1
|
Schyck S, Marchese P, Amani M, Ablonczy M, Spoelstra L, Jones M, Bathaei Y, Bismarck A, Masania K. Harnessing Fungi Signaling in Living Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400104. [PMID: 39469481 PMCID: PMC11514302 DOI: 10.1002/gch2.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Indexed: 10/30/2024]
Abstract
Signaling pathways in fungi offer a profound avenue for harnessing cellular communication and have garnered considerable interest in biomaterial engineering. Fungi respond to environmental stimuli through intricate signaling networks involving biochemical and electrical pathways, yet deciphering these mechanisms remains a challenge. In this review, an overview of fungal biology and their signaling pathways is provided, which can be activated in response to external stimuli and direct fungal growth and orientation. By examining the hyphal structure and the pathways involved in fungal signaling, the current state of recording fungal electrophysiological signals as well as the landscape of fungal biomaterials is explored. Innovative applications are highlighted, from sustainable materials to biomonitoring systems, and an outlook on the future of harnessing fungi signaling in living composites is provided.
Collapse
Affiliation(s)
- Sarah Schyck
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Pietro Marchese
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Muhamad Amani
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mark Ablonczy
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Linde Spoelstra
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mitchell Jones
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Yaren Bathaei
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Alexander Bismarck
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| |
Collapse
|
2
|
Pajić T, Stevanović K, Todorović NV, Krmpot AJ, Živić M, Savić-Šević S, Lević SM, Stanić M, Pantelić D, Jelenković B, Rabasović MD. In vivo femtosecond laser nanosurgery of the cell wall enabling patch-clamp measurements on filamentous fungi. MICROSYSTEMS & NANOENGINEERING 2024; 10:47. [PMID: 38590818 PMCID: PMC10999429 DOI: 10.1038/s41378-024-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 04/10/2024]
Abstract
Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.
Collapse
Grants
- Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Ministry of Education, Science and Technological Development of the Republic of Serbia)
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200178]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract number: 451-03-47/2023-01/200007]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia
- The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program DEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia; the Project HEMMAGINERO [Grant number 6066079] from Program PROMIS, Science Fund of the Republic of Serbia; and the Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia.
- The Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia
Collapse
Affiliation(s)
- Tanja Pajić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Stevanović
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Nataša V. Todorović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandar J. Krmpot
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Miroslav Živić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Svetlana Savić-Šević
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Steva M. Lević
- University of Belgrade, Faculty of Agriculture, Nemanjina Street 6, 11080 Belgrade, Serbia
| | - Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dejan Pantelić
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Brana Jelenković
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| | - Mihailo D. Rabasović
- Institute of Physics Belgrade, University of Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Stevanović KS, Čepkenović B, Križak S, Pajić T, Todorović NV, Živić MŽ. ATP modulation of osmotically activated anionic current in the membrane of Phycomyces blakesleeanus sporangiophore. Sci Rep 2023; 13:11897. [PMID: 37488205 PMCID: PMC10366193 DOI: 10.1038/s41598-023-39021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Ion channels are vital components of filamentous fungi signaling in communication with their environment. We exploited the ability of the apical region of growing sporangiophores of Phycomyces blakesleeanus to form membrane-enveloped cytoplasmic droplets (CDs), to examine ion currents in the filamentous fungi native plasma membrane. In hypoosmotic conditions, the dominant current in the CDs is ORIC, an osmotically activated, anionic, outwardly rectified, fast inactivating instantaneous current that we have previously characterized. Here, we examined the effect of ATP on ORIC. We show that CDs contain active mitochondria, and that respiration inhibition by azide accelerates ORIC inactivation. ATP, added intracellularly, reduced ORIC run-down and shifted the voltage dependence of inactivation toward depolarized potentials, in a manner that did not require hydrolysis. Notably, ATP led to slowing down of ORIC inactivation, as evidenced by an increased time constant of inactivation, τin, and slower decline of τin during prolonged recordings. Flavonoids (genistein and quercetin) had the effect on ORIC opposite to ATP, acting as current inhibitors, possibly by disrupting the stabilizing effect of ATP on ORIC. The integration of osmotic sensing with ATP dependence of the anionic current, typical of vertebrate cells, is described here for the first time in filamentous fungi.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Tanja Pajić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Nataša V Todorović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, Belgrade, 11000, Serbia.
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| |
Collapse
|
4
|
Živanović BD, Ullrich K, Spasić SZ, Galland P. Auxin- and pH-induced guttation in Phycomyces sporangiophores: relation between guttation and diminished elongation growth. PROTOPLASMA 2023; 260:1109-1133. [PMID: 36622433 DOI: 10.1007/s00709-022-01833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/22/2022] [Indexed: 06/07/2023]
Abstract
Guttation, the formation of exudation water, is widespread among plants and fungi, yet the underlying mechanisms remain largely unknown. We describe the conditions for inducing guttation in sporangiophores of the mucoracean fungus, Phycomyces blakesleeanus. Cultivation on peptone-enriched potato dextrose agar elicits vigorous guttation mainly below the apical growing zone, while sporangiophores raised on a glucose-mineral medium manifest only moderate guttation. Mycelia do not guttate irrespective of the employed media. The topology of guttation droplets allows identifying the non-growing part of the sporangiophore as a guttation zone, which responds to humidity and medium composition in ways that become relevant for turgor homeostasis and thus the sensor physiology of the growing zone. Apparently, the entire sporangiophore, rather than exclusively the growing zone, participates in signal reception and integration to generate a common growth output. Exogenous auxin applied to the growing zones elicits two correlated responses: (i) formation of guttation droplets in the growing and transition zones below the sporangium and (ii) a diminution of the growth rate. In sporangiophore populations, guttation-induction by exogenous control buffer occurs at low frequencies; the bias for guttation increases with increasing auxin concentration. Synthetic auxins and the transport inhibitor NPA suppress guttation completely, but leave growth rates largely unaffected. Mutants C2 carA and C148 carA madC display higher sensitivities for auxin-induced guttation compared to wild type. A working model for guttation includes aquaporins and mechanosensitive ion channels that we identified in Phycomyces by sequence domain searches.
Collapse
Affiliation(s)
- Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Kristian Ullrich
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Singidunum University, Danijelova 32, 11010, Belgrade, Serbia
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-Von-Frisch Str. 8, 35032, Marburg, Germany
| |
Collapse
|
5
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Müller HM, Schäfer N, Bauer H, Geiger D, Lautner S, Fromm J, Riederer M, Bueno A, Nussbaumer T, Mayer K, Alquraishi SA, Alfarhan AH, Neher E, Al-Rasheid KAS, Ache P, Hedrich R. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. THE NEW PHYTOLOGIST 2017; 216:150-162. [PMID: 28670699 DOI: 10.1111/nph.14672] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/17/2017] [Indexed: 05/22/2023]
Abstract
Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl- medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium.
Collapse
Affiliation(s)
- Heike M Müller
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Nadine Schäfer
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Hubert Bauer
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Dietmar Geiger
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Silke Lautner
- Department of Wood Science, University Hamburg, 21031, Hamburg, Germany
| | - Jörg Fromm
- Department of Wood Science, University Hamburg, 21031, Hamburg, Germany
| | - Markus Riederer
- Biocenter, Institute for Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Amauri Bueno
- Biocenter, Institute for Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764, Neuherberg, Germany
| | - Klaus Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764, Neuherberg, Germany
| | | | - Ahmed H Alfarhan
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077, Goettingen, Germany
| | - Khaled A S Al-Rasheid
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Peter Ache
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
7
|
Stanić M, Križak S, Jovanović M, Pajić T, Ćirić A, Žižić M, Zakrzewska J, Antić TC, Todorović N, Živić M. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites. MICROBIOLOGY-SGM 2017; 163:364-372. [PMID: 28100310 DOI: 10.1099/mic.0.000429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.
Collapse
Affiliation(s)
- Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Strahinja Križak
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tanja Pajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ana Ćirić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milan Žižić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Tijana Cvetić Antić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Nataša Todorović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Križak S, Nikolić L, Stanić M, Žižić M, Zakrzewska J, Živić M, Todorović N. Osmotic swelling activates a novel anionic current with VRAC-like properties in a cytoplasmic droplet membrane from Phycomyces blakesleeanus sporangiophores. Res Microbiol 2015; 166:162-73. [DOI: 10.1016/j.resmic.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 02/05/2023]
|
9
|
Zivanović BD. Surface tip-to-base Ca2+ and H+ ionic fluxes are involved in apical growth and graviperception of the Phycomyces stage I sporangiophore. PLANTA 2012; 236:1817-1829. [PMID: 22910875 DOI: 10.1007/s00425-012-1738-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
Net fluxes of Ca(2+) and H(+) ions were measured non-invasively close to the surface of Phycomyces blakesleeanus sporangiophores stage I using ion-selective vibrating microelectrodes. The measurements were performed on a wild type (Wt) and a gravitropic mutant A909 kept in either vertical or tilted orientation. Microelectrodes were positioned 4 μm from the surface of sporangiophore, and ion fluxes were recorded from the apical (0-20 μm) and subapical (50-100 μm) regions. The magnitude and direction of ionic fluxes measured were dependent on the distance from the tip along the growing zone of sporangiophore. Vertically oriented sporangiophores displayed characteristic tip-to-base ion fluxes patterns. Ca(2+) and H(+) fluxes recorded from apical region of Wt sporangiophores were inward-directed, while ion fluxes from subapical locations occurred in both directions. In contrast to Wt, mutant A909 showed opposite (outward) direction of Ca(2+) fluxes and reduced H(+) influxes in the apical region. Following gravistimulation, the magnitude and direction of ionic fluxes were altered. Wt sporangiophore exhibited oppositely directed fluxes on the lower (influx) and the upper (efflux) sides of the cell, while mutant A909 did not show such patterns. A variable elongation growth in vertical position and reduced growth rate upon gravistimulation were observed in both strains. The data show that tip-growing sporangiophores exhibit a tip-to-base ion flux pattern which changes characteristically upon gravistimulation in Wt in contrast to the mutant A909 with a strongly reduced gravitropic response.
Collapse
Affiliation(s)
- Branka D Zivanović
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| |
Collapse
|
10
|
Roberts SK, Milnes J, Caddick M. Characterisation of AnBEST1, a functional anion channel in the plasma membrane of the filamentous fungus, Aspergillus nidulans. Fungal Genet Biol 2011; 48:928-38. [PMID: 21596151 DOI: 10.1016/j.fgb.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022]
Abstract
Two distant homologues of the bestrophin gene family have been identified in the filamentous fungus, Aspergillus nidulans (anbest1 and anbest2). AnBEST1 was functionally characterised using the patch clamp technique and was shown to be an anion selective channel permeable to citrate. Furthermore, AnBEST1 restored the growth of the pdr12Δ yeast mutant on inhibitory concentrations of extracellular propionate, benzoate and sorbate, also consistent with carboxylated organic anion permeation of AnBEST1. Similar to its animal counterparts, AnBEST1 currents were activated by elevated cytosolic Ca(2+) with a K(d) of 1.60μM. Single channel currents showed long (>10s) open and closed times with a unitary conductance of 16.3pS. Transformation of A. nidulans with GFP-tagged AnBEST1 revealed that AnBEST1 localised to the plasma membrane. An anbest1 null mutant was generated to investigate the possibility that AnBEST1 mediated organic anion efflux across the plasma membrane. Although organic anion efflux was reduced from anbest1 null mutants, this phenotype was linked to the restoration of uracil/uridine-requiring A. nidulans strains to uracil/uridine prototrophy. In conclusion, this study identifies a new family of organic anion-permeable channels in filamentous fungi. We also reveal that uracil/uridine-requiring Aspergillus strains exhibit altered organic anion metabolism which could have implications for the interpretation of physiological studies using auxotrophic Aspergillus strains.
Collapse
Affiliation(s)
- Stephen K Roberts
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK.
| | | | | |
Collapse
|