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Xiaofang Hu
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Xinyue Zhang
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Fei Han
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Huizhen Cui
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Jinjian Luo
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Ru Guo
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Rong Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
15
|
Apinda N, Nambooppha B, Rittipornlertrak A, Tankaew P, Punyapornwithaya V, Nair V, Sawada T, Sthitmatee N. Protection against fowl cholera in ducks immunized with a combination vaccine containing live attenuated duck enteritis virus and recombinant outer membrane protein H of Pasteurella multocida. Avian Pathol 2020; 49:221-229. [PMID: 31899951 DOI: 10.1080/03079457.2019.1711020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fowl cholera is a highly contagious disease within the global duck farming industry. This study aimed at formulating and evaluating the protective efficacy of a combination vaccine containing a recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain X-73 with a live attenuated duck plague vaccine into a single dose. Four groups of ducks received different treatments and the groups were labelled as non-vaccinated, combined vaccination, duck plague vaccination and rOmpH vaccination, respectively. The combined vaccination group was comprised of live attenuated duck plague commercial vaccine with 100 µg rOmpH to a total volume of 0.5 ml/duck/intramuscular administration. All groups were challenged with avian P. multocida strain X-73 via intranasal administration. In addition, blood samples were collected monthly over a period of 6 months to determine the appropriate antibody level by indirect ELISA. The indirect ELISA results in the combination vaccine group revealed that the average levels of the serum antibody against the duck enteritis virus (0.477 ± 0.155) and fowl cholera (0.383 ± 0.100) were significantly higher than those values in the non-vaccinated control group (0.080 ± 0.027 and 0.052 ± 0.017), respectively (P < 0.05). Moreover, all vaccinated ducks were effectively protected from fowl cholera. This preliminary study indicated that a combination vaccine did not affect the antibody response in the subjects while protecting the ducks against experimental P. multocida infection. This combination vaccine should be considered part of an alternative pre-treatment strategy that could replace the monovalent vaccine.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Amarin Rittipornlertrak
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pallop Tankaew
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Venugopal Nair
- The Pirbright Institute, Surrey, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Takuo Sawada
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
El-Tholoth M, Hamed MF, Matter AA, Abou El-Azm KI. Molecular and pathological characterization of duck enteritis virus in Egypt. Transbound Emerg Dis 2018; 66:217-224. [PMID: 30144300 DOI: 10.1111/tbed.13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
In winter 2016, a fatal disease outbreak suspected to be duck virus enteritis (DVE) stroke over a million ducklings in 10 white Pekin and Muscovy ducks flocks in Dakahlia and Gharbia Governorates, Egypt, causing heavy economic losses. The disease quickly killed 20%-60% of affected farms. The clinical signs were inappetence, ataxia, crowding in corners, partially closed eye lids and blue beaks. Post mortem examination revealed white necrotic foci in liver, mottled spleen and sometimes cecal core. A total of 10 intestines, livers and spleens samples were collected from diseased flocks. Each sample was pooled randomly from eight to ten ducklings. Polymerase chain reaction (PCR) and histopathological examination were utilized for DEV identification in collected samples. Nucleotides sequences of the amplified DNA polymerase gene were compared with the other DEVs available on GeneBank. Also, existence of co-infection with Salmonella spp. was verified via PCR. DEV nucleic acid was detected by PCR in 8 of 10 collected samples (80%) with positive amplification of polymerase gene. Histopathological examination revealed eosinophilic and basophilic intranuclear inclusion bodies in enterocytes. In some infected enterocytes, intranuclear and intracytoplasmic inclusions were observed in the same cell. Respectively, eosinophilic intranuclear inclusion bodies found in hepatocytes and reticular cells of liver and spleen of diseased ducklings. Four of the 10 collected samples showed positive results for Salmonella spp. infection that may be involved in enhancing infection with DEV. The identified DEVs revealed close genetic relationship with DEVs detected previously in India and China indicating potential transmission of the virus from there that crucially needs further work for better understanding of virus origin. In conclusion, our study revealed infection of duckling farms with DEV and Salmonella that necessitate the implementation of restricted early preventive and control measures for both diseases to decrease the expected economic losses.
Collapse
Affiliation(s)
- Mohamed El-Tholoth
- Faculty of Veterinary Medicine, Department of Virology, Mansoura University, Mansoura, Egypt
| | - Mohamed F Hamed
- Faculty of Veterinary Medicine, Department of Pathology, Mansoura University, Mansoura, Egypt
| | - Ahmed A Matter
- Researcher of Poultry Diseases, Reference Laboratory of Quality Control of Poultry Production (Gamasa), Animal Health Research Institute, Mansoura, Egypt
| | - Kamel I Abou El-Azm
- Faculty of Veterinary Medicine, Department of Poultry Diseases, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Immunogenicity and safety of a live Riemerella anatipestifer vaccine and the contribution of IgA to protective efficacy in Pekin ducks. Vet Microbiol 2018; 222:132-138. [PMID: 30037633 DOI: 10.1016/j.vetmic.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
Riemerella anatipestifer (RA) infections cause major economic losses in the duck industry. In this study, we developed an RA vaccine to control virulent serotype 1 and 2 RA, which predominate in worldwide prevalence. We established a strategy for vaccine candidate screening, and selected strains D15-RDA-92 (serotype 1) and D14-RDA-8 (serotype 2). These strains were characterized by ≤50% embryo mortality and <3.0 serum resistance assay values in in vitro screening. We evaluated the protective efficacy of live bivalent RA vaccines against virulent homologous serotype RA. Ducklings received two oral immunizations with the bivalent vaccine and showed significant protection against two virulent strains (serotypes 1 and 2) at 21 days post-immunization. No death or clinical signs of diarrhea, tremors, or limb swelling were observed in the immunized ducks. In a safety evaluation, ducks immunized with 100 times higher doses showed no clinical signs, mortality, gross lesions, or histological lesions, and body weight of the ducks showed no significant difference compared to that of negative controls. In addition, IgA analysis showed a significant increase in secretory IgA antibodies generated in the trachea and duodenum of orally immunized ducks at 28 days of age. The IgA might be involved in one of the major immune responses to RA and contributes to protecting against virulent RA. In this study, we developed monovalent and bivalent RA vaccines that were safe in ducks and provided significant protective efficacy against virulent homologous RA strains.
Collapse
|
18
|
Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, Palanivelu M, Shabbir MZ, Malik YS, Singh RK. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q 2017; 37:57-80. [PMID: 28320263 DOI: 10.1080/01652176.2017.1298885] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duck virus enteritis (DVE), also called duck plague, is one of the major contagious and fatal diseases of ducks, geese and swan. It is caused by duck enteritis virus (DEV)/Anatid herpesvirus-1 of the genus Mardivirus, family Herpesviridae, and subfamily Alpha-herpesvirinae. Of note, DVE has worldwide distribution, wherein migratory waterfowl plays a crucial role in its transmission within and between continents. Furthermore, horizontal and/ or vertical transmission plays a significant role in disease spread through oral-fecal discharges. Either of sexes from varying age groups of ducks is vulnerable to DVE. The disease is characterized by sudden death, vascular damage and subsequent internal hemorrhage, lesions in lymphoid organs, digestive mucosal eruptions, severe diarrhea and degenerative lesions in parenchymatous organs. Huge economic losses are connected with acute nature of the disease, increased morbidity and mortality (5%-100%), condemnations of carcasses, decreased egg production and hatchability. Although clinical manifestations and histopathology can provide preliminary diagnosis, the confirmatory diagnosis involves virus isolation and detection using serological and molecular tests. For prophylaxis, both live-attenuated and killed vaccines are being used in broiler and breeder ducks above 2 weeks of age. Since DEV is capable of becoming latent as well as shed intermittently, recombinant subunit and DNA vaccines either alone or in combination (polyvalent) are being targeted for its benign prevention. This review describes DEV, epidemiology, transmission, the disease (DVE), pathogenesis, and advances in diagnosis, vaccination and antiviral agents/therapies along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Naveen Kumar
- b National Center for Veterinary Type Cultures, ICAR-National Research Center on Equines , Hisar , India
| | - Mani Saminathan
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Kumaragurubaran Karthik
- d Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - M Asok Kumar
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - M Palanivelu
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Muhammad Zubair Shabbir
- e Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Yashpal Singh Malik
- f Division of Biological Standardization , ICAR - Indian Veterinary Research Institute , Bareilly , India
| | - Raj Kumar Singh
- g ICAR - Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
19
|
Zhang Y, Zhao L, Zhou Y, Diao C, Han L, Yinjie N, Liu S, Chen H. Glutamine Ameliorates Mucosal Damage Caused by Immune Responses to Duck Plague Virus. Dose Response 2017; 15:1559325817708674. [PMID: 28620271 PMCID: PMC5464388 DOI: 10.1177/1559325817708674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The immune-releasing effects of L-glutamine (Gln) supplementation in duck plague virus (DPV)-infected ducklings were evaluated in 120 seven-day-old ducklings that were divided into 8 groups. The ducklings in control and DPV, 0.5Gln and DPV + 0.5Gln, 1.0Gln and DPV + 1.0Gln, and 2.0Gln and DPV + 2.0Gln received 0, 0.5, 1.0, and 2.0 g of Gln/kg feed/d by gastric perfusion, respectively. Then, the ducklings in control to 2.0Gln were injected with 0.2 mL of phosphate-buffered saline, while those in DPV to DPV + 2.0Gln were injected with DPV at 0.2 mL of 2000 TCID50 (50% tissue culture infection dose) 30 minutes after gavage with Gln, sampled at 12 hours and days 1, 2, 4, and 6. Glutamine supplementation under physiological conditions enhanced immune function and toll-like receptor 4 (TLR4) expressions in a dose-dependent manner. An increase in Gln supplementation under DPV-infected conditions enhanced growth performance, decreased immunoglobulin (Ig) release in plasma and secretory IgA in the duodenum, ameliorated plasma cytokine levels, and suppressed overexpressions of the TLR4 pathway in the duodenum. The positive effects of Gln on the humoral immunity- and intestinal inflammation-related damage should be considered a mechanism by which immunonutrition can assist in the recovery from DPV infection.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Zhou
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenxi Diao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingxia Han
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Niu Yinjie
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|