1
|
Kumaran D, Ramirez-Arcos S. Cutibacterium acnes contamination does not enhance the proinflammatory profile of platelet concentrates. Transfusion 2024; 64:1437-1446. [PMID: 38922882 DOI: 10.1111/trf.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Cutibacterium acnes, a common anaerobic platelet concentrate (PC) contaminant, has been associated with rare mild adverse transfusion reactions and is often considered a harmless commensal. Notably, C. acnes can cause chronic infections and has been shown to induce the release of proinflammatory cytokines by immune cells. Since elevated concentrations of proinflammatory factors in PCs have been linked to noninfectious adverse reactions, this study aimed to assess whether C. acnes could elicit the release and accumulation of proinflammatory factors during PC storage, thereby enhancing the risk of such reactions. STUDY DESIGN/METHODS Four ABO-matched buffy coat PCs were pooled and split into six units, each were inoculated with either saline (negative control), a Staphylococcus aureus isolate (positive control, 30 colony forming units [CFU]/unit), or four C. acnes PC isolates (10 CFU/mL) and stored at 20-24°C with agitation. Bacterial counts, platelet activation, and concentration of proinflammatory factors were assessed on days 0, 3, and 5. N = 3. RESULTS C. acnes counts remained stable, while S. aureus proliferated reaching 108CFU/mL by the end of PC storage. By day 5, no significant differences in platelet activation or proinflammatory cytokine profiles were observed in C. acnes-contaminated PCs compared to the negative control (p > .05), while there was a significant increase (p ≤ .05) in sCD40L concentration (day 3), and platelet activation and IL-8 concentration (day 5) in S. aureus-contaminated units. DISCUSSION C. acnes contamination does not promote the accumulation of proinflammatory factors in the absence of proliferation during storage and may not enhance the risk of inflammatory reactions when transfused to patients.
Collapse
Affiliation(s)
- Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Zhang L, Luo W, Xiong R, Li H, Yao Z, Zhuo W, Zou G, Huang Q, Zhou R. A Combinatorial Vaccine Containing Inactivated Bacterin and Subunits Provides Protection Against Actinobacillus pleuropneumoniae Infection in Mice and Pigs. Front Vet Sci 2022; 9:902497. [PMID: 35747235 PMCID: PMC9212066 DOI: 10.3389/fvets.2022.902497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the etiological agent of porcine contagious pleuropneumonia (PCP) that causes great economic losses in the swine industry. Currently, vaccination is still a commonly used strategy for the prevention of the disease. Commercially available vaccines of this disease, including inactivated bacterins and subunit vaccines, have clinical limitations such as side effects and low cross-protection. In this study, a combinatorial vaccine (Bac-sub) was developed, which contained inactivated bacterial cells of a serovar 1 strain and three recombinant protoxins (rApxIA, rApxIIA, and rApxIIIA). Its side effects, immune protection, and cross-protection were evaluated and compared with a commercial subunit vaccine and a commercial trivalent bacterin in a mouse infection model. The results revealed that the Bac-sub vaccine showed no obvious side effects, and induced higher levels of Apx toxin-specific IgG, IgG1, and IgG2a than the commercial vaccines after booster. After a challenge with virulent strains of serovars 1, 5, and 7, the Bac-sub vaccine provided greater protection (91.76%, 100%, and 100%, respectively) than commercial vaccines. Much lower lung bacterial loads (LBLs) and milder lung lesions were observed in the Bac-sub-vaccinated mice than in those vaccinated with the other two vaccines. The protective efficacy of the Bac-sub vaccine was further evaluated in pigs, which showed that vaccinated pigs displayed significantly milder clinical symptoms and lung lesions than the unvaccinated pigs after the challenge. Taken together, Bac-sub is a safe and effective vaccine that could provide high protection against A. pleuropneumoniae infection in both mice and pigs.
Collapse
Affiliation(s)
- Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruyue Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Zhuo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- *Correspondence: Qi Huang
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- International Research Center for Animal Diseases, Ministry of Science and Technology (China), Wuhan, China
- The HZAU-HVSEN Institute, Huazhong Agricultural University, Wuhan, China
- Rui Zhou
| |
Collapse
|
3
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Xiao J, Liu J, Bao C, Zhu R, Gu J, Sun C, Feng X, Du C, Han W, Li Y, Lei L. Recombinant tandem epitope vaccination provides cross protection against Actinobacillus pleuropneumoniae challenge in mice. AMB Express 2020; 10:123. [PMID: 32642871 PMCID: PMC7341470 DOI: 10.1186/s13568-020-01051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae/APP) is the pathogen that causes porcine contagious pleuropneumonia. Actinobacillus pleuropneumoniae is divided into 18 serovars, and the cross protection efficacy of epitopes is debatable, which has resulted in the slow development of a vaccine. Consequently, epitope-based vaccines conferring Actinobacillus pleuropneumoniae cross protection have rarely been reported. In this study, B cell epitopes in the head domain of trimeric autotransporter adhesin were predicted, and 6 epitopes were selected. Then, the predicted epitopes (Ba1, Bb5, C1, PH1 and PH2) were connected by linkers to construct a recombinant tandem antigen (rta) gene. The RTA protein encoded by the recombinant rta gene was expressed, and finally the ICR mice were immunized with the RTA protein with or without inactivated Actinobacillus pleuropneumoniae (serovars 1 and 5b) and challenged with Actinobacillus pleuropneumoniae to evaluate the protective effect of the epitope-based vaccine and combined vaccine. The mice in the RTA-immunized group and RTA plus inactivated Actinobacillus pleuropneumoniae vaccine group had a significant improvement in clinical symptoms and a higher level of antibody in the serum than those in the control group. The RTA immune group had a 40% survival rate after Actinobacillus pleuropneumoniae infection, whereas the combination of RTA and inactivated Actinobacillus pleuropneumoniae produced very strong cross immune protection in mice, at least 50% (RTA IB1 + C5) and at most 100% (RTA IB5 + C1), whereas no cross immunoprotection was found in the solo Actinobacillus pleuropneumoniae immune group. Overall, the combination of the RTA protein and inactivated bacteria significantly enhanced the cross protection effects. This implies that RTA protein in combination with a suitable inactivated Actinobacillus pleuropneumoniae strain could be a candidate vaccine for porcine contagious pleuropneumonia.
Collapse
|
5
|
Wang L, Zhao X, Xia X, Zhu C, Qin W, Xu Y, Hang B, Sun Y, Chen S, Zhang H, Jiang J, Hu J, Fotina H, Zhang G. Antimicrobial Peptide JH-3 Effectively Kills Salmonella enterica Serovar Typhimurium Strain CVCC541 and Reduces Its Pathogenicity in Mice. Probiotics Antimicrob Proteins 2020; 11:1379-1390. [PMID: 31001786 DOI: 10.1007/s12602-019-09533-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salmonella is an important zoonotic pathogen and is a major cause of gastrointestinal diseases worldwide. The current serious problem of antibiotic abuse has prompted the search for new substitutes for antibiotics. JH-3 is a small antimicrobial peptide with broad-spectrum bactericidal activity. In this study, we showed that JH-3 has good bactericidal activity towards the clinical isolate Salmonella enterica serovar Typhimurium strain CVCC541. The minimum inhibitory concentration (MIC) of JH-3 against this bacterium was determined to be 100 μg/mL, which could decrease the number of CVCC541 cells by 1000-fold in vitro within 5 h. The transmission electron microscopy (TEM) results showed that JH-3 can damage the cell wall and membrane of CVCC541, leading to the leakage of cell contents and subsequent cell death. To measure the bactericidal activity of CVCC541-infected mice were treated intraperitoneally 40 or 10 mg/kg JH-3 at 2 h or 3 days postinfection. Our results showed that treatment with 40 mg/kg JH-3 at 2 h postinfection had the best therapeutic effect and could significantly protect mice from a lethal dose of CVCC541. Furthermore, the clinical symptoms, bacterial burden in blood and organs, and intestinal pathological changes were all decreased and were close to normal. This study examined the therapeutic effect of the antimicrobial peptide JH-3 against S. enterica CVCC541 infection for the first time and determined the therapeutic effect of different JH-3 doses and treatment times, laying the foundation for studies of new antimicrobial agents.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Wanhai Qin
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China. .,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Hanna Fotina
- Sumy National Agrarian University, Sumy, Ukraine
| | - Gaiping Zhang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| |
Collapse
|
6
|
Bao CT, Xiao JM, Liu BJ, Liu JF, Zhu RN, Jiang P, Li L, Langford PR, Lei LC. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb Pathog 2019; 128:381-389. [PMID: 30664928 DOI: 10.1016/j.micpath.2019.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia, a disease responsible for substantial losses in the worldwide pig industry. In this study, outbred Kunming (KM) and Institute of Cancer Research (ICR) mice were evaluated as alternative mice models for APP research. After intranasal infection of serotype 5 reference strain L20, there was less lung damage and a lower clinical sign score in ICR compared to KM mice. However, ICR mice showed more obvious changes in body weight loss, the amount of immune cells (such as neutrophils and lymphocytes) and cytokines (such as IL-6, IL-1β and TNF-α) in blood and bronchoalveolar lavage fluid (BALF). The immunological changes observed in ICR mice closely mimicked those found in piglets infected with L20. While both ICR and KM mice are susceptible to APP and induce pathological lesions, we suggest that ICR and KM mice are more suitable for immunological and pathogenesis studies, respectively. The research lays the theoretical basis for determine that mice could replace pigs as the APP infection model and it is of significance for the study of APP infection in the laboratory.
Collapse
Affiliation(s)
- Chun-Tong Bao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jia-Meng Xiao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Bai-Jun Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ri-Ning Zhu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Peng Jiang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Lei Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | | | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| |
Collapse
|
7
|
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 2018; 32 Suppl 2:5-14. [PMID: 29894579 DOI: 10.1111/jdv.15043] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
While the commensal bacterium Propionibacterium acnes (P. acnes) is involved in the maintenance of a healthy skin, it can also act as an opportunistic pathogen in acne vulgaris. The latest findings on P. acnes shed light on the critical role of a tight equilibrium between members of its phylotypes and within the skin microbiota in the development of this skin disease. Indeed, contrary to what was previously thought, proliferation of P. acnes is not the trigger of acne as patients with acne do not harbour more P. acnes in follicles than normal individuals. Instead, the loss of the skin microbial diversity together with the activation of the innate immunity might lead to this chronic inflammatory condition. This review provides results of the most recent biochemical and genomic investigations that led to the new taxonomic classification of P. acnes renamed Cutibacterium acnes (C. acnes), and to the better characterisation of its phylogenetic cluster groups. Moreover, the latest data on the role of C. acnes and its different phylotypes in acne are presented, providing an overview of the factors that could participate in the virulence and in the antimicrobial resistance of acne-associated strains. Overall, this emerging key information offers new perspectives in the treatment of acne, with future innovative strategies focusing on C. acnes biofilms and/or on its acne-associated phylotypes.
Collapse
Affiliation(s)
- B Dréno
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Pécastaings
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - S Corvec
- Department of Bacteriology, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - S Veraldi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, I.R.C.C.S. Foundation, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Khammari
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France
| | - C Roques
- Laboratoire de Génie Chimique, UMR 5503, Faculty of Pharmacy, Université de Toulouse, Université Paul Sabatier, Toulouse Cedex 9, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
8
|
Zhang F, Zhao Q, Tian J, Chang YF, Wen X, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Han X, Miao C, Cao S. Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumoniae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. Front Cell Infect Microbiol 2018; 8:337. [PMID: 30319993 PMCID: PMC6167544 DOI: 10.3389/fcimb.2018.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
GALT is a highly conserved antigen in gram-negative bacteria, and has been shown to play a crucial role in the pathogenesis of many zoonoses. Actinobacillus pleuropneumoniae (APP) is a widespread respiratory system pathogen belonging to the Pasteuriaceae family. The functional mechanisms of GALT in the process of infection remain unclear. The aim of this study is to analyze roles of GALT in the pathogenesis of APP infection. Recombinant GALT was expressed in E. coli, purified, and was used to treat a Raw 264.7 macrophage line. Stimulation of Raw 264.7 macrophages with recombinant GALT protein induced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Compared with negative control, GALT led to increased production of pro-inflammatory cytokines in treated cells. Furthermore, specific inhibitors of the extracellular signal-regulated P38 and JNK MAPKs pathways significantly decreased GALT-induced pro-inflammatory cytokine production, and a western blot assay showed that GALT stimulation induced the activation of the MAPKs pathway. This process included cell-signaling pathways like P38, ERK1/2 and JNK MAPKs, and NF-κB. Both TLR2 and TLR4 were receptors of GALT antigens, whereas they played negative and positive roles (respectively) in the process of induction and expression of pro-inflammatory cytokines. Taken together, our data indicate that GALT is a novel pro-inflammatory mediator and induces TLR2 and TLR4-dependent pro-inflammatory activity in Raw 264.7 macrophages through P38, ERK1/2, and JNK MAPKs pathways.
Collapse
Affiliation(s)
- Fei Zhang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qin Zhao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Jin Tian
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xintian Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
9
|
Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 2018; 13:e0198207. [PMID: 29856812 PMCID: PMC5983418 DOI: 10.1371/journal.pone.0198207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.
Collapse
|
10
|
Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol 2018; 217:66-75. [DOI: 10.1016/j.vetmic.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
|
11
|
Ganeshpurkar A, Saluja AK. Protective effect of catechin on humoral and cell mediated immunity in rat model. Int Immunopharmacol 2018; 54:261-266. [DOI: 10.1016/j.intimp.2017.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
|
12
|
Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Anim Health Res Rev 2017; 19:17-30. [DOI: 10.1017/s146625231700010x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractActinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious respiratory disease that is responsible for major economic losses in the global pork industry. The disease may present itself as a chronic or an acute infection characterized by severe pathology, including hemorrhage, fibrinous and necrotic lung lesions, and, in the worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct contact with infected pigs, and by the farm environment. Many virulence factors associated with this bacterium are well characterized. However, much less is known about the role of biofilm, a sessile mode of growth that may have a critical impact on A. pleuropneumoniae pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, factors associated with biofilm formation and dispersion, and the impact of biofilm on the pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines for controlling the disease.
Collapse
|
13
|
An anti-Propionibacterium acnes antibody shows heterologous resistance to an Actinobacillus pleuropneumoniae infection independent of neutrophils in mice. Immunol Res 2017; 65:1124-1129. [PMID: 28929313 DOI: 10.1007/s12026-017-8954-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Porcine contagious pleuropneumonia is a highly fatal respiratory disease that is caused by Actinobacillus pleuropneumoniae (APP) and results in tremendous economic losses for the pig breeding industry worldwide. Previous studies have demonstrated that Propionibacterium acnes (PA) could effectively prevent APP infection in mice and pigs. The humoral immune response played a primary role during this process and anti-PA antibody could mediate macrophages to kill the bacteria. However, the role of neutrophils in this process is currently unknown. In this study, mice were injected with cyclophosphamide to deplete neutrophils and then passively immunized with anti-PA serum or negative serum. Mice were subsequently challenged with APP serotype 1. The results showed that the mice exhibited less bacterial colonization, less lung damage, and a high survival rate, which were immunized with the anti-PA antibody whether neutrophils were depleted or not. Worse still, the presence of neutrophils increased the damage to the mice after challenge. These results suggest that the activity of the anti-PA antibody against APP infection was independent of neutrophils. These findings have important significance for understanding the mechanisms of humoral immunity conferred by heterologous immunization and lay a good foundation for preventing APP infection.
Collapse
|
14
|
Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Sci Rep 2017. [PMID: 28638106 PMCID: PMC5479855 DOI: 10.1038/s41598-017-04029-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is a formidable pathogen that is responsible for a diverse spectrum of human infectious diseases, resulting in considerable annual mortality rates. Because of biofilm formation and its ability of rapidly acquires of resistance to many antibiotics, P. aeruginosa related infections are difficult to treat, and therefore, developing an effective vaccine is the most promising method for combating infection. In the present study, we designed a novel trivalent vaccine, PcrV28-294-OprI25-83-Hcp11-162 (POH), and evaluated its protective efficacy in murine pneumonia and burn models. POH existed as a dimer in solution, it induced better protection efficacy in P. aeruginosa lethal pneumonia and murine burn models than single components alone when formulated with Al(OH)3 adjuvant, and it showed broad immune protection against several clinical isolates of P. aeruginosa. Immunization with POH induced strong immune responses and resulted in reduced bacterial loads, decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration. Furthermore, in vitro opsonophagocytic killing assay and passive immunization studies indicated that the protective efficacy mediated by POH vaccination was largely attributed to POH-specific antibodies. Taken together, these data provided evidence that POH is a potentially promising vaccine candidate for combating P. aeruginosa infection in pneumonia and burn infections.
Collapse
|
15
|
Ganeshpurkar A, Saluja AK. Protective effect of rutin on humoral and cell mediated immunity in rat model. Chem Biol Interact 2017; 273:154-159. [PMID: 28606468 DOI: 10.1016/j.cbi.2017.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/08/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023]
Abstract
Diet and dietary intake can persuade the development, safeguard and proper functioning of immune system. Ruin, an important bioflavonoid, is abundantly found in various foodstuffs. Rutin has been acknowledged for its protective and beneficial effects on various aspects of the biological system. The present study was aimed to examine the effect of rutin on the regulation of the immune response in experimental animal models. Effect of rutin of cellular immunity was determined by delayed-type hypersensitivity (DTH) response, carbon clearance assay, leucocyte mobilization test, and cyclophosphamide-induced myelosuppression, whereas humoral immunity was analyzed by the haemagglutinating antibody (HA) titre assay. Rutin (25, 50 and 100 mg/kg, p.o.) evoked a significant increase in antibody titre in the haemagglutination test, increased immunoglobulin levels, and enhanced the delayed type hypersensitivity reaction induced by sheep red blood cells. It also significantly restored the functioning of leucocytes in cyclophosphamide treated rats and augmented phagocytic index in the carbon clearance assay. The outcomes from the present study indicate that rutin possesses sufficient potential for increasing immune activity by cellular and humoral mediated mechanisms.
Collapse
Affiliation(s)
- Aditya Ganeshpurkar
- Faculty of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India; Shri Ram Institute of Technology- Pharmacy, Jabalpur, Madhya Pradesh, India.
| | - Ajay K Saluja
- A.R. College of Pharmacy, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
16
|
Liu J, Ma Q, Yang F, Zhu R, Gu J, Sun C, Feng X, Du C, Langford PR, Han W, Yang J, Lei L. B cell cross-epitope of Propionibacterium acnes and Actinobacillus pleuropneumonia selected by phage display library can efficiently protect from Actinobacillus pleuropneumonia infection. Vet Microbiol 2017. [PMID: 28622855 DOI: 10.1016/j.vetmic.2017.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Contagious porcine pleuropneumonia (CPP), caused by Actinobacillus pleuropneumoniae (APP), is a highly transmissible and fatal respiratory illness that causes tremendous economic losses for the pig breeding industry worldwide. Propionibacterium acnes (PA) has a strong cross-reaction with anti-APP1 and anti-APP5 serum and can efficiently prevent APP infection, which was fortuitously found in researching the differential gene between the different APP serotypes. There seems to be some natural cross-protection between PA and APP. To identify the common epitope, the phage display library of a PA whole genome was constructed, whose size is 105. The DNA sequence of the positive clone was determined after three rounds of biopanning, and ten common protein types were identified and the epitope was predicted by computer software. Six peptide epitopes were selected and synthesized for further analysis. Among these epitopes, Ba1, Bb5 and C1 could bind to anti-PA serum and anti-APP1 serum and vice versa. Furthermore, the IgG and IL-4 levels and CD4+/CD8+ T cell ratios in the Ba1, Bb5 and C1 groups were significantly higher than that in the control group, indicating that the epitopes could trigger an immune response, which was mainly humoral immunity. Moreover, Ba1 and Bb5 equally protected 80% of mice from a fatal dose of APP1 infection compared with the control group. Mice could resist APP1 and APP5 challenge after being treated with the combination of Ba1 and Bb5, with survival rates of 80% and 90%, respectively. These findings suggest that the PA epitope confers antigenicity and can heterologously resist to the APP infection. This finding provides a novel strategy for preventing APP infection.
Collapse
Affiliation(s)
- Jianfang Liu
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Feng Yang
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Rining Zhu
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Paul R Langford
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1 PG, United Kingdom
| | - Wenyu Han
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Liancheng Lei
- College of Veterinary Medicine, Jinlin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
17
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Sun D, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Apa2H1, the first head domain of Apa2 trimeric autotransporter adhesin, activates mouse bone marrow-derived dendritic cells and immunization with Apa2H1 protects against Actinobacillus pleuropneumoniae infection. Mol Immunol 2016; 81:108-117. [PMID: 27940254 DOI: 10.1016/j.molimm.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative pathogen of porcine pleuropneumonia, which results in large economic losses in the pig industry worldwide. There are, however, no effective subunit vaccines are available in the market owing to the various serotypes and the absence of cross-protection against this pathogen. Therefore, the selection of protective components is of great significance for vaccine development. We previously showed that trimeric autotransporter adhesins are important virulence factors of A. pleuropneumoniae. To determine the potential role in vaccine development of the functional head domain (Apa2H1) of Apa2, a trimeric autotransporter adhesin found in A. pleuropneumoniae, we obtained nature-like trimeric Apa2H1 using a prokaryotic expression system and co-culture of Apa2H1 with bone marrow derived dendritic cells (BMDCs) in vitro resulted in maturation of BMDCs, characterised by the up-regulation of CD83, MHC-II, CCR7, ICAM-I and the increased expression of factors related to B lymphoid cells stimulation, such as proliferation-inducing ligand (APRIL), B lymphocyte stimulator (BLyS) and B cell activating factor (BAFF). The in vivo results showed that vaccination with Apa2H1 resulted in the robust production of antigen-specific antibodies, modestly induced mixed Th1 and Th2 immunity, impaired bacterial colonization and dissemination, and improved mouse survival rates. This study is the first to show that Apa2H1 is antigenic and can be used as a component of a subunit vaccine against A. pleuropneumoniae infection, providing valuable reference material for the development of an effective vaccine against A. pleuropneumoniae.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Diangang Sun
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, PR China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| |
Collapse
|
18
|
Zhang J, Yang F, Zhang X, Jing H, Ren C, Cai C, Dong Y, Zhang Y, Zou Q, Zeng H. Protective Efficacy and Mechanism of Passive Immunization with Polyclonal Antibodies in a Sepsis Model of Staphylococcus aureus Infection. Sci Rep 2015; 5:15553. [PMID: 26490505 PMCID: PMC4614693 DOI: 10.1038/srep15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases, resulting in considerable yearly mortality rates. Due to its rapid acquisition of antibiotic resistance, it becomes increasingly difficult to cure S. aureus infections with conventional antibiotics. Immunotherapy represents a promising alternative strategy to prevent and/or treat the infection. In the present study, passive immunization with polyclonal antibodies targeting three possible S. aureus antigens, Hla, SEB and MntC (termed "SAvac-pcAb") after challenge with lethal dose of S. aureus resulted in reduced bacterial loads, inflammatory cell infiltration and decreased pathology, and was able to provide nearly complete protection in a murine sepsis model. In vitro studies confirmed the direct interaction of SAvac-pcAb with S. aureus bacteria. Additional studies validated that SAvac-pcAb contained both opsonic and neutralizing antibodies that contributed to its protective efficacy. The former mediated opsonophagocytosis in a neutrophil-dependent manner, while the later inhibited the biological functions of Hla and SEB, two major virulence factors secreted by S. aureus. Critically, we demonstrated that SAvac-pcAb was cross-reactive with different clinical strains of S. aureus. These results confirmed the efficacy for treatment of S. aureus infection by passive immunization as an important therapeutic option.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Feng Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.,College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xiaoli Zhang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Chunyan Ren
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Changzhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yandong Dong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yudong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| |
Collapse
|
19
|
Hur J, Eo SK, Park SY, Choi Y, Lee JH. Immunological study of an attenuated Salmonella Typhimurium expressing ApxIA, ApxIIA, ApxIIIA and OmpA of Actinobacillus pleuropneumoniae in a mouse model. J Vet Med Sci 2015; 77:1693-6. [PMID: 26227587 PMCID: PMC4710733 DOI: 10.1292/jvms.14-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Salmonella Typhimurium strain expressing the Actinobacillus
pleuropneumoniae antigens, ApxIA, ApxIIA, ApxIIIA and OmpA, was previously
constructed as a vaccine candidate for porcine pleuropneumonia. This strain was a live
attenuated (∆lon∆cpxR∆asd)Salmonella as a delivery host
and contained a vector containing asd. An immunological study of
lymphocyte proliferation, T-lymphocyte subsets and cytokines in the splenocytes of a mouse
model was carried out after stimulation with the candidate Salmonella
Typhimurium by intranasal inoculation. The splenic lymphocyte proliferation and the levels
of IL-4, IL-6 and IL-12 of the inoculated mice were significantly increased, and the T-
and B-cell populations were also elevated. Collectively, the candidate may efficiently
induce the Th1- and Th2-type immune responses.
Collapse
Affiliation(s)
- Jin Hur
- Department of Bioactive Material Sciences, and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, South Korea
| | | | | | | | | |
Collapse
|
20
|
Ma Q, Sun C, Yang F, Wang L, Qin W, Xia X, Feng X, Du C, Gu J, Han W, Lei L. Macrophages largely contribute to heterologous anti-Propionibacterium acnes antibody-mediated protection from Actinobacillus pleuropneumoniae infection in mice. Microbiol Immunol 2015; 59:166-73. [PMID: 25644652 DOI: 10.1111/1348-0421.12240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/05/2015] [Accepted: 01/26/2015] [Indexed: 11/29/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuropneumonia. Propionibacterium acnes is a facultative anaerobic gram-positive corynebacterium. We have previously found that anti-P. acnes antibodies can prevent A. pleuropneumoniae infections in mice. To investigate the role of macrophages in this process, affinity-purified anti-P. acnes IgG and anti-A. pleuropneumoniae IgG were used in opsonophagocytosis assays. Additionally, the efficacy of passive immunization with P. acnes serum against A. pleuropneumoniae was tested in macrophage-depleted mice. It was found that anti-P. acnes IgG had an effect similar to that of anti-A. pleuropneumoniae IgG (P > 0.05), which significantly promotes phagocytosis of A. pleuropneumoniae by macrophages (P < 0.01). It was also demonstrated that, after passive immunization with anti-P. acnes serum, macrophage-replete mice had the highest survival rate (90%), whereas the survival rate of macrophage-depleted mice was only 40% (P < 0.05). However, macrophage-depleted mice that had been passively immunized with naïve serum had the lowest survival rate (20%), this rate being lower than that of macrophage-replete mice that had been passively immunized with naïve serum. Overall, anti-P. acnes antibodies did not prevent A. pleuropneumoniae infection under conditions of macrophage depletion (P > 0.05). Furthermore, in mice that had been passively immunized with anti-P. acnes serum, macrophage depletion resulted in a greater A. pleuropneumoniae burden and more severe pathological features of pneumonia in lung tissues than occurred in macrophage-replete mice. It was concluded that macrophages are essential for the process by which anti-P. acnes antibody prevents A. pleuropneumoniae infection in mice.
Collapse
Affiliation(s)
- Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|