1
|
Dong J, Hou J, Yao Q, Wang B, Wang J, Shen X, Lai K, Ge H, Wang Y, Xu M, Fu A, Wang F. The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39453967 DOI: 10.1111/tpj.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/27/2024]
Abstract
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.
Collapse
Affiliation(s)
- Jie Dong
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Baoxiang Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Xuan Shen
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Ke Lai
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Min Xu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| |
Collapse
|
2
|
Pir MS, Begar E, Yenisert F, Demirci HC, Korkmaz ME, Karaman A, Tsiropoulou S, Firat-Karalar EN, Blacque OE, Oner SS, Doluca O, Cevik S, Kaplan OI. CilioGenics: an integrated method and database for predicting novel ciliary genes. Nucleic Acids Res 2024; 52:8127-8145. [PMID: 38989623 DOI: 10.1093/nar/gkae554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1-3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com/).
Collapse
Affiliation(s)
- Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Efe Begar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hasan C Demirci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Mustafa E Korkmaz
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Asli Karaman
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
- School of Medicine, Koç University, Istanbul 34450, Turkiye
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukru S Oner
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkiye
| | - Osman Doluca
- Izmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, Izmir, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
3
|
King SM, Sakato-Antoku M, Patel-King RS, Balsbaugh JL. The methylome of motile cilia. Mol Biol Cell 2024; 35:ar89. [PMID: 38696262 PMCID: PMC11244166 DOI: 10.1091/mbc.e24-03-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024] Open
Abstract
Cilia are highly complex motile, sensory, and secretory organelles that contain perhaps 1000 or more distinct protein components, many of which are subject to various posttranslational modifications such as phosphorylation, N-terminal acetylation, and proteolytic processing. Another common modification is the addition of one or more methyl groups to the side chains of arginine and lysine residues. These tunable additions delocalize the side-chain charge, decrease hydrogen bond capacity, and increase both bulk and hydrophobicity. Methylation is usually mediated by S-adenosylmethionine (SAM)-dependent methyltransferases and reversed by demethylases. Previous studies have identified several ciliary proteins that are subject to methylation including axonemal dynein heavy chains that are modified by a cytosolic methyltransferase. Here, we have performed an extensive proteomic analysis of multiple independently derived cilia samples to assess the potential for SAM metabolism and the extent of methylation in these organelles. We find that cilia contain all the enzymes needed for generation of the SAM methyl donor and recycling of the S-adenosylhomocysteine and tetrahydrofolate byproducts. In addition, we find that at least 155 distinct ciliary proteins are methylated, in some cases at multiple sites. These data provide a comprehensive resource for studying the consequences of methyl marks on ciliary biology.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 3305
| | - Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 3305
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
4
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
5
|
Thapa N, Chaudhari M, Iannetta AA, White C, Roy K, Newman RH, Hicks LM, Kc DB. A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites. Sci Rep 2021; 11:12550. [PMID: 34131195 PMCID: PMC8206365 DOI: 10.1038/s41598-021-91840-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation, which is one of the most important post-translational modifications (PTMs), is involved in regulating myriad cellular processes. Herein, we present a novel deep learning based approach for organism-specific protein phosphorylation site prediction in Chlamydomonas reinhardtii, a model algal phototroph. An ensemble model combining convolutional neural networks and long short-term memory (LSTM) achieves the best performance in predicting phosphorylation sites in C. reinhardtii. Deemed Chlamy-EnPhosSite, the measured best AUC and MCC are 0.90 and 0.64 respectively for a combined dataset of serine (S) and threonine (T) in independent testing higher than those measures for other predictors. When applied to the entire C. reinhardtii proteome (totaling 1,809,304 S and T sites), Chlamy-EnPhosSite yielded 499,411 phosphorylated sites with a cut-off value of 0.5 and 237,949 phosphorylated sites with a cut-off value of 0.7. These predictions were compared to an experimental dataset of phosphosites identified by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in a blinded study and approximately 89.69% of 2,663 C. reinhardtii S and T phosphorylation sites were successfully predicted by Chlamy-EnPhosSite at a probability cut-off of 0.5 and 76.83% of sites were successfully identified at a more stringent 0.7 cut-off. Interestingly, Chlamy-EnPhosSite also successfully predicted experimentally confirmed phosphorylation sites in a protein sequence (e.g., RPS6 S245) which did not appear in the training dataset, highlighting prediction accuracy and the power of leveraging predictions to identify biologically relevant PTM sites. These results demonstrate that our method represents a robust and complementary technique for high-throughput phosphorylation site prediction in C. reinhardtii. It has potential to serve as a useful tool to the community. Chlamy-EnPhosSite will contribute to the understanding of how protein phosphorylation influences various biological processes in this important model microalga.
Collapse
Affiliation(s)
- Niraj Thapa
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Meenal Chaudhari
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clarence White
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Kaushik Roy
- Department of Computer Science, North Carolina A&T State University, Greensboro, NC, USA
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dukka B Kc
- Electrical Engineering and Computer Science Department, Wichita State University, Wichita, KS, USA.
| |
Collapse
|
6
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
7
|
Li W, Flores DC, Füßel J, Euteneuer J, Dathe H, Zou Y, Weisheit W, Wagner V, Petersen J, Mittag M. A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in Chlamydomonas. PLANT PHYSIOLOGY 2018; 178:1489-1506. [PMID: 30301774 PMCID: PMC6288751 DOI: 10.1104/pp.18.00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/30/2018] [Indexed: 05/09/2023]
Abstract
Microalgae contribute significantly to carbon fixation on Earth. Global warming influences their physiology and growth rates. To understand algal short-term acclimation and adaptation to changes in ambient temperature, it is essential to identify and characterize the molecular components that sense small temperature changes as well as the downstream signaling networks and physiological responses. Here, we used the green biflagellate alga Chlamydomonas reinhardtii as a model system in which to study responses to temperature. We report that an RNA recognition motif (RRM)-containing RNA-binding protein, Musashi, occurs in 25 putative splice variants. These variants bear one, two, and three RRM domains or even lack RRM domains. The most abundant Musashi variant, 12, with a molecular mass of 60 kD, interacts with two clock-relevant members of RNA metabolism, the subunit C3 of the RNA-binding protein CHLAMY1 and the 5'-3' exoribonuclease XRN1. These proteins are able to integrate temperature information by up- or down-regulation of their protein levels in cells grown at low (18°C) or high (28°C) temperature. We further show that the 60-kD Musashi variants with three RRM domains can bind to (UG)7 repeat-containing RNAs and are up-regulated in cells grown at a higher temperature during early night. Intriguingly, the 60-kD Musashi variant 12, as well as C3 and XRN1, confer thermal acclimation to C. reinhardtii, as shown with mutant lines. Our data suggest that these three proteins of the RNA metabolism machinery are key members of the thermal signaling network in C. reinhardtii.
Collapse
Affiliation(s)
- Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - David Carrasco Flores
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Juliane Füßel
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Jan Euteneuer
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Hannes Dathe
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Yong Zou
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Wolfram Weisheit
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
8
|
Nasir A, Le Bail A, Daiker V, Klima J, Richter P, Lebert M. Identification of a flagellar protein implicated in the gravitaxis in the flagellate Euglena gracilis. Sci Rep 2018; 8:7605. [PMID: 29765103 PMCID: PMC5954063 DOI: 10.1038/s41598-018-26046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
Flagellated cells are of great evolutionary importance across animal and plant species. Unlike higher plants, flagellated cells are involved in reproduction of macro-algae as well as in early diverging land plants. Euglena gracilis is an emerging flagellated model organism. The current study reports that a specific calmodulin (CaM2) involved in gravitaxis of E. gracilis interacts with an evolutionary conserved flagellar protein, EgPCDUF4201. The subsequent molecular analysis showed clearly that EgPCDUF4201 is also involved in gravitaxis. We performed subcellular localization of CaM2 using immunoblotting and indirect immunofluorescence. By employing yeast two-hybrid screen, EgPCDUF4201 was identified as an interaction partner of CaM2. The C-terminus of EgPCDUF4201 is responsible for the interaction with CaM2. Silencing of N- and C-terminus of EgPCDUF4201 using RNAi resulted in an impaired gravitaxis. Moreover, indirect immunofluorescence assay showed that EgPCDUF4201 is a flagella associated protein. The current study specifically addressed some important questions regarding the signal transduction chain of gravitaxis in E. gracilis. Besides the fact that it improved the current understanding of gravity sensing mechanisms in E. gracilis, it also gave rise to several interesting research questions regarding the function of the domain of unknown function 4201 in flagellated cells.
Collapse
Affiliation(s)
- Adeel Nasir
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Aude Le Bail
- Cell biology department, Friedrich Alexander University, Erlangen, Germany.
| | - Viktor Daiker
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Janine Klima
- Biochemistry department, Friedrich Alexander University, Erlangen, Germany
| | - Peter Richter
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| | - Michael Lebert
- Cell biology department, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
9
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Wang L, Gu L, Meng D, Wu Q, Deng H, Pan J. Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly. J Proteome Res 2017; 16:2410-2418. [DOI: 10.1021/acs.jproteome.6b01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Limei Wang
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lixiao Gu
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Meng
- Tianjin
Key Laboratory of Food and Biotechnology, School of Biotechnology
and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Qiong Wu
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE
Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life
Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory
for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, China
| |
Collapse
|
11
|
Werth EG, McConnell EW, Gilbert TSK, Couso Lianez I, Perez CA, Manley CK, Graves LM, Umen JG, Hicks LM. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:416-426. [PMID: 27671103 DOI: 10.1111/tpj.13384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The identification of dynamic protein phosphorylation events is critical for understanding kinase/phosphatase-regulated signaling pathways. To date, protein phosphorylation and kinase expression have been examined independently in photosynthetic organisms. Here we present a method to study the global kinome and phosphoproteome in tandem in a model photosynthetic organism, the alga Chlamydomonas reinhardtii (Chlamydomonas), using mass spectrometry-based label-free proteomics. A dual enrichment strategy targets intact protein kinases via capture on immobilized multiplexed inhibitor beads with subsequent proteolytic digestion of unbound proteins and peptide-based phosphorylation enrichment. To increase depth of coverage, both data-dependent and data-independent (via SWATH, Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra) mass spectrometric acquisitions were performed to obtain a more than 50% increase in coverage of the enriched Chlamydomonas kinome over coverage found with no enrichment. The quantitative phosphoproteomic dataset yielded 2250 phosphopeptides and 1314 localized phosphosites with excellent reproducibility across biological replicates (90% of quantified sites with coefficient of variation below 11%). This approach enables simultaneous investigation of kinases and phosphorylation events at the global level to facilitate understanding of kinase networks and their influence in cell signaling events.
Collapse
Affiliation(s)
- Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Thomas S Karim Gilbert
- The Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | | | - Carlos A Perez
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Cherrel K Manley
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Lee M Graves
- The Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| |
Collapse
|
12
|
Jaros JA, Rahmoune H, Wesseling H, Leweke FM, Ozcan S, Guest PC, Bahn S. Effects of olanzapine on serum protein phosphorylation patterns in patients with schizophrenia. Proteomics Clin Appl 2015; 9:907-16. [PMID: 25821032 DOI: 10.1002/prca.201400148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/14/2015] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Previous studies have shown that blood serum phosphoproteins are altered in schizophrenia patients in comparison to controls. However, it is not known whether phosphoproteins are also changed in response to treatment with antipsychotics. EXPERIMENTAL DESIGN Blood samples were taken from patients (n = 23) at baseline and after 6 weeks of olanzapine treatment. Immobilized metal ion affinity chromatography (IMAC) was used for enrichment of serum phosphoproteins and these were analyzed by label-free LC-MS in expression mode (LC-MS(E) ). RESULTS We identified 11 proteins that were changed significantly in overall abundance and 45 proteins that showed changes in phosphorylation after the antipsychotic treatment. The altered phosphoproteins were mainly involved in the acute phase response, lipid and glucose homeostasis (LXR), retinoic acid signaling (RXR), and complement pathways. Some of the proteins showed a marked increase in phosphorylation, including apolipoprotein A-I (3.4-fold), alpha-1-anti-chymotrypsin (3.1-fold), and apolipoprotein B-100 (2.2-fold). In addition, several proteins showed either decreased phosphorylation (e.g. complement C4A, collagen alpha-1 chain, complement factor H) or a mixture of increased and decreased phoshphorylation (e.g. afamin, complement C5, complement factor B). Finally, 24 of the altered phosphoproteins showed opposite directional changes in a comparison of baseline schizophrenia patients before and after treatment with olanzapine. These included alpha-1B-glycoprotein, apolipoprotein A-IV, vitamin D-binding protein, and prothrombin. CONCLUSIONS AND CLINICAL RELEVANCE These data demonstrate the potential for future studies of serum phosphoproteins as a readout of physiological function and might have utility in studies aimed at identification of biomarkers for drug response prediction or monitoring.
Collapse
Affiliation(s)
- Julian A Jaros
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Novartis Institutes of Biomedical Research (NIBR), Novartis Campus, Fabrikstrasse, Basel, Switzerland
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sureyya Ozcan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Yang F, Pavlik J, Fox L, Scarbrough C, Sale WS, Sisson JH, Wirschell M. Alcohol-induced ciliary dysfunction targets the outer dynein arm. Am J Physiol Lung Cell Mol Physiol 2015; 308:L569-76. [PMID: 25595647 DOI: 10.1152/ajplung.00257.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alcohol abuse results in an increased incidence of pulmonary infection, in part attributable to impaired mucociliary clearance. Analysis of motility in mammalian airway cilia has revealed that alcohol impacts the ciliary dynein motors by a mechanism involving altered axonemal protein phosphorylation. Given the highly conserved nature of cilia, it is likely that the mechanisms for alcohol-induced ciliary dysfunction (AICD) are conserved. Thus we utilized the experimental advantages offered by the model organism, Chlamydomonas, to determine the precise effects of alcohol on ciliary dynein activity and identify axonemal phosphoproteins that are altered by alcohol exposure. Analysis of live cells or reactivated cell models showed that alcohol significantly inhibits ciliary motility in Chlamydomonas via a mechanism that is part of the axonemal structure. Taking advantage of informative mutant cells, we found that alcohol impacts the activity of the outer dynein arm. Consistent with this finding, alcohol exposure results in a significant reduction in ciliary beat frequency, a parameter of ciliary movement that requires normal outer dynein arm function. Using mutants that lack specific heavy-chain motor domains, we have determined that alcohol impacts the β- and γ-heavy chains of the outer dynein arm. Furthermore, using a phospho-threonine-specific antibody, we determined that the phosphorylation state of DCC1 of the outer dynein arm-docking complex is altered in the presence of alcohol, and its phosphorylation correlates with AICD. These results demonstrate that alcohol targets specific outer dynein arm components and suggest that DCC1 is part of an alcohol-sensitive mechanism that controls outer dynein arm activity.
Collapse
Affiliation(s)
- Fan Yang
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi
| | - Jacqueline Pavlik
- University of Nebraska Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, Omaha, Nebraska; and
| | - Laura Fox
- Emory University School of Medicine, Department of Cell Biology, Atlanta, Georgia
| | - Chasity Scarbrough
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi
| | - Winfield S Sale
- Emory University School of Medicine, Department of Cell Biology, Atlanta, Georgia
| | - Joseph H Sisson
- University of Nebraska Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, Omaha, Nebraska; and
| | - Maureen Wirschell
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi;
| |
Collapse
|
14
|
Arnaiz O, Cohen J, Tassin AM, Koll F. Remodeling Cildb, a popular database for cilia and links for ciliopathies. Cilia 2014; 3:9. [PMID: 25422781 PMCID: PMC4242763 DOI: 10.1186/2046-2530-3-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background New generation technologies in cell and molecular biology generate large amounts
of data hard to exploit for individual proteins. This is particularly true for
ciliary and centrosomal research. Cildb is a multi–species knowledgebase
gathering high throughput studies, which allows advanced searches to identify
proteins involved in centrosome, basal body or cilia biogenesis, composition and
function. Combined to localization of genetic diseases on human chromosomes given
by OMIM links, candidate ciliopathy proteins can be compiled through Cildb
searches. Methods Othology between recent versions of the whole proteomes was computed using
Inparanoid and ciliary high throughput studies were remapped on these recent
versions. Results Due to constant evolution of the ciliary and centrosomal field, Cildb has been
recently upgraded twice, with new species whole proteomes and new ciliary studies,
and the latter version displays a novel BioMart interface, much more intuitive
than the previous ones. Conclusions This already popular database is designed now for easier use and is up to date in
regard to high throughput ciliary studies.
Collapse
Affiliation(s)
- Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, Gif sur Yvette, 91198, France
| | - Jean Cohen
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, Gif sur Yvette, 91198, France
| | - Anne-Marie Tassin
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, Gif sur Yvette, 91198, France
| | - France Koll
- Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, Gif sur Yvette, 91198, France
| |
Collapse
|
15
|
Kamiya R, Yagi T. Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays ofChlamydomonasMutants. Zoolog Sci 2014; 31:633-44. [DOI: 10.2108/zs140066] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
Affiliation(s)
- Hongxia Wang
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Brian Gau
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ¶Sigma-Aldrich, 2909 Laclede Ave., St. Louis, Missouri 63103
| | - William O Slade
- ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599
| | - Matthew Juergens
- **Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, Missouri 48824
| | - Ping Li
- §National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Leslie M Hicks
- From the ‡Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, Missouri 63132; ‖Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27599;
| |
Collapse
|
17
|
Linck R, Fu X, Lin J, Ouch C, Schefter A, Steffen W, Warren P, Nicastro D. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 2014; 289:17427-44. [PMID: 24794867 PMCID: PMC4067180 DOI: 10.1074/jbc.m114.568949] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems.
Collapse
Affiliation(s)
- Richard Linck
- From the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455,
| | - Xiaofeng Fu
- the Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Jianfeng Lin
- the Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Christna Ouch
- From the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Alexandra Schefter
- From the Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Walter Steffen
- the Institute of Molecular and Cell Physiology, Medical School, Hannover, 30625 Hannover, Germany
| | - Peter Warren
- the Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| | - Daniela Nicastro
- the Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, and
| |
Collapse
|
18
|
Boesger J, Wagner V, Weisheit W, Mittag M. Comparative phosphoproteomics to identify targets of the clock-relevant casein kinase 1 in C. reinhardtii Flagella. Methods Mol Biol 2014; 1158:187-202. [PMID: 24792052 DOI: 10.1007/978-1-4939-0700-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the green biflagellate alga Chlamydomonas reinhardtii different clock-relevant components have been identified that are involved in maintaining phase, period, and amplitude of circadian rhythms. It became evident that several of them are interconnected to flagellar function such as CASEIN KINASE1 (CK1). CK1 is involved in keeping the period. But it is also relevant for the formation of flagella, where it is physically located, and it controls the swimming velocity. In this chapter, we describe (1) how the flagellar sub-proteome is purified, (2) how phosphopeptides from this organelle are enriched, (3) how in vivo phosphorylation sites are determined, and (4) how direct and indirect flagellar targets of CK1 can be found using a specific inhibitor. Such a procedure can also be employed with other clock-relevant kinases if specific inhibitors or mutants are available.
Collapse
Affiliation(s)
- Jens Boesger
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743, Jena, Germany
| | | | | | | |
Collapse
|
19
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
20
|
Liang Y, Pan J. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii. PLoS One 2013; 8:e69902. [PMID: 23936117 PMCID: PMC3723818 DOI: 10.1371/journal.pone.0069902] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022] Open
Abstract
Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs – CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas.
Collapse
Affiliation(s)
- Yinwen Liang
- Ministry of Environment Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- Ministry of Environment Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (JP)
| |
Collapse
|
21
|
van Dam TJ, Wheway G, Slaats GG, Huynen MA, Giles RH. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2013; 2:7. [PMID: 23725226 PMCID: PMC3674929 DOI: 10.1186/2046-2530-2-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022] Open
Abstract
The multinational SYSCILIA consortium aims to gain a mechanistic understanding of the cilium. We utilize multiple parallel high-throughput (HTP) initiatives to develop predictive models of relationships between complex genotypes and variable phenotypes of ciliopathies. The models generated are only as good as the wet laboratory data fed into them. It is therefore essential to orchestrate a well-annotated and high-confidence dataset to be able to assess the quality of any HTP dataset. Here, we present the inaugural SYSCILIA gold standard of known ciliary components as a public resource.
Collapse
Affiliation(s)
- Teunis Jp van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Schulze T, Schreiber S, Iliev D, Boesger J, Trippens J, Kreimer G, Mittag M. The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot. MOLECULAR PLANT 2013; 6:931-944. [PMID: 23180671 DOI: 10.1093/mp/sss137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The flagellated green alga Chlamydomonas reinhardtii has a primitive visual system, the eyespot. It is situated at the cells equator and allows the cell to phototax. In a previous proteomic analysis of the eyespot, the SOUL3 protein was identified among 202 proteins. Here, we investigate the properties and functions of SOUL3. Heterologously expressed SOUL3 is able to bind specifically to hemin. In C. reinhardtii, SOUL3 is expressed at a constant level over the diurnal cycle, but forms protein complexes that differ in size during day and night phases. SOUL3 is primarily localized in the eyespot and it is situated in the pigment globule layer thereof. This is in contrast to the channelrhodopsin photoreceptors, which are localized in the plasma membrane region of the eyespot. Knockdown lines with a significantly reduced SOUL3 level are characterized by mislocalized eyespots, a decreased eyespot size, and alterations in phototactic behavior. Mislocalizations were either anterior or posterior and did not affect association with acetylated microtubules of the daughter four-membered rootlet. Our data suggest that SOUL3 is involved in the organization and placement of the eyespot within the cell.
Collapse
Affiliation(s)
- Thomas Schulze
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, Klingmüller U, Boutros M, Pereira G. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. ACTA ACUST UNITED AC 2013; 200:505-22. [PMID: 23400999 PMCID: PMC3575539 DOI: 10.1083/jcb.201206013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A functional screen identified MARK4 as a positive regulator of axonemal extension and ciliogenesis via its interaction with the mother centriolar protein ODF2. Despite the critical contributions of cilia to embryonic development and human health, key regulators of cilia formation await identification. In this paper, a functional RNA interference–based screen linked 30 novel protein kinases with ciliogenesis. Of them, we have studied the role of the microtubule (MT)-associated protein/MT affinity regulating kinase 4 (MARK4) in depth. MARK4 associated with the basal body and ciliary axoneme in human and murine cell lines. Ultrastructural and functional analyses established that MARK4 kinase activity was required for initiation of axoneme extension. We identified the mother centriolar protein ODF2 as an interaction partner of MARK4 and showed that ODF2 localization to the centriole partially depended on MARK4. Our data indicated that, upon MARK4 or ODF2 knockdown, the ciliary program arrested before the complete removal of the CP110–Cep97 inhibitory complex from the mother centriole, suggesting that these proteins act at this level of axonemal extension. We propose that MARK4 is a critical positive regulator of early steps in ciliogenesis.
Collapse
Affiliation(s)
- Stefanie Kuhns
- Molecular Biology of Centrosomes and Cilia group, Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 2012; 29:3625-39. [PMID: 22826458 DOI: 10.1093/molbev/mss178] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.
Collapse
|
25
|
Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 2012; 109:E2067-76. [PMID: 22733763 DOI: 10.1073/pnas.1120690109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cilia and flagella are highly conserved motile and sensory organelles in eukaryotes, and defects in ciliary assembly and motility cause many ciliopathies. The two-headed I1 inner arm dynein is a critical regulator of ciliary and flagellar beating. To understand I1 architecture and function better, we analyzed the 3D structure and composition of the I1 dynein in Chlamydomonas axonemes by cryoelectron tomography and subtomogram averaging. Our data revealed several connections from the I1 dynein to neighboring structures that are likely to be important for assembly and/or regulation, including a tether linking one I1 motor domain to the doublet microtubule and doublet-specific differences potentially contributing to the asymmetrical distribution of dynein activity required for ciliary beating. We also imaged three I1 mutants and analyzed their polypeptide composition using 2D gel-based proteomics. Structural and biochemical comparisons revealed the likely location of the regulatory IC138 phosphoprotein and its associated subcomplex. Overall, our studies demonstrate that I1 dynein is connected to multiple structures within the axoneme, and therefore ideally positioned to integrate signals that regulate ciliary motility.
Collapse
|
26
|
Boesger J, Wagner V, Weisheit W, Mittag M. Application of phosphoproteomics to find targets of casein kinase 1 in the flagellum of chlamydomonas. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:581460. [PMID: 23316220 PMCID: PMC3536430 DOI: 10.1155/2012/581460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/10/2012] [Indexed: 05/09/2023]
Abstract
The green biflagellate alga Chlamydomonas reinhardtii serves as model for studying structural and functional features of flagella. The axoneme of C. reinhardtii anchors a network of kinases and phosphatases that control motility. One of them, Casein Kinase 1 (CK1), is known to phosphorylate the Inner Dynein Arm I1 Intermediate Chain 138 (IC138), thereby regulating motility. CK1 is also involved in regulating the circadian rhythm of phototaxis and is relevant for the formation of flagella. By a comparative phosphoproteome approach, we determined phosphoproteins in the flagellum that are targets of CK1. Thereby, we applied the specific CK1 inhibitor CKI-7 that causes significant changes in the flagellum phosphoproteome and reduces the swimming velocity of the cells. In the CKI-7-treated cells, 14 phosphoproteins were missing compared to the phosphoproteome of untreated cells, including IC138, and four additional phosphoproteins had a reduced number of phosphorylation sites. Notably, inhibition of CK1 causes also novel phosphorylation events, indicating that it is part of a kinase network. Among them, Glycogen Synthase Kinase 3 is of special interest, because it is involved in the phosphorylation of key clock components in flies and mammals and in parallel plays an important role in the regulation of assembly in the flagellum.
Collapse
Affiliation(s)
- Jens Boesger
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Wolfram Weisheit
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, 07743 Jena, Germany
- *Maria Mittag:
| |
Collapse
|
27
|
Behal RH, Miller MS, Qin H, Lucker BF, Jones A, Cole DG. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J Biol Chem 2011; 287:11689-703. [PMID: 22170070 DOI: 10.1074/jbc.m111.287102] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components.
Collapse
Affiliation(s)
- Robert H Behal
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | | | | | | | | | | |
Collapse
|
28
|
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 2011; 194:165-75. [PMID: 21788366 PMCID: PMC3144413 DOI: 10.1083/jcb.201011152] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/29/2011] [Indexed: 12/28/2022] Open
Abstract
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Collapse
Affiliation(s)
| | - Juliette Azimzadeh
- Department of Biochemistry and Biophysics, UCSF Mission Bay, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
29
|
Pan J, Naumann-Busch B, Wang L, Specht M, Scholz M, Trompelt K, Hippler M. Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in Chlamydomonas. J Proteome Res 2011; 10:3830-9. [PMID: 21663328 DOI: 10.1021/pr200428n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cilia are disassembled prior to cell division, which is proposed to regulate proper cell cycle progression. The signaling pathways that regulate cilia disassembly are not well-understood. Recent biochemical and genetic data demonstrate that protein phosphorylation plays important roles in cilia disassembly. Here, we analyzed the phosphoproteins in the membrane/matrix fraction of flagella undergoing shortening as well as flagella from steady state cells of Chlamydomonas. The phosphopeptides were enriched by a combination of IMAC and titanium dioxide chromatography with a strategy of sequential elution from IMAC (SIMAC) and analyzed by tandem mass spectrometry. A total of 224 phosphoproteins derived from 1296 spectral counts of phosphopeptides were identified. Among the identified phosphoproteins are flagellar motility proteins such as outer dynein arm, intraflagellar transport proteins as well as signaling molecules including protein kinases, phosphatases, G proteins, and ion channels. Eighty-nine of these phosphoproteins were only detected in shortening flagella, whereas 29 were solely in flagella of steady growing cells, indicating dramatic changes of protein phosphorylation during flagellar shortening. Our data indicates that protein phosphorylation is a key event in flagellar disassembly, and paves the way for further study of flagellar assembly and disassembly controlled by protein phosphorylation.
Collapse
Affiliation(s)
- Junmin Pan
- Protein Science Laboratory of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, Nicastro D. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem 2011; 286:29175-29191. [PMID: 21700706 DOI: 10.1074/jbc.m111.241760] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Kangkang Song
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Cynthia F Barber
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Jennifer S Cobb
- Chemistry Department, MS015, Brandeis University, Waltham, Massachusetts 02454
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454,.
| |
Collapse
|
31
|
Daiker V, Häder DP, Richter PR, Lebert M. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. PLANTA 2011; 233:1055-1062. [PMID: 21286747 DOI: 10.1007/s00425-011-1364-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.
Collapse
Affiliation(s)
- Viktor Daiker
- Department of Biology, Cell Biology Division, Friedrich-Alexander University, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
32
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Voß B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR. Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2011; 155:892-905. [PMID: 21148414 PMCID: PMC3032474 DOI: 10.1104/pp.110.158683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/29/2010] [Indexed: 05/19/2023]
Abstract
Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins.
Collapse
|
34
|
Ressurreição M, Rollinson D, Emery AM, Walker AJ. A role for p38 MAPK in the regulation of ciliary motion in a eukaryote. BMC Cell Biol 2011; 12:6. [PMID: 21269498 PMCID: PMC3040701 DOI: 10.1186/1471-2121-12-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motile cilia are essential to the survival and reproduction of many eukaryotes; they are responsible for powering swimming of protists and small multicellular organisms and drive fluids across respiratory and reproductive surfaces in mammals. Although tremendous progress has been made to comprehend the biochemical basis of these complex evolutionarily-conserved organelles, few protein kinases have been reported to co-ordinate ciliary beat. Here we present evidence for p38 mitogen-activated protein kinase (p38 MAPK) playing a role in the ciliary beat of a multicellular eukaryote, the free-living miracidium stage of the platyhelminth parasite Schistosoma mansoni. RESULTS Fluorescence confocal microscopy revealed that non-motile miracidia trapped within eggs prior to hatching displayed phosphorylated (activated) p38 MAPK associated with their ciliated surface. In contrast, freshly-hatched, rapidly swimming, miracidia lacked phosphorylated p38 MAPK. Western blotting and immunocytochemistry demonstrated that treatment of miracidia with the p38 MAPK activator anisomycin resulted in a rapid, sustained, activation of p38 MAPK, which was primarily localized to the cilia associated with the ciliated epidermal plates, and the tegument. Freshly-hatched miracidia possessed swim velocities between 2.17 - 2.38 mm/s. Strikingly, anisomycin-mediated p38 MAPK activation rapidly attenuated swimming, reducing swim velocities by 55% after 15 min and 99% after 60 min. In contrast, SB 203580, a p38 MAPK inhibitor, increased swim velocity by up to 15% over this duration. Finally, by inhibiting swimming, p38 MAPK activation resulted in early release of ciliated epidermal plates from the miracidium thus accelerating development to the post-miracidium larval stage. CONCLUSIONS This study supports a role for p38 MAPK in the regulation of ciliary-beat. Given the evolutionary conservation of signalling processes and cilia structure, we hypothesize that p38 MAPK may regulate ciliary beat and beat-frequency in a variety of eukaryotes.
Collapse
Affiliation(s)
- Margarida Ressurreição
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | | | | | | |
Collapse
|
35
|
Clément A, Solnica-Krezel L, Gould KL. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development 2011; 138:291-302. [PMID: 21177342 DOI: 10.1242/dev.055038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
36
|
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M. How the green alga Chlamydomonas reinhardtii keeps time. PROTOPLASMA 2010; 244:3-14. [PMID: 20174954 DOI: 10.1007/s00709-010-0113-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/18/2010] [Indexed: 05/10/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly contribute in the future to improve our understanding of the C. reinhardtii clock machinery.
Collapse
Affiliation(s)
- Thomas Schulze
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Am Planetarium 1, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Seitz SB, Weisheit W, Mittag M. Multiple roles and interaction factors of an E-box element in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2010; 152:2243-57. [PMID: 20154097 PMCID: PMC2850036 DOI: 10.1104/pp.109.149195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/08/2010] [Indexed: 05/23/2023]
Abstract
The two subunits of the circadian RNA-binding protein CHLAMY1 from Chlamydomonas reinhardtii are involved in maintaining period (C1 subunit) and phase (C3 subunit) of the circadian clock. C1 coregulates the level of C3. Overexpression of C1 causes a parallel increase in C3. Both subunits can also integrate temperature information, resulting in hyperphosphorylation of C1 and up-regulation of C3 at low temperature. Temperature-dependent up-regulation of C3 is mediated predominantly by an E-box element and only partially by two DREB1A-boxes that are situated within the C3 promoter. The E-box element is also involved in circadian C3 expression. Here, we show that the C3 promoter region drives C3 coregulation by C1. We also found that replacement of the E-box prevents the coregulation of C3 in strains overexpressing C1. In contrast, replacement of any of the two DREB1A-boxes does not influence either the coregulation of C3 by increased levels of C1 or circadian C3 expression. Thus, the E-box has multiple key roles, including temperature-dependent up-regulation of C3, its circadian expression, and its coregulation by C1. Using mobility shift assays and DNA-affinity chromatography along with mass spectrometry, we characterized proteins binding specifically to the E-box region and identified five of them. By immunoblotting, we could further show that C3 that was detected in nuclear extracts can be found in the E-box-binding protein complex. Our data indicate a complex transcriptional mechanism of C3 up-regulation and a positive feedback of C3 on its own promoter region.
Collapse
Affiliation(s)
| | | | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
38
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
39
|
Cao M, Li G, Pan J. Regulation of cilia assembly, disassembly, and length by protein phosphorylation. Methods Cell Biol 2009; 94:333-46. [PMID: 20362099 DOI: 10.1016/s0091-679x(08)94017-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exact mechanism by which cells are able to assemble, regulate, and disassemble cilia or flagella is not yet completely understood. Recent studies in several model systems, including Chlamydomonas, Tetrahymena, Leishmania, Caenorhabditis elegans, and mammals, provide increasing biochemical and genetic evidence that phosphorylation of multiple protein kinases plays a key role in cilia assembly, disassembly, and length regulation. Members of several protein kinase families--including aurora kinases, never in mitosis A (NIMA)-related protein kinases, mitogen-activated protein (MAP) kinases, and a novel cyclin-dependent protein kinase--are involved in the ciliary regulation process. Among the newly identified protein kinase substrates are Chlamydomonas kinesin-13 (CrKinesin13), a microtubule depolymerizer, and histone deacetylase 6 (HDAC6), a microtubule deacetylase. Chlamydomonas aurora/Ipl1p-like protein kinase (CALK) and CrKinesin13 are two proteins that undergo phosphorylation changes correlated with flagellar assembly or disassembly. CALK becomes phosphorylated when flagella are lost, whereas CrKinesin13 is phosphorylated when new flagella are assembled. Conversely, suppressing CrKinesin13 expression results in cells with shorter flagella.
Collapse
Affiliation(s)
- Muqing Cao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
40
|
Elam CA, Sale WS, Wirschell M. The regulation of dynein-driven microtubule sliding in Chlamydomonas flagella by axonemal kinases and phosphatases. Methods Cell Biol 2009; 92:133-51. [PMID: 20409803 DOI: 10.1016/s0091-679x(08)92009-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this chapter is to review the methodology and advances that have revealed conserved signaling proteins that are localized in the 9+2 ciliary axoneme for regulating motility. Diverse experimental systems have revealed that ciliary and eukaryotic flagellar motility is regulated by second messengers including calcium, pH, and cyclic nucleotides. In addition, recent advances in in vitro functional studies, taking advantage of isolated axonemes, pharmacological approaches, and biochemical analysis of axonemes have demonstrated that otherwise ubiquitous, conserved protein kinases and phosphatases are transported to and anchored in the axoneme. Here, we focus on the functional/pharmacological, genetic, and biochemical approaches in the model genetic system Chlamydomonas that have revealed highly conserved kinases, anchoring proteins (e.g., A-kinase anchoring proteins), and phosphatases that are physically located in the axoneme where they play a direct role in control of motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|