1
|
Ohsawa S, Schwaiger M, Iesmantavicius V, Hashimoto R, Moriyama H, Matoba H, Hirai G, Sodeoka M, Hashimoto A, Matsuyama A, Yoshida M, Yashiroda Y, Bühler M. Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast. EMBO J 2024; 43:4604-4624. [PMID: 39256560 PMCID: PMC11480445 DOI: 10.1038/s44318-024-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.
Collapse
Affiliation(s)
- Shin Ohsawa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 4056, Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Rio Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | - Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Basel, Petersplatz 10, 4003, Basel, Switzerland.
| |
Collapse
|
2
|
Liu Z, Jin T, Qin B, Li R, Shang J, Huang Y. The deletion of ppr2 interferes iron sensing and leads to oxidative stress response in Schizosaccharomyces pombe. Mitochondrion 2024; 76:101875. [PMID: 38499131 DOI: 10.1016/j.mito.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.
Collapse
Affiliation(s)
- Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Yao R, Li R, Wu X, Jin T, Luo Y, Li R, Huang Y. E3 ubiquitin ligase Hul6 modulates iron-dependent metabolism by regulating Php4 stability. J Biol Chem 2024; 300:105670. [PMID: 38272226 PMCID: PMC10882131 DOI: 10.1016/j.jbc.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Schizosaccharomyces pombe Php4 is the regulatory subunit of the CCAAT-binding complexes and plays an important role in the regulation of iron homeostasis and iron-dependent metabolism. Here, we show that Php4 undergoes ubiquitin-dependent degradation in the late logarithmic and stationary phases. The degradation and ubiquitination of Php4 could be attenuated by deletion of hul6, a gene encoding a putative HECT-type E3 ubiquitin ligase. The expression levels of Hul6 and Php4 are oppositely regulated during cell growth. Hul6 interacts with the C-terminal region of Php4. Two lysine residues (K217 and K274) located in the C-terminal region of Php4 are required for its polyubiquitination. Increasing the levels of Php4 by deletion of hul6 or overexpression of php4 decreased expression of Php4 target proteins involved in iron-dependent metabolic pathways such as the tricarboxylic cycle and mitochondrial oxidative phosphorylation, thus causing increased sensitivity to high-iron and reductions in succinate dehydrogenase and mitochondrial complex II activities. Hul6 is located primarily in the mitochondrial outer membrane and most likely targets cytosolic Php4 for ubiquitination and degradation. Taken together, our data suggest that Hul6 regulates iron-dependent metabolism through degradation of Php4 under normal growth conditions. Our results also suggest that Hul6 promotes iron-dependent metabolism to help the cell to adapt to a nutrient-starved growth phase.
Collapse
Affiliation(s)
- Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rong Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Wu JJ, Wu PC, Yago JI, Chung KR. The Regulatory Hub of Siderophore Biosynthesis in the Phytopathogenic Fungus Alternaria alternata. J Fungi (Basel) 2023; 9:jof9040427. [PMID: 37108881 PMCID: PMC10146468 DOI: 10.3390/jof9040427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
A GATA zinc finger-containing repressor (AaSreA) suppresses siderophore biosynthesis in the phytopathogenic fungus Alternaria alternata under iron-replete conditions. In this study, targeted gene deletion revealed two bZIP-containing transcription factors (AaHapX and AaAtf1) and three CCAAT-binding proteins (AaHapB, AaHapC, and AaHapE) that positively regulate gene expression in siderophore production. This is a novel phenotype regarding Atf1 and siderophore biosynthesis. Quantitative RT-PCR analyses revealed that only AaHapX and AaSreA were regulated by iron. AaSreA and AaHapX form a transcriptional feedback negative loop to regulate iron acquisition in response to the availability of environmental iron. Under iron-limited conditions, AaAtf1 enhanced the expression of AaNps6, thus playing a positive role in siderophore production. However, under nutrient-rich conditions, AaAtf1 plays a negative role in resistance to sugar-induced osmotic stress, and AaHapX plays a negative role in resistance to salt-induced osmotic stress. Virulence assays performed on detached citrus leaves revealed that AaHapX and AaAtf1 play no role in fungal pathogenicity. However, fungal strains carrying the AaHapB, AaHapC, or AaHapE deletion failed to incite necrotic lesions, likely due to severe growth deficiency. Our results revealed that siderophore biosynthesis and iron homeostasis are regulated by a well-organized network in A. alternata.
Collapse
|
5
|
Ebrahim A, Alfwuaires MA, Abukhalil MH, Alasmari F, Ahmad F, Yao R, Luo Y, Huang Y. Schizosaccharomyces pombe Grx4, Fep1, and Php4: In silico analysis and expression response to different iron concentrations. Front Genet 2022; 13:1069068. [PMID: 36568394 PMCID: PMC9768344 DOI: 10.3389/fgene.2022.1069068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Due to iron's essential role in cellular metabolism, most organisms must maintain their homeostasis. In this regard, the fission yeast Schizosaccharomyces pombe (sp) uses two transcription factors to regulate intracellular iron levels: spFep1 under iron-rich conditions and spPhp4 under iron-deficient conditions, which are controlled by spGrx4. However, bioinformatics analysis to understand the role of the spGrx4/spFep1/spPhp4 axis in maintaining iron homeostasis in S. pombe is still lacking. Our study aimed to perform bioinformatics analysis on S. pombe proteins and their sequence homologs in Aspergillus flavus (af), Saccharomyces cerevisiae (sc), and Homo sapiens (hs) to understand the role of spGrx4, spFep1, and spPhp4 in maintaining iron homeostasis. The three genes' expression patterns were also examined at various iron concentrations. A multiple sequence alignment analysis of spGrx4 and its sequence homologs revealed a conserved cysteine residue in each PF00085 domain. Blast results showed that hsGLRX3 is most similar to spGrx4. In addition, spFep1 is most closely related in sequence to scDal80, whereas scHap4 is most similar to spFep1. We also found two highly conserved motifs in spFep1 and its sequence homologs that are significant for iron transport systems because they contain residues involved in iron homeostasis. The scHap4 is most similar to spPhp4. Using STRING to analyze protein-protein interactions, we found that spGrx4 interacts strongly with spPhp4 and spFep1. Furthermore, spGrx4, spPhp4, and spFep1 interact with spPhp2, spPhp3, and spPhp5, indicating that the three proteins play cooperative roles in iron homeostasis. At the highest level of Fe, spgrx4 had the highest expression, followed by spfep1, while spphp4 had the lowest expression; a contrast occurred at the lowest level of Fe, where spgrx4 expression remained constant. Our findings support the notion that organisms develop diverse strategies to maintain iron homeostasis.
Collapse
Affiliation(s)
- Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan,Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Ying Huang,
| |
Collapse
|
6
|
Jung WH, Sánchez-León E, Kronstad JW. Coordinated regulation of iron metabolism in Cryptococcus neoformans by GATA and CCAAT transcription factors: connections with virulence. Curr Genet 2021; 67:583-593. [PMID: 33760942 DOI: 10.1007/s00294-021-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Iron acquisition is critical for pathogenic fungi to adapt to and survive within the host environment. However, to same extent, the fungi must also avoid the detrimental effects caused by excess iron. The importance of iron has been demonstrated for the physiology and virulence of major fungal pathogens of humans including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. In particular, numerous studies have revealed that aspects of iron acquisition, metabolism, and homeostasis in the fungal pathogens are tightly controlled by conserved transcriptional regulators including a GATA-type iron transcription factor and the CCAAT-binding complex (CBC)/HapX orthologous protein complex. However, the specific downstream regulatory networks are slightly different in each fungus. In addition, roles have been proposed or demonstrated for other factors including monothiol glutaredoxins, BolA-like proteins, and Fe-S cluster incorporation on the GATA-type iron transcription factor and the CBC/HapX orthologous protein complex, although limited information is available. Here we focus on recent work on C. neoformans in the context of an emerging framework for fungal regulation of iron acquisition, metabolism, and homeostasis. Our specific goal is to summarize recent findings on transcriptional networks governed by the iron regulators Cir1 and HapX in C. neoformans.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea.
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
7
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
8
|
Sorribes-Dauden R, Peris D, Martínez-Pastor MT, Puig S. Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi. Comput Struct Biotechnol J 2020; 18:3712-3722. [PMID: 33304466 PMCID: PMC7714665 DOI: 10.1016/j.csbj.2020.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
Collapse
Key Words
- BLOSUM, BLOcks SUbstitution Matrix
- CBC, CCAAT-binding core complex
- CRD, Cysteine-rich domain
- CS, Consistency score
- Ccc1
- Cg, Candida glabrata
- Eg, Eucalyptus grandis
- Fe, Iron
- Fungi
- H, Helix
- Hap, Heme activator protein
- ISC, Iron-sulfur luster
- Iron detoxification
- Iron regulation
- Iron transport
- MAFFT, Multiple Alignment using Fast Fourier Transform
- MBD, Metal-binding domain
- ML, Maximum-likelihood
- NRAMP, Natural Resistance-Associated Macrophage Protein
- Plants
- ROS, Reactive oxygen species
- TMD, Transmembrane domain
- VIT, Vacuolar iron transporter
- VIT1
- VTL, Vacuolar iron transporter-like
- Vacuole
- YRE, Yap response elements
- Yeast
- bZIP, basic leucine-zipper
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
9
|
Normant V, Brault A, Avino M, Mourer T, Vahsen T, Beaudoin J, Labbé S. Hemeprotein Tpx1 interacts with cell-surface heme transporter Str3 in Schizosaccharomyces pombe. Mol Microbiol 2020; 115:699-722. [PMID: 33140466 DOI: 10.1111/mmi.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/30/2022]
Abstract
Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 μM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.
Collapse
Affiliation(s)
- Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariano Avino
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Martínez-Pastor MT, Puig S. Adaptation to iron deficiency in human pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118797. [PMID: 32663505 DOI: 10.1016/j.bbamcr.2020.118797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.
Collapse
Affiliation(s)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
13
|
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in Cryptococcus neoformans. Genetics 2020; 215:1171-1189. [PMID: 32580959 DOI: 10.1534/genetics.120.303270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the growth of the human fungal pathogen Cryptococcus neoformans within the vertebrate host, and iron sensing contributes to the elaboration of key virulence factors, including the formation of the polysaccharide capsule. C. neoformans employs sophisticated iron acquisition and utilization systems governed by the transcription factors Cir1 and HapX. However, the details of the transcriptional regulatory networks that are governed by these transcription factors and connections to virulence remain to be defined. Here, we used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and transcriptome analysis (RNA-seq) to identify genes directly regulated by Cir1 and/or HapX in response to iron availability. Overall, 40 and 100 genes were directly regulated by Cir1, and 171 and 12 genes were directly regulated by HapX, under iron-limited and replete conditions, respectively. More specifically, we found that Cir1 directly controls the expression of genes required for iron acquisition and metabolism, and indirectly governs capsule formation by regulating specific protein kinases, a regulatory connection not previously revealed. HapX regulates the genes responsible for iron-dependent pathways, particularly under iron-depleted conditions. By analyzing target genes directly bound by Cir1 and HapX, we predicted the binding motifs for the transcription factors and verified that the purified proteins bind these motifs in vitro Furthermore, several direct target genes were coordinately and reciprocally regulated by Cir1 and HapX, suggesting that these transcription factors play conserved roles in the response to iron availability. In addition, biochemical analyses revealed that Cir1 and HapX are iron-containing proteins, implying that the regulatory networks of Cir1 and HapX may be influenced by the incorporation of iron into these proteins. Taken together, our identification of the genome-wide transcriptional networks provides a detailed understanding of the iron-related regulatory landscape, establishes a new connection between Cir1 and kinases that regulate capsule, and underpins genetic and biochemical analyses that reveal iron-sensing mechanisms for Cir1 and HapX in C. neoformans.
Collapse
|
14
|
Alkafeef SS, Lane S, Yu C, Zhou T, Solis NV, Filler SG, Huang L, Liu H. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genet 2020; 16:e1008881. [PMID: 32525871 PMCID: PMC7319344 DOI: 10.1371/journal.pgen.1008881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/26/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell. Mammalian pathogens occupy a diverse set of niches within the host organism. These niches vary in iron and oxygen availability. As a commensal and pathogen of humans, its ability to regulate iron uptake and utilization in response to bioavailable iron level is critical for its survival in different host environments encompassing a broad range of iron levels. This study aims to understand how C. albicans senses and responds to iron level to regulate multiple aspects of its biology. The cytosolic monothiol glutaredoxin Grx3 is a critical regulator of C. albicans iron homeostasis and virulence. Taking a proteomic approach, we identified a large list of Grx3 associated proteins of diverse functions, including iron-sulfur trafficking, iron homeostasis, metabolism redox homeostasis, protein translation, DNA maintenance and repair. In support of these protein associations, Grx3 is important for all these processes. Thus, Grx3 is a global regulator of iron homeostasis and other iron dependent cellular processes.
Collapse
Affiliation(s)
- Selma S Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America.,Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.,David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
15
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
16
|
Brault A, Labbé S. Iron deficiency leads to repression of a non-canonical methionine salvage pathway in Schizosaccharomyces pombe. Mol Microbiol 2020; 114:46-65. [PMID: 32090388 DOI: 10.1111/mmi.14495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
The methionine salvage pathway (MSP) regenerates methionine from 5'-methylthioadenosine (MTA). Aerobic MSP consists of six enzymatic steps. The mug14+ and adi1+ genes that are involved in the third and fifth steps of the pathway are repressed when Schizosaccharomyces pombe undergoes a transition from high- to low-iron conditions. Results consistently show that methionine auxotrophic cells (met6Δ) require iron for growth in the presence of MTA as the sole source of methionine. Inactivation of the iron-using protein Adi1 leads to defects in the utilization of MTA. In the case of the third step of the pathway, co-expression of two distinct proteins, Mta3 and Mde1, is required. These proteins are interdependent to rescue MTA-dependent growth deficit of met6Δ cells. Coimmunoprecipitation experiments showed that Mta3 is a binding partner of Mde1. Meiotic met6Δ cells co-expressing mta3+ and mde1+ or mta3+ and mug14+ produce comparable levels of spores in the presence of MTA, revealing that Mde1 and Mug14 share a common function when co-expressed with Mta3 in sporulating cells. In sum, our findings unveil several novel features of MSP, especially with respect to its regulation by iron and the discovery of a non-canonical third enzymatic step in the fission yeast.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
The monothiol glutaredoxin GrxD is essential for sensing iron starvation in Aspergillus fumigatus. PLoS Genet 2019; 15:e1008379. [PMID: 31525190 PMCID: PMC6762210 DOI: 10.1371/journal.pgen.1008379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023] Open
Abstract
Efficient adaptation to iron starvation is an essential virulence determinant of the most common human mold pathogen, Aspergillus fumigatus. Here, we demonstrate that the cytosolic monothiol glutaredoxin GrxD plays an essential role in iron sensing in this fungus. Our studies revealed that (i) GrxD is essential for growth; (ii) expression of the encoding gene, grxD, is repressed by the transcription factor SreA in iron replete conditions and upregulated during iron starvation; (iii) during iron starvation but not iron sufficiency, GrxD displays predominant nuclear localization; (iv) downregulation of grxD expression results in de-repression of genes involved in iron-dependent pathways and repression of genes involved in iron acquisition during iron starvation, but did not significantly affect these genes during iron sufficiency; (v) GrxD displays protein-protein interaction with components of the cytosolic iron-sulfur cluster biosynthetic machinery, indicating a role in this process, and with the transcription factors SreA and HapX, which mediate iron regulation of iron acquisition and iron-dependent pathways; (vi) UV-Vis spectra of recombinant HapX or the complex of HapX and GrxD indicate coordination of iron-sulfur clusters; (vii) the cysteine required for iron-sulfur cluster coordination in GrxD is in vitro dispensable for interaction with HapX; and (viii) there is a GrxD-independent mechanism for sensing iron sufficiency by HapX; (ix) inactivation of SreA suppresses the lethal effect caused by GrxD inactivation. Taken together, this study demonstrates that GrxD is crucial for iron homeostasis in A. fumigatus. Aspergillus fumigatus is a ubiquitous saprophytic mold and the major causative pathogen causing life-threatening aspergillosis. To improve therapy, there is an urgent need for a better understanding of the fungal physiology. We have previously shown that adaptation to iron starvation is an essential virulence attribute of A. fumigatus. In the present study, we characterized the mechanism employed by A. fumigatus to sense the cellular iron status, which is essential for iron homeostasis. We demonstrate that the transcription factors SreA and HapX, which coordinate iron acquisition, iron consumption and iron detoxification require physical interaction with the monothiol glutaredoxin GrxD to sense iron starvation. Moreover, we show that there is a GrxD-independent mechanism for sensing excess of iron.
Collapse
|
18
|
Mourer T, Brault A, Labbé S. Heme acquisition by Shu1 requires Nbr1 and proteins of the ESCRT complex in Schizosaccharomyces pombe. Mol Microbiol 2019; 112:1499-1518. [PMID: 31442344 DOI: 10.1111/mmi.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Assimilation of heme is mediated by the cell surface protein Shu1 in Schizosaccharomyces pombe. Shu1 undergoes internalization from the cell surface to the vacuole in response to high concentrations of hemin. Here, we have identified cellular components that are involved in mediating vacuolar targeting of Shu1. Cells deficient in heme biosynthesis and lacking the polyubiquitin gene ubi4+ exhibit poor growth in the presence of exogenous hemin as a sole source of heme. Microscopic analyses of hem1Δ shu1Δ ubi4Δ cells expressing a functional HA4 -tagged Shu1 show that Shu1 localizes to the cell surface. Ubiquitinated Nbr1 functions as a receptor for the endosomal sorting complexes required for transport (ESCRT) that delivers cargos to the vacuole. Inactivation of nbr1+ , ESCRT-0 hse1+ or ESCRT-I sst6+ results in hem1Δ cells being unable to use exogenous hemin for the growth. Using lysate preparations from hemin-treated cells, Shu1-Nbr1 and Shu1-Hse1 complexes are detected by coimmunoprecipitation experiments. Further analysis by immunofluorescence microscopy shows that Shu1 is unable to reach vacuoles of hemin-treated cells harboring a deletion for one of the following genes: ubi4+ , nbr1+ , hse1+ and sst6+ . Together, these results reveal that hemin-mediated vacuolar targeting of Shu1 requires Ubi4-dependent ubiquitination, the receptor Nbr1 and the ESCRT proteins Hse1 and Sst6.
Collapse
Affiliation(s)
- Thierry Mourer
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Ariane Brault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
19
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
20
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
21
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
22
|
Wang Y, Deng C, Tian L, Xiong D, Tian C, Klosterman SJ. The Transcription Factor VdHapX Controls Iron Homeostasis and Is Crucial for Virulence in the Vascular Pathogen Verticillium dahliae. mSphere 2018; 3:e00400-18. [PMID: 30185514 PMCID: PMC6126142 DOI: 10.1128/msphere.00400-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Iron homeostasis is essential for full virulence and viability in many pathogenic fungi. Here, we showed that the bZip transcription factor VdHapX functions as a key regulator of iron homeostasis for adaptation to iron-depleted and iron-excess conditions and is required for full virulence in the vascular wilt fungus, Verticillium dahliae Deletion of VdHapX impaired mycelial growth and conidiation under both iron starvation and iron sufficiency. Furthermore, disruption of VdHapX led to decreased formation of the long-lived survival structures of V. dahliae, known as microsclerotia. Expression of genes involved in iron utilization pathways and siderophore biosynthesis was misregulated in the ΔVdHapX strain under the iron-depleted condition. Additionally, the ΔVdHapX strain exhibited increased sensitivity to high iron concentrations and H2O2, indicating that VdHapX also contributes to iron or H2O2 detoxification. The ΔVdHapX strain showed a strong reduction in virulence on smoke tree seedlings (Cotinus coggygria) and was delayed in its ability to penetrate plant epidermal tissue.IMPORTANCE This study demonstrated that VdHapX is a conserved protein that mediates adaptation to iron starvation and excesses, affects microsclerotium formation, and is crucial for virulence of V. dahliae.
Collapse
Affiliation(s)
- Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chenglin Deng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, California, USA
| |
Collapse
|
23
|
Beaudoin J, Ioannoni R, Normant V, Labbé S. A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1. PLoS One 2018; 13:e0201861. [PMID: 30086160 PMCID: PMC6080790 DOI: 10.1371/journal.pone.0201861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
When reproduction in fungi takes place by sexual means, meiosis enables the formation of haploid spores from diploid precursor cells. Copper is required for completion of meiosis in Schizosaccharomyces pombe. During the meiotic program, genes encoding copper transporters exhibit distinct temporal expression profiles. In the case of the major facilitator copper transporter 1 (Mfc1), its maximal expression is induced during middle-phase meiosis and requires the presence of the Zn6Cys2 binuclear cluster-type transcription factor Mca1. In this study, we further characterize the mechanism by which Mca1 affects the copper-starvation-induced expression of mfc1+. Using a chromatin immunoprecipitation (ChIP) approach, results showed that a functional Mca1-TAP occupies the mfc1+ promoter irrespective of whether this gene is transcriptionally active. Under conditions of copper starvation, results showed that the presence of Mca1 promotes RNA polymerase II (Pol II) occupancy along the mfc1+ transcribed region. In contrast, Pol II did not significantly occupy the mfc1+ locus in meiotic cells that were incubated in the presence of copper. Further analysis by ChIP assays revealed that binding of Pol II to chromatin at the chromosomal locus of mfc1+ is exclusively detected during meiosis and absent in cells proliferating in mitosis. Protein function analysis of a series of internal mutants compared to the full-length Mca1 identified a minimal form of Mca1 consisting of its DNA-binding domain (residues 1 to 150) fused to the amino acids 299 to 600. This shorter form is sufficient to enhance Pol II occupancy at the mfc1+ locus under low copper conditions. Taken together, these results revealed novel characteristics of Mca1 and identified an internal region of Mca1 that is required to promote Pol II-dependent mfc1+ transcription during meiosis.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaël Ioannoni
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| |
Collapse
|
24
|
Normant V, Mourer T, Labbé S. The major facilitator transporter Str3 is required for low-affinity heme acquisition in Schizosaccharomyces pombe. J Biol Chem 2018; 293:6349-6362. [PMID: 29549126 DOI: 10.1074/jbc.ra118.002132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Indexed: 01/03/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, acquisition of exogenous heme is largely mediated by the cell membrane-associated Shu1. Here, we report that Str3, a member of the major facilitator superfamily of transporters, promotes cellular heme import. Using a strain that cannot synthesize heme de novo (hem1Δ) and lacks Shu1, we found that the heme-dependent growth deficit of this strain is rescued by hemin supplementation in the presence of Str3. Microscopic analyses of a hem1Δ shu1Δ str3Δ mutant strain in the presence of the heme analog zinc mesoporphyrin IX (ZnMP) revealed that ZnMP fails to accumulate within the mutant cells. In contrast, Str3-expressing hem1Δ shu1Δ cells could take up ZnMP at a 10-μm concentration. The yeast Saccharomyces cerevisiae cannot efficiently transport exogenously supplied hemin. However, heterologous expression of Str3 from S. pombe in S. cerevisiae resulted in ZnMP accumulation within S. cerevisiae cells. Moreover, hemin-agarose pulldown assays revealed that Str3 binds hemin. In contrast, an Str3 mutant in which Tyr and Ser residues of two putative heme-binding motifs (530YX3Y534 and 552SX4Y557) had been replaced with alanines exhibited a loss of affinity for hemin. Furthermore, this Str3 mutant failed to rescue the heme-dependent growth deficit of a hem1Δ shu1Δ str3Δ strain. Further analysis by absorbance spectroscopy disclosed that a predicted extracellular loop region in Str3 containing the two putative heme-binding motifs interacts with hemin, with a KD of 6.6 μm Taken together, these results indicate that Str3 is a second cell-surface membrane protein for acquisition of exogenous heme in S. pombe.
Collapse
Affiliation(s)
- Vincent Normant
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Thierry Mourer
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
25
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
26
|
Dlouhy AC, Beaudoin J, Labbé S, Outten CE. Schizosaccharomyces pombe Grx4 regulates the transcriptional repressor Php4 via [2Fe-2S] cluster binding. Metallomics 2017; 9:1096-1105. [PMID: 28725905 DOI: 10.1039/c7mt00144d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fission yeast Schizosaccharomyces pombe expresses the CCAAT-binding factor Php4 in response to iron deprivation. Php4 forms a transcription complex with Php2, Php3, and Php5 to repress the expression of iron proteins as a means to economize iron usage. Previous in vivo results demonstrate that the function and location of Php4 are regulated in an iron-dependent manner by the cytosolic CGFS type glutaredoxin Grx4. In this study, we aimed to biochemically define these protein-protein and protein-metal interactions. Grx4 was found to bind a [2Fe-2S] cluster with spectroscopic features similar to other CGFS glutaredoxins. Grx4 and Php4 also copurify as a complex with a [2Fe-2S] cluster that is spectroscopically distinct from the cluster on Grx4 alone. In vitro titration experiments suggest that these Fe-S complexes may not be interconvertible in the absence of additional factors. Furthermore, conserved cysteines in Grx4 (Cys172) and Php4 (Cys221 and Cys227) are necessary for Fe-S cluster binding and stable complex formation. Together, these results show that Grx4 controls Php4 function through binding of a bridging [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Adrienne C Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
27
|
Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. FEBS J 2017; 284:324-337. [PMID: 27886462 DOI: 10.1111/febs.13978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins characterized by tandem arrays of a degenerate 35-amino-acid repeat belong to a large family of RNA-binding proteins that are involved in post-transcriptional control of organelle gene expression. PPR proteins are ubiquitous in eukaryotes, and particularly prevalent in higher plants. Schizosaccharomyces pombe has 10 PPR proteins. Among them, ppr3, ppr4, ppr6, and ppr10 participate in mitochondrial post-transcriptional processes and are required for mitochondrial electron transport chain (ETC) function. In the present work, we showed that deletion of ppr3, ppr4, ppr6, or ppr10 led to apoptotic cell death, as revealed by DAPI and Annexin V-FITC staining. These mutants also exhibited elevated levels of reactive oxygen species (ROS). RNA sequencing (RNA-seq) and quantitative RT-PCR analyses revealed that deletion of ppr10 affected critical biological processes. In particular, a core set of genes involved in iron uptake and/or iron homeostasis was elevated in the Δppr10 mutant, suggesting an elevated level of intracellular iron in the mutant. Consistent with this notion, Δppr3, Δppr4, Δppr6, and Δppr10 mutants exhibited increased sensitivity to iron. Furthermore, the iron chelator, bathophenanthroline disulfonic acid, but not the calcium chelator EGTA, nearly restored the viabilities of Δppr3, Δppr4, Δppr6, and Δppr10 mutants, and reduced ROS levels in the mutants. These results show for the first time that deletion of a ppr gene leads to perturbation of iron homeostasis. Our results also suggest that disrupted iron homeostasis in Δppr3, Δppr4, Δppr6, and Δppr10 mutants may lead to an increase in the level of ROS and induction of apoptotic cell death in S. pombe. DATABASE The RNA-seq data have been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession number SRP091623) and Gene Expression Omnibus (GEO) database (accession number GSE90144).
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
28
|
Hortschansky P, Haas H, Huber EM, Groll M, Brakhage AA. The CCAAT-binding complex (CBC) in Aspergillus species. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:560-570. [PMID: 27939757 DOI: 10.1016/j.bbagrm.2016.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The CCAAT binding complex (CBC), consisting of a heterotrimeric core structure, is highly conserved in eukaryotes and constitutes an important general transcriptional regulator. Scope of the review. In this review we discuss the scientific history and the current state of knowledge of the multiple gene regulatory functions, protein motifs and structure of the CBC in fungi with a special focus on Aspergillus species. Major conclusions and general significance. Initially identified as a transcriptional activator of respiration in Saccharomyces cerevisiae, in other fungal species the CBC was found to be involved in highly diverse pathways, but a general rationale for its involvement was missing. Subsequently, the CBC was found to sense reactive oxygen species through oxidative modifications of cysteine residues in order to mediate redox regulation. Moreover, via interaction with the iron-sensing bZIP transcription factor HapX, the CBC was shown to mediate adaptation to both iron starvation and iron excess. Due to the control of various pathways in primary and secondary metabolism the CBC is of crucial importance for fungal virulence in both animal and plant hosts as well as antifungal resistance. Consequently, CBC-mediated control affects biological processes that are of high interest in biotechnology, agriculture and infection medicine. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| | - Eva M Huber
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany; Department of Microbiology and Molecular Biology, Friedrich Schiller University (FSU), D-07745 Jena, Germany.
| |
Collapse
|
29
|
Abstract
Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+ Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron.
Collapse
|
30
|
Kim HJ, Lee KL, Kim KD, Roe JH. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines. Biochem Biophys Res Commun 2016; 478:187-192. [DOI: 10.1016/j.bbrc.2016.07.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022]
|
31
|
Mukherjee K, Gardin J, Futcher B, Leatherwood J. Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs. RNA (NEW YORK, N.Y.) 2016; 22:1311-1319. [PMID: 27402898 PMCID: PMC4986887 DOI: 10.1261/rna.051490.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The RNA exosome is a conserved complex for RNA degradation with two ribonucleolytic subunits, Dis3 and Rrp6. Rrp6 is a 3'-5' exonuclease, but it also has a structural role in helping target RNAs to the Dis3 activity. The relative importance of the exonuclease activity and the targeting activity probably differs between different RNA substrates, but this is poorly understood. To understand the relative contributions of the exonuclease and the targeting activities to the degradation of individual RNA substrates in Schizosaccharomyces pombe, we compared RNA levels in an rrp6 null mutant to those in an rrp6 point mutant specifically defective in exonuclease activity. A wide range of effects was found, with some RNAs dependent mainly on the structural role of Rrp6 ("protein-dependent" targets), other RNAs dependent mainly on the catalytic role ("activity-dependent" targets), and some RNAs dependent on both. Some protein-dependent RNAs contained motifs targeted via the RNA-binding protein Mmi1, while others contained a motif possibly involved in response to iron. In these and other cases Rrp6 may act as a structural adapter to target specific RNAs to the exosome by interacting with sequence-specific RNA-binding proteins.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | - Justin Gardin
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| |
Collapse
|
32
|
Kröber A, Scherlach K, Hortschansky P, Shelest E, Staib P, Kniemeyer O, Brakhage AA. HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence. PLoS One 2016; 11:e0150701. [PMID: 26960149 PMCID: PMC4784894 DOI: 10.1371/journal.pone.0150701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
For many pathogenic fungi, siderophore-mediated iron acquisition is essential for virulence. The process of siderophore production and further mechanisms to adapt to iron limitation are strictly controlled in fungi to maintain iron homeostasis. Here we demonstrate that the human pathogenic dermatophyte Arthroderma benhamiae produces the hydroxamate siderophores ferricrocin and ferrichrome C. Additionally, we show that the iron regulator HapX is crucial for the adaptation to iron starvation and iron excess, but is dispensable for virulence of A. benhamiae. Deletion of hapX caused downregulation of siderophore biosynthesis genes leading to a decreased production of siderophores during iron starvation. Furthermore, HapX was required for transcriptional repression of genes involved in iron-dependent pathways during iron-depleted conditions. Additionally, the ΔhapX mutant of A. benhamiae was sensitive to high-iron concentrations indicating that HapX also contributes to iron detoxification. In contrast to other pathogenic fungi, HapX of A. benhamiae was redundant for virulence and a ΔhapX mutant was still able to infect keratinized host tissues in vitro. Our findings underline the highly conserved role of the transcription factor HapX for maintaining iron homeostasis in ascomycetous fungi but, unlike in many other human and plant pathogenic fungi, HapX of A. benhamiae is not a virulence determinant.
Collapse
Affiliation(s)
- Antje Kröber
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Ekaterina Shelest
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Peter Staib
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
33
|
Brault A, Mourer T, Labbé S. Molecular basis of the regulation of iron homeostasis in fission and filamentous yeasts. IUBMB Life 2015; 67:801-15. [PMID: 26472434 DOI: 10.1002/iub.1441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 11/08/2022]
Abstract
When iron load exceeds that needed by fission and filamentous yeasts, iron-regulatory GATA-type transcription factors repress genes encoding iron acquisition systems. In contrast, under iron starvation, optimization of cellular iron utilization is coordinated by a specialized regulatory subunit of the CCAAT-binding factor that fosters repression of genes encoding iron-using proteins. Despite these findings, there is still limited knowledge concerning the mechanisms by which these iron-responsive regulators respond to high- or low-iron availability. To provide a framework for understanding common and distinct properties of iron-dependent transcriptional regulators, a repertoire of their functional domains in different fungal species is presented here. In addition, discovery of interacting partners of these iron-responsive factors contributes to provide additional insight into their properties.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Normant V, Beaudoin J, Labbé S. An antisense RNA-mediated mechanism eliminates a meiosis-specific copper-regulated transcript in mitotic cells. J Biol Chem 2015; 290:22622-37. [PMID: 26229103 DOI: 10.1074/jbc.m115.674556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
Sense and antisense transcripts produced from convergent gene pairs could interfere with the expression of either partner gene. In Schizosaccharomyces pombe, we found that the iss1(+) gene produces two transcript isoforms, including a long antisense mRNA that is complementary to the meiotic cum1(+) sense transcript, inhibiting cum1(+) expression in vegetative cells. Inhibition of cum1(+) transcription was not at the level of its initiation because fusion of the cum1(+) promoter to the lacZ gene showed that activation of the reporter gene occurs in response to low copper conditions. Further analysis showed that the transcription factor Cuf1 and conserved copper-signaling elements (CuSEs) are required for induction of cum1(+)-lacZ transcription under copper deficiency. Insertion of a multipartite polyadenylation signal immediately downstream of iss1(+) led to the exclusive production of a shorter iss1(+) mRNA isoform, thereby allowing accumulation of cum1(+) sense mRNA in copper-limited vegetative cells. This finding suggested that the long iss1(+) antisense mRNA could pair with cum1(+) sense mRNA, thereby producing double-stranded RNA molecules that could induce RNAi. We consistently found that mutant strains for RNAi (dcr1Δ, ago1Δ, rdp1Δ, and clr4Δ) are defective in selectively eliminating cum1(+) sense transcript in the G1 phase of the cell cycle. Taken together, these results describe the first example of a copper-regulated meiotic gene repressed by an antisense transcription mechanism in vegetative cells.
Collapse
Affiliation(s)
- Vincent Normant
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jude Beaudoin
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
35
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
36
|
Couturier J, Przybyla-Toscano J, Roret T, Didierjean C, Rouhier N. The roles of glutaredoxins ligating Fe–S clusters: Sensing, transfer or repair functions? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1513-27. [DOI: 10.1016/j.bbamcr.2014.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
|
37
|
Mourer T, Jacques JF, Brault A, Bisaillon M, Labbé S. Shu1 is a cell-surface protein involved in iron acquisition from heme in Schizosaccharomyces pombe. J Biol Chem 2015; 290:10176-90. [PMID: 25733668 DOI: 10.1074/jbc.m115.642058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 02/03/2023] Open
Abstract
Iron is an essential metal cofactor that is required for many biological processes. Eukaryotic cells have consequently developed different strategies for its acquisition. Until now, Schizosaccharomyces pombe was known to use reductive iron uptake and siderophore-bound iron transport to scavenge iron from the environment. Here, we report the identification of a gene designated shu1(+) that encodes a protein that enables S. pombe to take up extracellular heme for cell growth. When iron levels are low, the transcription of shu1(+) is induced, although its expression is repressed when iron levels rise. The iron-dependent down-regulation of shu1(+) requires the GATA-type transcriptional repressor Fep1, which strongly associates with a proximal promoter region of shu1(+) in vivo in response to iron repletion. HA4-tagged Shu1 localizes to the plasma membrane in cells expressing a functional shu1(+)-HA4 allele. When heme biosynthesis is selectively blocked in mutated S. pombe cells, their ability to acquire exogenous hemin or the fluorescent heme analog zinc mesoporphyrin IX is dependent on the expression of Shu1. Further analysis by absorbance spectroscopy and hemin-agarose pulldown assays showed that Shu1 interacts with hemin, with a KD of ∼2.2 μm. Taken together, results reported here revealed that S. pombe possesses an unexpected pathway for heme assimilation, which may also serve as a source of iron for cell growth.
Collapse
Affiliation(s)
- Thierry Mourer
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jean-François Jacques
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Ariane Brault
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Martin Bisaillon
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
38
|
Encinar del Dedo J, Gabrielli N, Carmona M, Ayté J, Hidalgo E. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast. PLoS Genet 2015; 11:e1005106. [PMID: 25806539 PMCID: PMC4373815 DOI: 10.1371/journal.pgen.1005106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.
Collapse
Affiliation(s)
| | - Natalia Gabrielli
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Petryk N, Zhou YF, Sybirna K, Mucchielli MH, Guiard B, Bao WG, Stasyk OV, Stasyk OG, Krasovska OS, Budin K, Reymond N, Imbeaud S, Coudouel S, Delacroix H, Sibirny A, Bolotin-Fukuhara M. Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. PLoS One 2014; 9:e112263. [PMID: 25479159 PMCID: PMC4257542 DOI: 10.1371/journal.pone.0112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/06/2014] [Indexed: 12/05/2022] Open
Abstract
The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif. In addition to this motif, some of these proteins contain a DNA-binding motif of the bZIP type, while being nonetheless globally highly divergent. The genome of the yeast Hansenula polymorpha contains two HAP4-like genes encoding the protein HpHap4-A which, like ScHap4, is devoid of a bZIP motif, and HpHap4-B which contains it. This species has been chosen for a detailed examination of their respective properties. Based mostly on global gene expression studies performed in the S. cerevisiae HAP4 disruption mutant (ScΔhap4), we show here that HpHap4-A is functionally equivalent to ScHap4, whereas HpHap4-B is not. Moreover HpHAP4-B is able to complement the H2O2 hypersensitivity of the ScYap1 deletant, YAP1 being, in S. cerevisiae, the main regulator of oxidative stress. Finally, a transcriptomic analysis performed in the ScΔyap1 strain overexpressing HpHAP4-B shows that HpHap4-B acts both on oxidative stress response and carbohydrate metabolism in a manner different from both ScYap1 and ScHap4. Deletion of these two genes in their natural host, H. polymorpha, confirms that HpHAP4-A participates in the control of the fermentation/respiration balance, while HpHAP4-B is involved in oxidative stress since its deletion leads to hypersensitivity to H2O2. These data, placed in an evolutionary context, raise new questions concerning the evolution of the HAP4 transcriptional regulation function and suggest that Yap1 and Hap4 have diverged from a unique regulatory protein in the fungal ancestor.
Collapse
Affiliation(s)
- Nataliya Petryk
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - You-Fang Zhou
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Kateryna Sybirna
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Marie-Hélène Mucchielli
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Wei-Guo Bao
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Oleh V. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | - Olena G. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Department of Biochemistry, Ivan Franko Lviv National University, Lviv, Ukraine
| | | | - Karine Budin
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
| | - Nancie Reymond
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | - Hervé Delacroix
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- University of Rzeszow, Rzeszow, Poland
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
40
|
Khan MGM, Jacques JF, Beaudoin J, Labbé S. Characterization of the nuclear import mechanism of the CCAAT-regulatory subunit Php4. PLoS One 2014; 9:e110721. [PMID: 25330182 PMCID: PMC4201560 DOI: 10.1371/journal.pone.0110721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022] Open
Abstract
Php4 is a nucleo-cytoplasmic shuttling protein that accumulates in the nucleus during iron deficiency. When present in the nucleus, Php4 associates with the CCAAT-binding protein complex and represses genes encoding iron-using proteins. Here, we show that nuclear import of Php4 is independent of the other subunits of the CCAAT-binding complex. Php4 nuclear import relies on two functionally independent nuclear localization sequences (NLSs) that are located between amino acid residues 171 to 174 (KRIR) and 234 to 240 (KSVKRVR). Specific substitutions of basic amino acid residues to alanines within these sequences are sufficient to abrogate nuclear targeting of Php4. The two NLSs are biologically redundant and are sufficient to target a heterologous reporter protein to the nucleus. Under low-iron conditions, a functional GFP-Php4 protein is only partly targeted to the nucleus in imp1Δ and sal3Δ mutant cells. We further found that cells expressing a temperature-sensitive mutation in cut15 exhibit increased cytosolic accumulation of Php4 at the nonpermissive temperature. Further analysis by pull-down experiments revealed that Php4 is a cargo of the karyopherins Imp1, Cut15 and Sal3. Collectively, these results indicate that Php4 can be bound by distinct karyopherins, connecting it into more than one nuclear import pathway.
Collapse
Affiliation(s)
- Md. Gulam Musawwir Khan
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jude Beaudoin
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
41
|
Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Mühlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 2014; 33:2261-76. [PMID: 25092765 PMCID: PMC4232046 DOI: 10.15252/embj.201489468] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.
Collapse
Affiliation(s)
- Fabio Gsaller
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Veronika Klammer
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katja Tuppatsch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany Friedrich Schiller University, Jena, Germany
| | - Beatrix E Lechner
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Nicole Rietzschel
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Aaron A Vogan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany Friedrich Schiller University, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
42
|
Jacques JF, Mercier A, Brault A, Mourer T, Labbé S. Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation. PLoS One 2014; 9:e98959. [PMID: 24897379 PMCID: PMC4045890 DOI: 10.1371/journal.pone.0098959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/08/2014] [Indexed: 01/12/2023] Open
Abstract
Iron is required for several metabolic functions involved in cellular growth. Although several players involved in iron transport have been identified, the mechanisms by which iron-responsive transcription factors are controlled are still poorly understood. In Schizosaccharomyces pombe, the Fep1 transcription factor represses genes involved in iron acquisition in response to high levels of iron. In contrast, when iron levels are low, Fep1 becomes inactive and loses its ability to associate with chromatin. Although the molecular basis by which Fep1 is inactivated under iron starvation remains unknown, this process requires the monothiol glutaredoxin Grx4. Here, we demonstrate that Fra2 plays a role in the negative regulation of Fep1 activity. Disruption of fra2+ (fra2Δ) led to a constitutive repression of the fio1+ gene transcription. Fep1 was consistently active and constitutively bound to its target gene promoters in cells lacking fra2+. A constitutive activation of Fep1 was also observed in a php4Δ fra2Δ double mutant strain in which the behavior of Fep1 is freed of its transcriptional regulation by Php4. Microscopic analyses of cells expressing a functional Fra2-Myc13 protein revealed that Fra2 localized throughout the cells with a significant proportion of Fra2 being observed within the nuclei. Further analysis by coimmunoprecipitation showed that Fra2, Fep1 and Grx4 are associated in a heteroprotein complex. Bimolecular fluorescence complementation experiments brought further evidence that an interaction between Fep1 and Fra2 occurs in the nucleus. Taken together, results reported here revealed that Fra2 plays a role in the Grx4-mediated pathway that inactivates Fep1 in response to iron deficiency.
Collapse
Affiliation(s)
- Jean-François Jacques
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexandre Mercier
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thierry Mourer
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
43
|
Ding C, Hu G, Jung WH, Kronstad JW. Essential Metals in Cryptococcus neoformans: Acquisition and Regulation. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Pluskal T, Ueno M, Yanagida M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One 2014; 9:e97774. [PMID: 24828577 PMCID: PMC4020840 DOI: 10.1371/journal.pone.0097774] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
Ergothioneine is a small, sulfur-containing metabolite (229 Da) synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes) of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01), by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide). Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c) of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2) showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively) and described its gradual accumulation under long-term quiescence. Finally, we demonstrated that the ergothioneine pathway can also synthesize selenoneine, a selenium-containing derivative of ergothioneine, when the culture medium is supplemented with selenium. We further found that selenoneine biosynthesis involves a novel intermediate compound, hercynylselenocysteine.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima-shi, Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima-shi, Hiroshima, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
- * E-mail:
| |
Collapse
|
45
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
46
|
Plante S, Ioannoni R, Beaudoin J, Labbé S. Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells. J Biol Chem 2014; 289:10168-81. [PMID: 24569997 DOI: 10.1074/jbc.m113.543678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.
Collapse
Affiliation(s)
- Samuel Plante
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | | | | | | |
Collapse
|
47
|
Glaesener AG, Merchant SS, Blaby-Haas CE. Iron economy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2013; 4:337. [PMID: 24032036 PMCID: PMC3759009 DOI: 10.3389/fpls.2013.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance.
Collapse
Affiliation(s)
- Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of CaliforniaLos Angeles, CA, USA
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Crysten E. Blaby-Haas, Department of Chemistry and Biochemistry, University of California, Box 951569, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA e-mail:
| |
Collapse
|
48
|
Labbé S, Khan MGM, Jacques JF. Iron uptake and regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 2013; 16:669-76. [PMID: 23916750 DOI: 10.1016/j.mib.2013.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Schizosaccharomyces pombe is a useful model system for understanding many aspects of eukaryotic cell growth. Studies of S. pombe have identified novel genes that function in the regulation of iron homeostasis. In response to high levels of iron, Fep1 represses the expression of several genes involved in the acquisition of iron. When iron levels are limited, optimization of cellular iron utilization is coordinated by Php4, which represses genes encoding iron-using proteins. Results from studies in yeast have shed new light on the role of monothiol glutaredoxins (Grxs) in iron homeostasis. In S. pombe, the Grx4 protein serves as an inhibitory partner for Fep1 in response to iron deficiency, whereas it is required for the inhibition of Php4 under iron-replete conditions.
Collapse
Affiliation(s)
- Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | | | | |
Collapse
|
49
|
The fission yeast php2 mutant displays a lengthened chronological lifespan. Biosci Biotechnol Biochem 2013; 77:1548-55. [PMID: 23832353 DOI: 10.1271/bbb.130223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Schizosaccharomyces pombe php2(+) gene encodes a subunit of the CCAAT-binding factor complex. We found that disruption of the php2(+) gene extended the chronological lifespan of the fission yeast. Moreover, the lifespan of the Δphp2 mutant was barely extended under calorie restricted (CR) conditions. Many other phenotypes of the Δphp2 mutant resembled those of wild-type cells grown under CR conditions, suggesting that the Δphp2 mutant might undergo CR. The mutant also showed low respiratory activity concomitant with decreased expression of the cyc1(+) and rip1(+) genes, both of which are involved in mitochondrial electron transport. On the basis of a chromatin immunoprecipitation assay, we determined that Php2 binds to a DNA region upstream of cyc1(+) and rip1(+) in S. pombe. Here we discuss the possible mechanisms by which the chronological lifespan of Δphp2 mutant is extended.
Collapse
|
50
|
Abstract
In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1(+)-toe3(+)) that displayed cell elongation when overexpressed. Ectopic expression of toe1(+) resulted in a G1 delay while toe2(+) and toe3(+) overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5(+) and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2(+) and toe3(+) overexpression, respectively. Furthermore, single deletions of the putative target genes urg2(+) and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1(+), could suppress the phenotypes of toe1(+) and toe2(+) overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe.
Collapse
|