1
|
Galindo LJ, Richards TA, Nirody JA. Evolutionarily diverse fungal zoospores show contrasting swimming patterns specific to ultrastructure. Curr Biol 2024; 34:4567-4576.e3. [PMID: 39265568 DOI: 10.1016/j.cub.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Zoosporic fungi, also called chytrids, produce single-celled motile spores with flagellar swimming tails (zoospores).1,2 These fungi are key components of aquatic food webs, acting as pathogens, saprotrophs, and prey.3,4,5,6,7,8 Little is known about the swimming behavior of fungal zoospores, a crucial factor governing dispersal, biogeographical range, ecological function, and infection dynamics.6,9 Here, we track the swimming patterns of zoospores from 12 evolutionarily divergent species of zoosporic fungi from across seven orders of the Chytridiomycota and the Blastocladiomycota. We report two major swimming patterns that correlate with the cytoskeletal ultrastructure of these zoospores. Specifically, we show that species without major cytoplasmic tubulin components swim in a circular fashion, while species with prominent cytoplasmic tubulin structures swim in a pattern akin to a random walk (move-stop-redirect-move). We confirm cytoskeletal architecture by performing fluorescence confocal microscopy across all 12 species. We then treat representative species with variant swimming behaviors and cytoplasmic-cytoskeletal arrangements with tubulin-stabilizing (Taxol) and depolymerizing (nocodazole) pharmacological compounds. We observed that when treating the "random walk" species with nocodazole, their swimming behavior changed to a circular-swimming pattern. Confocal imaging of the nocodazole-treated zoospores demonstrates that these cells maintain flagellum tubulin structures but lack their characteristic cytoplasmic tubulin structures. Our data demonstrate that the capability of zoospores to perform "complex" random-walk movement is linked to the presence of prominent cytoplasmic tubulin structures and suggest a link between cytology, sensory systems, and swimming behavior in a diversity of zoosporic fungi.
Collapse
Affiliation(s)
| | | | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
A light-sensing system in the common ancestor of the fungi. Curr Biol 2022; 32:3146-3153.e3. [PMID: 35675809 PMCID: PMC9616733 DOI: 10.1016/j.cub.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Diverse light-sensing organs (i.e., eyes) have evolved across animals. Interestingly, several subcellular analogs have been found in eukaryotic microbes.1 All of these systems have a common “recipe”: a light occluding or refractory surface juxtaposed to a membrane-layer enriched in type I rhodopsins.1, 2, 3, 4 In the fungi, several lineages have been shown to detect light using a diversity of non-homologous photo-responsive proteins.5, 6, 7 However, these systems are not associated with an eyespot-like organelle with one exception found in the zoosporic fungus Blastocladiella emersonii (Be).8Be possesses both elements of this recipe: an eyespot composed of lipid-filled structures (often called the side-body complex [SBC]), co-localized with a membrane enriched with a gene-fusion protein composed of a type I (microbial) rhodopsin and guanylyl cyclase enzyme domain (CyclOp-fusion protein).8,9 Here, we identify homologous pathway components in four Chytridiomycota orders (Chytridiales, Synchytriales, Rhizophydiales, and Monoblepharidiales). To further explore the architecture of the fungal zoospore and its lipid organelles, we reviewed electron microscopy data (e.g., the works of Barr and Hartmann10 and Reichle and Fuller11) and performed fluorescence-microscopy imaging of four CyclOp-carrying zoosporic fungal species, showing the presence of a variety of candidate eyespot-cytoskeletal ultrastructure systems. We then assessed the presence of canonical photoreceptors across the fungi and inferred that the last common fungal ancestor was able to sense light across a range of wavelengths using a variety of systems, including blue-green-light detection. Our data imply, independently of how the fungal tree of life is rooted, that the apparatus for a CyclOp-organelle light perception system was an ancestral feature of the fungi. A wide diversity of flagellated fungi possess the CyclOp light response circuit The same fungi possess the subcellular equipment to build lipid-based eyespots The last common ancestor of fungi possessed the CyclOp eyespot system The ancestral fungus could see a rainbow of light wavelengths
Collapse
|
3
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
4
|
Glaser T, Shimojo H, Ribeiro DE, Martins PPL, Beco RP, Kosinski M, Sampaio VFA, Corrêa-Velloso J, Oliveira-Giacomelli Á, Lameu C, de Jesus Santos AP, de Souza HDN, Teng YD, Kageyama R, Ulrich H. ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Mol Psychiatry 2021; 26:2633-2650. [PMID: 32350390 DOI: 10.1038/s41380-020-0717-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Renata Pereira Beco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Michal Kosinski
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA.,Translative Plataform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Henß T, Nagpal J, Gao S, Scheib U, Pieragnolo A, Hirschhäuser A, Schneider-Warme F, Hegemann P, Nagel G, Gottschalk A. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels. Br J Pharmacol 2021; 179:2519-2537. [PMID: 33733470 DOI: 10.1111/bph.15445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers regulating numerous biological processes. Malfunctional cNMP signalling is linked to diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarizing rhodopsins; yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarizers based on K+ currents. EXPERIMENTAL APPROACH For the characterization of photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic nucleotide-gated channels in muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to depolarize or hyperpolarize cells, we performed behavioural analyses, measured cNMP content in vitro, and compared in vivo expression levels. KEY RESULTS We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine-control of cGMP levels. We established photoactivatable membrane-bound adenylyl cyclases, based on mutated versions ("A-2x") of Blastocladiella and Catenaria ("Be," "Ca") CyclOp, as N-terminal YFP fusions, enabling more efficient and specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP production. For hyperpolarization of excitable cells by two-component optogenetics, we introduced the cAMP-gated K+ -channel SthK from Spirochaeta thermophila and combined it with bPAC, BeCyclOp(A-2x), or YFP-BeCyclOp(A-2x). As an alternative, we implemented the B. emersonii cGMP-gated K+ -channel BeCNG1 together with BeCyclOp. CONCLUSION AND IMPLICATIONS We established a comprehensive suite of optogenetic tools for cNMP manipulation, applicable in many cell types, including sensory neurons, and for potent hyperpolarization.
Collapse
Affiliation(s)
- Thilo Henß
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocentre, Julius-Maximilians-University, Würzburg, Germany
| | - Ulrike Scheib
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.,Lead Discovery, Protein Technology, NUVISAN ICB GmbH, Berlin, Germany
| | | | - Alexander Hirschhäuser
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Schneider-Warme
- University Heart Center, Medical Center - University of Freiburg and Faculty of Medicine, Institute for Experimental Cardiovascular Medicine, Freiburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocentre, Julius-Maximilians-University, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
7
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
8
|
Gleason FH, Larkum AW, Raven JA, Manohar CS, Lilje O. Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Mukherjee S, Hegemann P, Broser M. Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol 2019; 57:118-126. [PMID: 30954887 DOI: 10.1016/j.sbi.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Enzymerhodopsins are a recently discovered class of natural rhodopsin-based photoreceptors with light-regulated enzyme activity. Currently, three different types of these fusion proteins with an N-terminal type-1 rhodopsin and a C-terminal enzyme domain have been identified, but their physiological relevance is mostly unknown. Among these, histidine kinase rhodopsins (HKR) are photo-regulated two-component-like signaling systems that trigger a phosphorylation cascade, whereas rhodopsin phosphodiesterase (RhoPDE) or rhodopsin guanylyl cyclase (RhGC) show either light-activated hydrolysis or production of cyclic nucleotides. RhGC, the best characterized enzymerhodopsin, is involved in the phototaxis of fungal zoospores and allows for optically controlled production of cyclic nucleotides in different cell-types. These photoreceptors have great optogenetic potential and possess several advantages over the hitherto existing tools to manipulate cyclic-nucleotide dynamics in living cells.
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| |
Collapse
|
10
|
Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G. Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 2018; 16:144. [PMID: 30522480 PMCID: PMC6284317 DOI: 10.1186/s12915-018-0613-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called “two-component cyclase opsins” (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery. Electronic supplementary material The online version of this article (10.1186/s12915-018-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuehui Tian
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Shiqiang Gao
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany.
| | - Eva Laura von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Georg Nagel
- Botanik I, Julius-Maximilians-Universität Würzburg, Biozentrum, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
11
|
|
12
|
A novel rhodopsin phosphodiesterase from Salpingoeca rosetta shows light-enhanced substrate affinity. Biochem J 2018; 475:1121-1128. [PMID: 29483295 DOI: 10.1042/bcj20180010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
It is since many years textbook knowledge that the concentration of the second messenger cGMP is regulated in animal rod and cone cells by type II rhodopsins via a G-protein signaling cascade. Microbial rhodopsins with enzymatic activity for regulation of cGMP concentration were only recently discovered: in 2014 light-activated guanylyl-cyclase opsins in fungi and in 2017 a novel rhodopsin phosphodiesterase (RhoPDE) in the protist Salpingoeca rosetta (SrRhoPDE). The light regulation of SrRhoPDE, however, seemed very weak or absent. Here, we present strong evidence for light regulation by studying SrRhoPDE, expressed in Xenopus laevis oocytes, at different substrate concentrations. Hydrolysis of cGMP shows an ∼100-fold higher turnover than that of cAMP. Light causes a strong decrease in the Km value for cGMP from 80 to 13 µM but increases the maximum turnover only by ∼30%. The PDE activity for cAMP is similarly enhanced by light at low substrate concentrations. Illumination does not affect the cGMP degradation of Lys296 mutants that are not able to form a covalent bond of Schiff base type to the chromophore retinal. We demonstrate that SrRhoPDE shows cytosolic N- and C-termini, most likely via an eight-transmembrane helix structure. SrRhoPDE is a new optogenetic tool for light-regulated cGMP manipulation which might be further improved by genetic engineering.
Collapse
|
13
|
Swafford AJM, Oakley TH. Multimodal sensorimotor system in unicellular zoospores of a fungus. ACTA ACUST UNITED AC 2018; 221:jeb.163196. [PMID: 29170260 DOI: 10.1242/jeb.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022]
Abstract
Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas, which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We found that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either the chemical or the light stimuli presented in this study, not both, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following the gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
14
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
15
|
Ahrendt SR, Medina EM, Chang CEA, Stajich JE. Exploring the binding properties and structural stability of an opsin in the chytrid Spizellomyces punctatus using comparative and molecular modeling. PeerJ 2017; 5:e3206. [PMID: 28462022 PMCID: PMC5410147 DOI: 10.7717/peerj.3206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Opsin proteins are seven transmembrane receptor proteins which detect light. Opsins can be classified into two types and share little sequence identity: type 1, typically found in bacteria, and type 2, primarily characterized in metazoa. The type 2 opsins (Rhodopsins) are a subfamily of G-protein coupled receptors (GPCRs), a large and diverse class of seven transmembrane proteins and are generally restricted to metazoan lineages. Fungi use light receptors including opsins to sense the environment and transduce signals for developmental or metabolic changes. Opsins characterized in the Dikarya (Ascomycetes and Basidiomycetes) are of the type 1 bacteriorhodopsin family but the early diverging fungal lineages have not been as well surveyed. We identified by sequence similarity a rhodopsin-like GPCR in genomes of early diverging chytrids and examined the structural characteristics of this protein to assess its likelihood to be homologous to animal rhodopsins and bind similar chromophores. Methods We used template-based structure modeling, automated ligand docking, and molecular modeling to assess the structural and binding properties of an identified opsin-like protein found in Spizellomyces punctatus, a unicellular, flagellated species belonging to Chytridiomycota, one of the earliest diverging fungal lineages. We tested if the sequence and inferred structure were consistent with a solved crystal structure of a type 2 rhodopsin from the squid Todarodes pacificus. Results Our results indicate that the Spizellomyces opsin has structural characteristics consistent with functional animal type 2 rhodopsins and is capable of maintaining a stable structure when associated with the retinaldehyde chromophore, specifically the 9-cis-retinal isomer. Together, these results support further the homology of Spizellomyces opsins to animal type 2 rhodopsins. Discussion This represents the first test of structure/function relationship of a type 2 rhodopsin identified in early branching fungal lineages, and provides a foundation for future work exploring pathways and components of photoreception in early fungi.
Collapse
Affiliation(s)
- Steven R Ahrendt
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, USA
| | - Edgar Mauricio Medina
- Department of Biology, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chia-En A Chang
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.,Department of Chemistry, University of California, Riverside, CA, USA
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
16
|
Jansen V, Jikeli JF, Wachten D. How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 2017; 48:15-20. [PMID: 28288335 DOI: 10.1016/j.copbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
Collapse
Affiliation(s)
- Vera Jansen
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Jan F Jikeli
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany; Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J Microbiol Methods 2016; 127:206-213. [PMID: 27288952 DOI: 10.1016/j.mimet.2016.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
Anaerobic gut fungi (AGF) represent a basal fungal lineage (phylum Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. The AGF reproduce asexually, with a life cycle that involves flagellated zoospores released from zoosporangia followed by encystment, germination and the subsequent development of rhizomycelia. A fast and reliable approach for AGF spore collection is critical not only for developmental biology studies, but also for molecular biological (e.g. AMT-transformation and RNAi) approaches. Here, we developed and optimized a simple and reliable procedure for the collection of viable, competent, and developmentally synchronized AGF spores under strict anaerobic conditions. The approach involves growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding the observed aerial growth to promote spore release from sporangia into the flooding suspension. The released spores are gently collected using a wide bore sterile needle. Process optimization resulted in the recovery of up to 7×10(9) spores per serum bottle. Further, the released spores exhibited synchronized development from flagellated spores to encysted spores and finally to germinating spores within 90min from the onset of flooding. At the germinating spore stage, the obtained spores were competent, and readily uptook small interfering RNA (siRNA) oligonucleotides. Finally, using multiple monocentric and polycentric AGF isolates, we demonstrate that AGF grown on agar surface could retain viability for up to 16weeks at 39°C, and hence this solid surface growth procedure represents a simple, cryopreservative- and freezing temperature-free approach for AGF storage.
Collapse
|