1
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Ye F, Kang Z, Kou H, Yang Y, Chen W, Wang S, Sun J, Liu F. G-Protein Coupled Receptor Gpr-1 Is Important for the Growth and Nutritional Metabolism of an Invasive Bark Beetle Symbiont Fungi Leptographium procerum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3354-3362. [PMID: 38230891 DOI: 10.1021/acs.jafc.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Leptographium procerum has been demonstrated to play important roles in the invasive success of red turpentine beetle (RTB), one of the most destructive invasive pests in China. Our previous studies found that bacterial volatile ammonia plays an important role in the maintenance of the RTB-L. procerum invasive complex. In this study, we found a GPCR gene Gpr-1 that was a response to ammonia but not involved in the ammonia-induced carbohydrate metabolism. Deletion of Gpr-1 significantly inhibited the growth and pathogenicity but thickened the cell wall of L. procerum, resulting in more resistance to cell wall-perturbing agents. Further analyses suggested that Gpr-1 deletion caused growth defects that might be due to the dysregulation of the amino acid and lipid metabolisms. The thicker cell wall in the ΔGpr-1 mutant was induced through the cell wall remodeling process. Our results indicated that Gpr-1 is essential for the growth of L. procerum by regulating the nutritional metabolism, which can be further explored for potential applications in the management of RTB.
Collapse
Affiliation(s)
- Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunwen Yang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Chen
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Yao RA, Reyre JL, Tamburrini KC, Haon M, Tranquet O, Nalubothula A, Mukherjee S, Le Gall S, Grisel S, Longhi S, Madhuprakash J, Bissaro B, Berrin JG. The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin. Appl Environ Microbiol 2023; 89:e0057323. [PMID: 37702503 PMCID: PMC10617569 DOI: 10.1128/aem.00573-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and β-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.
Collapse
Affiliation(s)
- Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Lou Reyre
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | - Ketty C. Tamburrini
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Olivier Tranquet
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Akshay Nalubothula
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sophie Le Gall
- INRAE, UR1268 BIA, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, Nantes, France
| | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Sonia Longhi
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| |
Collapse
|
4
|
Liu H, Lu X, Li M, Lun Z, Yan X, Yin C, Yuan G, Wang X, Liu N, Liu D, Wu M, Luo Z, Zhang Y, Bhadauria V, Yang J, Talbot NJ, Peng YL. Plant immunity suppression by an exo-β-1,3-glucanase and an elongation factor 1α of the rice blast fungus. Nat Commun 2023; 14:5491. [PMID: 37679340 PMCID: PMC10484928 DOI: 10.1038/s41467-023-41175-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Fungal cell walls undergo continual remodeling that generates β-1,3-glucan fragments as products of endo-glycosyl hydrolases (GHs), which can be recognized as pathogen-associated molecular patterns (PAMPs) and trigger plant immune responses. How fungal pathogens suppress those responses is often poorly understood. Here, we study mechanisms underlying the suppression of β-1,3-glucan-triggered plant immunity by the blast fungus Magnaporthe oryzae. We show that an exo-β-1,3-glucanase of the GH17 family, named Ebg1, is important for fungal cell wall integrity and virulence of M. oryzae. Ebg1 can hydrolyze β-1,3-glucan and laminarin into glucose, thus suppressing β-1,3-glucan-triggered plant immunity. However, in addition, Ebg1 seems to act as a PAMP, independent of its hydrolase activity. This Ebg1-induced immunity appears to be dampened by the secretion of an elongation factor 1 alpha protein (EF1α), which interacts and co-localizes with Ebg1 in the apoplast. Future work is needed to understand the mechanisms behind Ebg1-induced immunity and its suppression by EF1α.
Collapse
Affiliation(s)
- Hang Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xunli Lu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Mengfei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Zhiqin Lun
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Changfa Yin
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Guixin Yuan
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xingbin Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Di Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Mian Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Ziluolong Luo
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Vijai Bhadauria
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Thakur D, Bairwa A, Dipta B, Jhilta P, Chauhan A. An overview of fungal chitinases and their potential applications. PROTOPLASMA 2023; 260:1031-1046. [PMID: 36752884 DOI: 10.1007/s00709-023-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chitin, the world's second most abundant biopolymer after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Prakriti Jhilta
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| |
Collapse
|
6
|
Guo J, Mou Y, Li Y, Yang Q, Wang X, Lin H, Kang Z, Guo J. Silencing a Chitinase Gene, PstChia1, Reduces Virulence of Puccinia striiformis f. sp. tritici. Int J Mol Sci 2023; 24:8215. [PMID: 37175921 PMCID: PMC10179651 DOI: 10.3390/ijms24098215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chitin is the main component of fungal cell walls, which can be recognized by pattern recognition receptors (PRRs) as pathogen-associated molecular patterns (PAMP). Chitinase in filamentous fungi has been reported to degrade immunogenic chitin oligomers, thereby preventing chitin-induced immune activation. In this study, we identified the chitinase families in 10 fungal genomes. A total of 131 chitinase genes were identified. Among the chitinase families, 16 chitinase genes from Puccinia striiformis f. sp. tritici (Pst) were identified, and the expression of PstChia1 was the highest during Pst infection. Further studies indicated that PstChia1 is highly induced during the early stages of the interaction of wheat and Pst and has chitinase enzyme activity. The silencing of PstChia1 revealed that PstChia1 limited the growth and reduced the virulence of Pst. The expression level of TaPR1 and TaPR2 was induced in PstChia1 knockdown plants, suggesting that PstChia1 is involved in regulating wheat resistance to Pst. Our data suggest that PstChia1 contributes to pathogenicity by interfering with plant immunity and regulating the growth of Pst.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
7
|
Maillard F, Kohler A, Morin E, Hossann C, Miyauchi S, Ziegler-Devin I, Gérant D, Angeli N, Lipzen A, Keymanesh K, Johnson J, Barry K, Grigoriev IV, Martin FM, Buée M. Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. THE NEW PHYTOLOGIST 2023; 238:845-858. [PMID: 36702619 DOI: 10.1111/nph.18773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.
Collapse
Affiliation(s)
- François Maillard
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Christian Hossann
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | | | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
8
|
Ma LS, Tsai WL, Damei FA, Kalunke RM, Xu MY, Lin YH, Lee HC. Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin Deacetylases and Other Glycoproteins. mBio 2023; 14:e0009323. [PMID: 36946727 PMCID: PMC10128019 DOI: 10.1128/mbio.00093-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Pathogenic fungi convert chitin to chitosan to evade plant perception and disarm chitin-triggered immune responses. Whether plants have evolved factors to counteract this evasion mechanism remains obscure. Here, we decipher the mechanism underlying the antifungal activity of maize secretory mannose-binding cysteine-rich receptor-like secreted protein (CRRSP), antifungal protein 1 (AFP1). AFP1 binds to multiple sites on the surface of sporidial cells, filaments, and germinated spores of the biotrophic fungus Ustilago maydis. It inhibits cell growth and budding, as well as spore germination. AFP1 promiscuously interacts with most chitin deacetylases (CDAs) by recognizing the conserved NodB domain to interfere with the enzyme activity. Deletion of O-mannosyltransferase 4 decreases protein mannosylation, which correlates with reduced AFP1 binding and antifungal activity, suggesting that AFP1 interacts with mannosylated proteins to exhibit an inhibitory effect. AFP1 also has extended inhibitory activity against Saccharomyces cerevisiae; however, AFP1 did not reduce binding to the double ΔΔcda1,2 mutant, suggesting the targets of AFP1 have expanded to other cell surface glycoproteins, probably facilitated by its mannose-binding property. Increasing chitin levels by modulating the activity of cell surface glycoproteins is a universal feature of AFP1 interacting with a broad spectrum of fungi to inhibit their growth. IMPORTANCE Plants alert immune systems by recognizing the fungal pathogen cell wall component chitin via pattern recognition cell surface receptors. Successful fungal pathogens escape the perception by deacetylating chitin to chitosan, which is also necessary for fungal cell development and virulence. Targeting glycoproteins that are associated with regulating chitin metabolism and maintaining cell wall morphogenesis presents an effective strategy to combat fungal pathogens by simultaneously altering cell wall plasticity, activating chitin-triggered immunity, and impairing fungal viability. Our study provides molecular insights into a plant DUF26 domain-containing secretory protein in warding off a broad range of fungal pathogens by acting on more than one glycoprotein target.
Collapse
Affiliation(s)
- Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Raviraj M Kalunke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Roy A, Kalita B, Jayaprakash A, Kumar A, Lakshmi PTV. Computational identification and characterization of vascular wilt pathogen ( Fusarium oxysporum f. sp. lycopersici) CAZymes in tomato xylem sap. J Biomol Struct Dyn 2022:1-17. [PMID: 35470778 DOI: 10.1080/07391102.2022.2067236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is a devastating plant pathogenic fungi known for wilt disease in the tomato plant and secrete cell wall degrading enzymes. These enzymes are collectively known as carbohydrate-active enzymes (CAZymes), crucial for growth, colonization and pathogenesis. Therefore, the present study was aimed to identify and annotate pathogen CAZymes in the xylem sap of a susceptible tomato variety using downstream proteomics and meta servers. Further, structural elucidation and conformational stability analysis of the selected CAZyme families were done through homology modeling and molecular dynamics simulation. Among all the fungal proteins identified, the carbohydrate metabolic process was found to be enriched. Most of the annotated CAZymes belonged to the hydrolase and oxidoreductase families, and 90% were soluble and extracellular. Moreover, using a publically available interactome database, interactions were observed between the families acting on chitin, hemicellulose and pectin. Subsequently, important catalytic residues were identified in the candidate CAZymes belonging to carbohydrate esterase (CE8) and glycosyl hydrolase (GH18 and GH28). Further, essential dynamics after molecular simulation of 100 ns revealed the overall behavior of these CAZymes with distinct global minima and transition states in CE8. Thus, our study identified some of the CAZyme families that assist in pathogenesis and growth through host cell wall deconstruction with further structural insight into the selected CAZyme families.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Roy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Barsha Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Aiswarya Jayaprakash
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amrendra Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P T V Lakshmi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
10
|
Philipp M, Hussnaetter KP, Reindl M, Müntjes K, Feldbrügge M, Schipper K. A Novel Potent Carrier for Unconventional Protein Export in Ustilago maydis. Front Cell Dev Biol 2022; 9:816335. [PMID: 35083222 PMCID: PMC8784666 DOI: 10.3389/fcell.2021.816335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Recombinant proteins are ubiquitously applied in fields like research, pharma, diagnostics or the chemical industry. To provide the full range of useful proteins, novel expression hosts need to be established for proteins that are not sufficiently produced by the standard platform organisms. Unconventional secretion in the fungal model Ustilago maydis is an attractive novel option for export of heterologous proteins without N-glycosylation using chitinase Cts1 as a carrier. Recently, a novel factor essential for unconventional Cts1 secretion termed Jps1 was identified. Here, we show that Jps1 is unconventionally secreted using a fusion to bacterial β-glucuronidase as an established reporter. Interestingly, the experiment also demonstrates that the protein functions as an alternative carrier for heterologous proteins, showing about 2-fold higher reporter activity than the Cts1 fusion in the supernatant. In addition, Jps1-mediated secretion even allowed for efficient export of functional firefly luciferase as a novel secretion target which could not be achieved with Cts1. As an application for a relevant pharmaceutical target, export of functional bi-specific synthetic nanobodies directed against the SARS-CoV2 spike protein was demonstrated. The establishment of an alternative efficient carrier thus constitutes an excellent expansion of the existing secretion platform.
Collapse
Affiliation(s)
- Magnus Philipp
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai P Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle Reindl
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kira Müntjes
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Gomaa EZ. Microbial chitinases: properties, enhancement and potential applications. PROTOPLASMA 2021; 258:695-710. [PMID: 33483852 DOI: 10.1007/s00709-021-01612-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Chitinases are a category of hydrolytic enzymes that catalyze chitin and are formed by a wide variety of microorganisms. In nature, microbial chitinases are primarily responsible for chitin decomposition and play a vital role in the balance of carbon and nitrogen ratio in the ecosystem. The physicochemical attributes and the source of chitinase are the main bases that determine their functional characteristics and hydrolyzed products. Several chitinases have been reported and characterized, and they obtain a wider consideration for their utilization in a large number of uses such as in agriculture, food, environment, medicine and pharmaceutical companies. The antifungal and insecticidal impacts of several chitinases have been extensively studied, aiming to protect crops from phytopathogenic fungi and insects. Chitooligosaccharides synthesized by chitin degradation have been shown to improve human health through their antimicrobial, antioxidant, anti-inflammatory and antitumor properties. This review aims at investigating chitinase production, properties and their potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Eman Zakaria Gomaa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
13
|
Hussnaetter KP, Philipp M, Müntjes K, Feldbrügge M, Schipper K. Controlling Unconventional Secretion for Production of Heterologous Proteins in Ustilago maydis through Transcriptional Regulation and Chemical Inhibition of the Kinase Don3. J Fungi (Basel) 2021; 7:jof7030179. [PMID: 33802393 PMCID: PMC7999842 DOI: 10.3390/jof7030179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.
Collapse
|
14
|
Plücker L, Bösch K, Geißl L, Hoffmann P, Göhre V. Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora thlaspeos. J Fungi (Basel) 2021; 7:jof7010038. [PMID: 33435409 PMCID: PMC7826943 DOI: 10.3390/jof7010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Investigation of plant–microbe interactions greatly benefit from genetically tractable partners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host side, maize is limiting with regard to rapid genetic alterations. By contrast, the model plant Arabidopsis thaliana is an excellent model with a vast amount of information and techniques as well as genetic resources. Here, we present a transformation protocol for the Brassicaceae smut fungus Thecaphora thlaspeos. Using the well-established methodology of protoplast transformation, we generated the first reporter strains expressing fluorescent proteins to follow mating. As a proof-of-principle for homologous recombination, we deleted the pheromone receptor pra1. As expected, this mutant cannot mate. Further analysis will contribute to our understanding of the role of mating for infection biology in this novel model fungus. From now on, the genetic manipulation of T. thlaspeos, which is able to colonize the model plant A. thaliana, provides us with a pathosystem in which both partners are genetically amenable to study smut infection biology.
Collapse
Affiliation(s)
| | | | | | | | - Vera Göhre
- Correspondence: ; Tel.: +49-211-811-1529
| |
Collapse
|
15
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
16
|
Martínez-Soto D, Ortiz-Castellanos L, Robledo-Briones M, León-Ramírez CG. Molecular Mechanisms Involved in the Multicellular Growth of Ustilaginomycetes. Microorganisms 2020; 8:E1072. [PMID: 32708448 PMCID: PMC7409079 DOI: 10.3390/microorganisms8071072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Multicellularity is defined as the developmental process by which unicellular organisms became pluricellular during the evolution of complex organisms on Earth. This process requires the convergence of genetic, ecological, and environmental factors. In fungi, mycelial and pseudomycelium growth, snowflake phenotype (where daughter cells remain attached to their stem cells after mitosis), and fruiting bodies have been described as models of multicellular structures. Ustilaginomycetes are Basidiomycota fungi, many of which are pathogens of economically important plant species. These fungi usually grow unicellularly as yeasts (sporidia), but also as simple multicellular forms, such as pseudomycelium, multicellular clusters, or mycelium during plant infection and under different environmental conditions: Nitrogen starvation, nutrient starvation, acid culture media, or with fatty acids as a carbon source. Even under specific conditions, Ustilago maydis can form basidiocarps or fruiting bodies that are complex multicellular structures. These fungi conserve an important set of genes and molecular mechanisms involved in their multicellular growth. In this review, we will discuss in-depth the signaling pathways, epigenetic regulation, required polyamines, cell wall synthesis/degradation, polarized cell growth, and other cellular-genetic processes involved in the different types of Ustilaginomycetes multicellular growth. Finally, considering their short life cycle, easy handling in the laboratory and great morphological plasticity, Ustilaginomycetes can be considered as model organisms for studying fungal multicellularity.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Los Reyes, Los Reyes 60300, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| | - Mariana Robledo-Briones
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain;
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| |
Collapse
|
17
|
Reindl M, Stock J, Hussnaetter KP, Genc A, Brachmann A, Schipper K. A Novel Factor Essential for Unconventional Secretion of Chitinase Cts1. Front Microbiol 2020; 11:1529. [PMID: 32733418 PMCID: PMC7358432 DOI: 10.3389/fmicb.2020.01529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Subcellular targeting of proteins is essential to orchestrate cytokinesis in eukaryotic cells. During cell division of Ustilago maydis, for example, chitinases must be specifically targeted to the fragmentation zone at the site of cell division to degrade remnant chitin and thus separate mother and daughter cells. Chitinase Cts1 is exported to this location via an unconventional secretion pathway putatively operating in a lock-type manner. The underlying mechanism is largely unexplored. Here, we applied a forward genetic screen based on UV mutagenesis to identify components essential for Cts1 export. The screen revealed a novel factor termed Jps1 lacking known protein domains. Deletion of the corresponding gene confirmed its essential role for Cts1 secretion. Localization studies demonstrated that Jps1 colocalizes with Cts1 in the fragmentation zone of dividing yeast cells. While loss of Jps1 leads to exclusion of Cts1 from the fragmentation zone and strongly reduced unconventional secretion, deletion of the chitinase does not disturb Jps1 localization. Yeast-two hybrid experiments indicate that the two proteins might interact. In essence, we identified a novel component of unconventional secretion that functions in the fragmentation zone to enable export of Cts1. We hypothesize that Jps1 acts as an anchoring factor for Cts1.
Collapse
Affiliation(s)
- Michèle Reindl
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Janpeter Stock
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Kai P. Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Aycin Genc
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Aschenbroich J, Hussnaetter KP, Stoffels P, Langner T, Zander S, Sandrock B, Bölker M, Feldbrügge M, Schipper K. The germinal centre kinase Don3 is crucial for unconventional secretion of chitinase Cts1 in Ustilago maydis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140154. [DOI: 10.1016/j.bbapap.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023]
|
19
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
20
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
21
|
Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu GD. A Magnaporthe Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. PLANT PHYSIOLOGY 2019; 179:1416-1430. [PMID: 30696749 PMCID: PMC6446787 DOI: 10.1104/pp.18.01594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The genome of rice blast fungus (Magnaporthe oryzae) encodes 15 glycoside hydrolase 18 family chitinases. In this study, we characterized the function of an M. oryzae extracellular chitinase, MoChi1, and its interaction with a host protein, OsMBL1, a jacalin-related Mannose-Binding Lectin (MBL) in rice (Oryza sativa). Deletion of MoChi1 resulted in reduced aerial hyphal formation and reduced virulence in rice by activating the expression of defense-responsive genes. We confirmed MoChi1 interaction with rice OsMBL1 in vitro and in vivo. OsMBL1 was induced by pathogen-associated molecular patterns and M. oryzae infection. Overexpression of OsMBL1 led to activation of rice defense-responsive genes and a chitin-induced reactive oxygen species burst, thereby enhancing resistance to M. oryzae Knockdown of OsMBL1 enhances susceptibility of rice plants to M. oryzae Furthermore, MoChi1 suppressed chitin-induced reactive oxygen species in rice cells and competed with OsMBL1 for chitin binding. Taken together, our study reveals a mechanism in which MoChi1 targets a host lectin to suppress rice immunity.
Collapse
Affiliation(s)
- Yijuan Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changlin Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Liu
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunhui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
22
|
A Potential Lock-Type Mechanism for Unconventional Secretion in Fungi. Int J Mol Sci 2019; 20:ijms20030460. [PMID: 30678160 PMCID: PMC6386918 DOI: 10.3390/ijms20030460] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.
Collapse
|
23
|
Abstract
In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.
Collapse
Affiliation(s)
- César Roncero
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional Y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
24
|
Yang C, Yu Y, Huang J, Meng F, Pang J, Zhao Q, Islam MA, Xu N, Tian Y, Liu J. Binding of the Magnaporthe oryzae Chitinase MoChia1 by a Rice Tetratricopeptide Repeat Protein Allows Free Chitin to Trigger Immune Responses. THE PLANT CELL 2019; 31:172-188. [PMID: 30610168 PMCID: PMC6391695 DOI: 10.1105/tpc.18.00382] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/19/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Abstract
To defend against pathogens, plants have developed complex immune systems, including plasma membrane receptors that recognize pathogen-associated molecular patterns, such as chitin from fungal cell walls, and mount a defense response. Here, we identify a chitinase, MoChia1 (Magnaporthe oryzae chitinase 1), secreted by M. oryzae, a fungal pathogen of rice (Oryza sativa). MoChia1 can trigger plant defense responses, and expression of MoChia1 under an inducible promoter in rice enhances its resistance to M. oryzae MoChia1 is a functional chitinase required for M. oryzae growth and development; knocking out MoChia1 significantly reduced the virulence of the fungus, and we found that MoChia1 binds chitin to suppress the chitin-triggered plant immune response. However, the rice tetratricopeptide repeat protein OsTPR1 interacts with MoChia1 in the rice apoplast. OsTPR1 competitively binds MoChia1, thereby allowing the accumulation of free chitin and re-establishing the immune response. Overexpressing OsTPR1 in rice plants resulted in elevated levels of reactive oxygen species during M. oryzae infection. Our data demonstrate that rice plants not only recognize MoChia1, but also use OsTPR to counteract the function of this fungal chitinase and regain immunity.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqi Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junkai Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiqi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Md Azizul Islam
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Béthune J, Jansen RP, Feldbrügge M, Zarnack K. Membrane-Associated RNA-Binding Proteins Orchestrate Organelle-Coupled Translation. Trends Cell Biol 2018; 29:178-188. [PMID: 30455121 DOI: 10.1016/j.tcb.2018.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023]
Abstract
Proteins are positioned and act at defined subcellular locations. This is particularly important in eukaryotic cells that deliver proteins to membrane-bound organelles such as the endoplasmic reticulum (ER), mitochondria, or endosomes. It is axiomatic that organelle targeting depends mainly on polypeptide signals. However, recent results demonstrate that targeting elements within the encoding transcripts are essential for efficient protein localisation. Key readers of these elements are membrane-associated RNA-binding proteins (memRBPs) that orchestrate organelle-coupled translation. The translation products then either cross the membrane for organelle entry or hitchhike on organelle surfaces for complex assembly and co-transport. Understanding the interaction of protein- and RNA-based targeting signals is essential to decipher the molecular basis for mutant phenotypes in disease.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University, Biochemistry Center, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
| | - Ralf-Peter Jansen
- Eberhard-Karls-University Tübingen, Interfaculty Institute of Biochemistry, Hoppe-Seyler-Straße 4, 72076 Tübingen, Germany
| | - Michael Feldbrügge
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, 40204 Düsseldorf, Germany.
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Ökmen B, Kemmerich B, Hilbig D, Wemhöner R, Aschenbroich J, Perrar A, Huesgen PF, Schipper K, Doehlemann G. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. THE NEW PHYTOLOGIST 2018; 220:249-261. [PMID: 29916208 DOI: 10.1111/nph.15265] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases. Genetic, biochemical and microscopic experiments were performed to elucidate the in vitro and in planta functions of U. maydis UmFly1. U. maydis ∆umfly1 mutants show significantly reduced virulence, which coincides with reduced cleavage of the maize chitinase ZmChiA within its chitin-binding domain. Moreover, deletion of umfly1 affected the cell separation of haploid U. maydis sporidia. This phenotype is associated with posttranslational activation of the endogenous chitinase UmCts1. Genetic complementation of the ∆umfly1 mutant with a homologous gene from closely related, but nonpathogenic, yeast fully rescued the cell separation defect in vitro, but it could not recover the ∆umfly1 defect in virulence and cleavage of the maize chitinase. We report on the dual function of the secreted fungalysin UmFly1. We hypothesize that co-evolution of U. maydis with its host plant extended the endogenous function of UmFly1 towards the modulation of plant chitinase activity to promote infection.
Collapse
Affiliation(s)
- Bilal Ökmen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Bastian Kemmerich
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Daniel Hilbig
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Raphael Wemhöner
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Jörn Aschenbroich
- Institute for Microbiology, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, 50674, Cologne, Germany
| |
Collapse
|
27
|
Cheng XX, Zhao LH, Klosterman SJ, Feng HJ, Feng ZL, Wei F, Shi YQ, Li ZF, Zhu HQ. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:12-23. [PMID: 28483050 DOI: 10.1016/j.plantsci.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 05/06/2023]
Abstract
Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized an endochitinase (VDECH) from Verticillium dahliae, strain Vd080. The VDECH coding region consists of 1845bp with two exons and one 54bp intron, encoding a 615 amino acid protein with the predicted molecular weight (MW) of 63.9kDa. The VDECH cDNA without signal peptide-encoding region was introduced into pCold-TF vector and the recombinant protein HIS-VDECH with a predicted MW of ∼114kDa was expressed. HIS-VDECH showed high tolerance to extreme temperature, exhibiting efficient chitinolytic activity at 50°C. In addition, VDECH triggered typical plant defense responses, including a hypersensitive response, oxidative burst, and elicited increased expression of defense-related genes in both Arabidopsis and cotton. VDECH-treatment of the conidial spores of V. dahliae and Fusarium oxysporum resulted in marked reductions in the germination of these spores in both fungi. After 36h of incubation with VDECH, the inhibition rate of germination was recorded at 99.57% for V. dahliae, and 96.89% for F. oxysporum. These results provide evidence that VDECH is recognized by the plant to elicit defense responses, and also that VDECH is an effective inhibitor of conidia germination, both of which may be exploited for disease control.
Collapse
Affiliation(s)
- Xiao-Xiao Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Li-Hong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hong-Jie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zi-Li Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yong-Qiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
28
|
Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies. Int J Mol Sci 2017; 18:ijms18050937. [PMID: 28468279 PMCID: PMC5454850 DOI: 10.3390/ijms18050937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp). Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion.
Collapse
|
29
|
Haag C, Pohlmann T, Feldbrügge M. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking. PLoS Genet 2017; 13:e1006734. [PMID: 28422978 PMCID: PMC5415202 DOI: 10.1371/journal.pgen.1006734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/03/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.
Collapse
Affiliation(s)
- Carl Haag
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Thomas Pohlmann
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Michael Feldbrügge
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
30
|
Frantzeskakis L, Courville KJ, Plücker L, Kellner R, Kruse J, Brachmann A, Feldbrügge M, Göhre V. The Plant-Dependent Life Cycle of Thecaphora thlaspeos: A Smut Fungus Adapted to Brassicaceae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:271-282. [PMID: 28421861 DOI: 10.1094/mpmi-08-16-0164-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Smut fungi are globally distributed plant pathogens that infect agriculturally important crop plants such as maize or potato. To date, molecular studies on plant responses to smut fungi are challenging due to the genetic complexity of their host plants. Therefore, we set out to investigate the known smut fungus of Brassicaceae hosts, Thecaphora thlaspeos. T. thlaspeos infects different Brassicaceae plant species throughout Europe, including the perennial model plant Arabis alpina. In contrast to characterized smut fungi, mature and dry T. thlaspeos teliospores germinated only in the presence of a plant signal. An infectious filament emerges from the teliospore, which can proliferate as haploid filamentous cultures. Haploid filaments from opposite mating types mate, similar to sporidia of the model smut fungus Ustilago maydis. Consistently, the a and b mating locus genes are conserved. Infectious filaments can penetrate roots and aerial tissues of host plants, causing systemic colonization along the vasculature. Notably, we could show that T. thlaspeos also infects Arabidopsis thaliana. Exploiting the genetic resources of A. thaliana and Arabis alpina will allow us to characterize plant responses to smut infection in a comparative manner and, thereby, characterize factors for endophytic growth as well as smut fungi virulence in dicot plants.
Collapse
Affiliation(s)
- Lamprinos Frantzeskakis
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Kaitlyn J Courville
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Lesley Plücker
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Ronny Kellner
- 2 Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Julia Kruse
- 3 Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; and
| | - Andreas Brachmann
- 4 Ludwig-Maximilians-Universität München, Faculty of Biology, Genetics, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Michael Feldbrügge
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| | - Vera Göhre
- 1 Institute for Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.12.01, Universitätsstr.1, 40205 Düsseldorf, Germany
| |
Collapse
|
31
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|
32
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
33
|
Bösch K, Frantzeskakis L, Vraneš M, Kämper J, Schipper K, Göhre V. Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions. J Vis Exp 2016. [PMID: 27768088 DOI: 10.3791/54522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene deletion plays an important role in the analysis of gene function. One of the most efficient methods to disrupt genes in a targeted manner is the replacement of the entire gene with a selectable marker via homologous recombination. During homologous recombination, exchange of DNA takes place between sequences with high similarity. Therefore, linear genomic sequences flanking a target gene can be used to specifically direct a selectable marker to the desired integration site. Blunt ends of the deletion construct activate the cell's DNA repair systems and thereby promote integration of the construct either via homologous recombination or by non-homologous-end-joining. In organisms with efficient homologous recombination, the rate of successful gene deletion can reach more than 50% making this strategy a valuable gene disruption system. The smut fungus Ustilago maydis is a eukaryotic model microorganism showing such efficient homologous recombination. Out of its about 6,900 genes, many have been functionally characterized with the help of deletion mutants, and repeated failure of gene replacement attempts points at essential function of the gene. Subsequent characterization of the gene function by tagging with fluorescent markers or mutations of predicted domains also relies on DNA exchange via homologous recombination. Here, we present the U. maydis strain generation strategy in detail using the simplest example, the gene deletion.
Collapse
Affiliation(s)
- Kristin Bösch
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | | | - Miroslav Vraneš
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC); Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf;
| |
Collapse
|
34
|
Zander S, Baumann S, Weidtkamp-Peters S, Feldbrügge M. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J Cell Sci 2016; 129:2778-92. [PMID: 27252385 DOI: 10.1242/jcs.182824] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/26/2016] [Indexed: 02/02/2023] Open
Abstract
Septins are conserved cytoskeletal structures functioning in a variety of biological processes including cytokinesis and cell polarity. A wealth of information exists on the heterooligomeric architecture of septins and their subcellular localization at distinct sites. However, the precise mechanisms of their subcellular assembly and their intracellular transport are unknown. Here, we demonstrate that endosomal transport of septins along microtubules is crucial for formation of higher-order structures in the fungus Ustilago maydis Importantly, endosomal septin transport is dependent on each individual septin providing strong evidence that septin heteromeric complexes are assembled on endosomes. Furthermore, endosomal trafficking of all four septin mRNAs is required for endosomal localization of their translation products. Based on these results, we propose that local translation promotes the assembly of newly synthesized septins in heteromeric structures on the surface of endosomes. This is important for the long-distance transport of septins and the efficient formation of the septin cytoskeleton.
Collapse
Affiliation(s)
- Sabrina Zander
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Sebastian Baumann
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Michael Feldbrügge
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
35
|
Stock J, Terfrüchte M, Schipper K. A Reporter System to Study Unconventional Secretion of Proteins Avoiding N-Glycosylation in Ustilago maydis. Methods Mol Biol 2016; 1459:149-60. [PMID: 27665557 DOI: 10.1007/978-1-4939-3804-9_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unconventional secretion of proteins in eukaryotes is characterized by the circumvention of the Endoplasmic Reticulum (ER). As a consequence proteins exported by unconventional pathways lack N-glycosylation, a post-transcriptional modification that is initiated in the ER during classical secretion. We are exploiting the well-established enzyme β-glucuronidase (GUS) to assay unconventional protein secretion (UPS). This bacterial protein is perfectly suited for this purpose because it carries a eukaryotic N-glycosylation motif. Modification of this residue by attachment of sugar moieties during the passage of the ER apparently causes a very strong reduction in GUS activity. Hence, this enzyme can only be secreted in an active state, if the export mechanism does not involve ER passage. Here, we describe a reporter system applied in the corn smut fungus Ustilago maydis that is based on this observation and can be used to test if candidate proteins are secreted to the culture supernatant via alternative pathways avoiding N-glycosylation. Importantly, this system is the basis for the establishment of genetic screens providing mechanistic insights into unknown UPS pathways in the future.
Collapse
Affiliation(s)
- Janpeter Stock
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Bldg. 26.12.01, 40204, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marius Terfrüchte
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Bldg. 26.12.01, 40204, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kerstin Schipper
- Heinrich Heine University Düsseldorf, Institute for Microbiology, Bldg. 26.12.01, 40204, Düsseldorf, Germany.
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
36
|
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2015; 62:243-54. [PMID: 26527115 DOI: 10.1007/s00294-015-0530-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions.
Collapse
Affiliation(s)
- Thorsten Langner
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|