1
|
Oldrieve GR, Venter F, Cayla M, Verney M, Hébert L, Geerts M, Van Reet N, Matthews KR. Mechanisms of life cycle simplification in African trypanosomes. Nat Commun 2024; 15:10485. [PMID: 39622840 PMCID: PMC11612274 DOI: 10.1038/s41467-024-54555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
African trypanosomes are important parasites in sub-Saharan Africa that undergo a quorum-sensing dependent development to morphologically 'stumpy forms' in mammalian hosts to favour transmission by tsetse flies. However, some trypanosome clades have simplified their lifecycle by escaping dependence on tsetse allowing an expanded geographic range, with direct transmission between hosts achieved via blood-feeding biting flies and vampire bats (Trypanosoma brucei evansi, causing 'surra') or through sexual transmission (Trypanosoma brucei equiperdum, causing 'dourine'). Concomitantly, stumpy formation is reduced and the isolates are described as monomorphic, with infections spread widely in Africa, Asia, South America and parts of Europe. Here, using genomic analysis of distinct field isolates, we identify molecular changes that accompany the loss of the stumpy formation in monomorphic clades. Using CRISPR-mediated allelic replacement, mutations in two exemplar genes (Tb927.2.4020; Tb927.5.2580) are confirmed to reduce stumpy formation whereas another (Tb927.11.3400) is implicated in altered motility. Using laboratory selection we identify downregulation of RNA regulators as important in the initial development of monomorphism. This identifies a trajectory of events that simplify the life cycle in emergent and established monomorphic trypanosomes, with impact on disease spread, vector control strategies, geographical range and virulence.
Collapse
Affiliation(s)
- Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Mathieu Cayla
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Mylène Verney
- Unité Physiopathologie et Epidémiologie des Maladies Equines (PhEED), Laboratoire de Santé Animale, Site de Normandie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 1180 route de l'église, 14430, Goustranville, France
| | - Laurent Hébert
- Unité Physiopathologie et Epidémiologie des Maladies Equines (PhEED), Laboratoire de Santé Animale, Site de Normandie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 1180 route de l'église, 14430, Goustranville, France
| | - Manon Geerts
- Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
2
|
Pumpitakkul V, Roytrakul S, Phaonakrop N, Thongphakdee A, Sanannu S, Nipanunt T, Pandhumas S, Kaewsen K, Ploypetch S, Sirisawadi S, Kunnasut N, Anuracpreeda P, Watthanadirek-Wijidwong A, Suriyaphol G. Analysis of serum proteomic profiles of endangered Siamese and Burmese Eld's deer infected with subclinical Babesia bovis in Thailand. Acta Trop 2024; 257:107294. [PMID: 38909725 DOI: 10.1016/j.actatropica.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The endangered Eld's deer is a conserved species in Thailand, where tropical parasitic infections are endemic. Although Eld's deer with babesiosis are generally asymptomatic, they can still harbor the parasite and serve as reservoirs for ticks, spreading the infection to healthy animals within the herd. The present study aimed to investigate potential serum proteome biomarkers of Eld's deer with subclinical Babesia bovis infection. A total of 67 blood samples were collected from captive Siamese and Burmese Eld's deer showing no signs of parasitic infection. The nested polymerase chain reaction (nPCR) of a conserved spherical body protein 2 (sbp-2) gene of B. bovis was utilized to classify Eld's deer groups, with 25.37 % (17/67) testing positive for B. bovis. Additionally, the application of proteomic studies showed that six B. bovis proteins, such as Obg-like ATPase 1 (OLA1) and heat shock protein 90 (HSP90), were significantly upregulated by more than a two-fold change compared with the PCR-negative samples. Of the 55 overexpressed serum proteins in the PCR-positives, alpha 2-HS glycoprotein (AHSG) and immunoglobulin lambda variable 2-8 (IGLV2-8) were notably among the top 10 proteins with the highest area under curve (AUC) values. Hence, they were proposed as potential biomarkers for subclinical B. bovis infection in Eld's deer. Analysis of the protein interaction network revealed interactions between Eld's deer AHSG and B. bovis OLA1 and HSP90, alongside associations with other proteins such as erb-b2 receptor tyrosine kinase 2 (ERBB2) and epidermal growth factor receptor (EGFR). These interactions were involved in the immune system pathway and inflammatory responses. Our findings shed light on subclinical infection of B. bovis in Eld's deer and identify potential biomarkers, contributing to the further effective detection and monitoring of B. bovis infection in this endangered species.
Collapse
Affiliation(s)
- Vichayanee Pumpitakkul
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Ampika Thongphakdee
- Animal Conservation and Research Institute, Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok 10800, Thailand
| | - Saowaphang Sanannu
- Animal Conservation and Research Institute, Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok 10800, Thailand
| | - Tarasak Nipanunt
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani 61160, Thailand
| | - Satit Pandhumas
- Chulabhorn Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Sisaket 33140, Thailand
| | - Kiattisak Kaewsen
- Banglamung Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Chonburi 20150, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sujin Sirisawadi
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nanthida Kunnasut
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panat Anuracpreeda
- Parasitology Research Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Amaya Watthanadirek-Wijidwong
- Parasitology Research Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
4
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
5
|
Kulkarni S, Rubio MAT, Hegedűsová E, Ross RL, Limbach PA, Alfonzo JD, Paris Z. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res 2021; 49:8247-8260. [PMID: 34244755 PMCID: PMC8373054 DOI: 10.1093/nar/gkab567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.
Collapse
Affiliation(s)
- Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mary Anne T Rubio
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Robert L Ross
- Metabolomics Mass Spectrometry Core, Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, Yurchenko V. The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions. Pathogens 2021; 10:68. [PMID: 33466586 PMCID: PMC7828693 DOI: 10.3390/pathogens10010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.
Collapse
Affiliation(s)
- Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
| | - Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 558812, USA;
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.B.); (A.Z.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| |
Collapse
|
7
|
Native aggregation is a common feature among triosephosphate isomerases of different species. Sci Rep 2020; 10:1338. [PMID: 31992784 PMCID: PMC6987189 DOI: 10.1038/s41598-020-58272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Triosephosphate isomerase (TIM) is an enzyme of the glycolysis pathway which exists in almost all types of cells. Its structure is the prototype of a motif called TIM-barrel or (α/β)8 barrel, which is the most common fold of all known enzyme structures. The simplest form in which TIM is catalytically active is a homodimer, in many species of bacteria and eukaryotes, or a homotetramer in some archaea. Here we show that the purified homodimeric TIMs from nine different species of eukaryotes and one of an extremophile bacterium spontaneously form higher order aggregates that can range from 3 to 21 dimers per macromolecular complex. We analysed these aggregates with clear native electrophoresis with normal and inverse polarity, blue native polyacrylamide gel electrophoresis, liquid chromatography, dynamic light scattering, thermal shift assay and transmission electron and fluorescence microscopies, we also performed bioinformatic analysis of the sequences of all enzymes to identify and predict regions that are prone to aggregation. Additionally, the capacity of TIM from Trypanosoma brucei to form fibrillar aggregates was characterized. Our results indicate that all the TIMs we studied are capable of forming oligomers of different sizes. This is significant because aggregation of TIM may be important in some of its non-catalytic moonlighting functions, like being a potent food allergen, or in its role associated with Alzheimer’s disease.
Collapse
|
8
|
Isah MB, Goldring JPD, Coetzer THT. Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes. Mol Biochem Parasitol 2019; 235:111245. [PMID: 31751595 DOI: 10.1016/j.molbiopara.2019.111245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Copper is an essential component of cuproproteins but can be toxic to cells, therefore copper metabolism is very carefully regulated within cells. To gain insight into trypanosome copper metabolism, Trypanosoma spp. genomic databases were screened for the presence of copper-containing and -transporting proteins. Among other genes encoding copper-binding proteins, a copper-transporting P-type ATPase (CuATPase) gene was identified. Sequence and phylogenetic analyses suggest that the gene codes for a Cu+ transporter belonging to the P1B-1 ATPase subfamily that has an N-terminal domain with copper binding motifs. The N-terminal cytosolic domains of the proteins from Trypanosoma congolense and Trypanosoma brucei brucei were recombinantly expressed in Escherichia coli as maltose binding protein (MBP) fusion proteins. These N-terminal domains bound copper in vitro and within E. coli cells, more than the control MBP fusion partner alone. The copper binding properties of the recombinant proteins were further confirmed when they inhibited copper catalysed ascorbate oxidation. Native CuATPases were detected in a western blot of lysates of T. congolense IL3000 and T. b. brucei ILTat1.1 bloodstream form parasites using affinity purified IgY antibodies against N-terminal domain peptides. The CuATPase was also detected by immunofluorescence in T. b. brucei bloodstream form parasites where it was associated with subcellular vesicles. In conclusion, Trypanosoma species express a copper-transporting P1B-1-type ATPase and together with other copper-binding proteins identified in the genomes of kinetoplastid parasites may constitute potential targets for anti-trypanosomal drug discovery.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - J P Dean Goldring
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
9
|
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep 2018; 8:9698. [PMID: 29946152 PMCID: PMC6018760 DOI: 10.1038/s41598-018-28039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
In mitochondrial oxidative phosphorylation, electron transfer from NADH or succinate to oxygen by a series of large protein complexes in the inner mitochondrial membrane (complexes I-IV) is coupled to the generation of an electrochemical proton gradient, the energy of which is utilized by complex V to generate ATP. In Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes, these respiratory complexes totalize more than 40 Euglenozoa-specific subunits along with about 50 classical subunits described in other eukaryotes. In the present study the Euglena proton-pumping complexes I, III, and IV were purified from isolated mitochondria by a two-steps liquid chromatography approach. Their atypical subunit composition was further resolved and confirmed using a three-steps PAGE analysis coupled to mass spectrometry identification of peptides. The purified complexes were also observed by electron microscopy followed by single-particle analysis. Even if the overall structures of the three oxidases are similar to the structure of canonical enzymes (e.g. from mammals), additional atypical domains were observed in complexes I and IV: an extra domain located at the tip of the peripheral arm of complex I and a "helmet-like" domain on the top of the cytochrome c binding region in complex IV.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - L Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - F Bouillenne
- InBioS/Center for Protein Engineering, Université de Liège, Liege, Belgium
| | - H Degand
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - P Cardol
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium.
| |
Collapse
|
10
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
11
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
12
|
ELIKAEE S, MOHEBALI M, ESLAMI H, REZAEI S, NAJAFIAN HR, KAZEMI-RAD E, KESHAVARZ H, ESHRAGHIAN MR, HAJJARAN H, OSHAGHI MA, AYAZIAN MAVI S. Comparison of p27 Gene Expression of Promastigote and Amastigote Forms of Leishmania major (MRHO/IR/75/ER) by Real-time RT-PCR. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:186-192. [PMID: 30069202 PMCID: PMC6068362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is one of the world health problems. Leishmania major is the etiological agent of zoonotic cutaneous leishmaniasis (ZCL). Promastigote and amastigote are two morphological forms of Leishmania parasites that express different proteins and p27 is an important gene encoding cytochrome c oxidase (COX) component. P27 gene expresses a 27 kDa protein that essential in ATP synthesis. This study aimed to compare p27 gene expression in promastigote and amastigote forms in Iranian strain of L. major (MRHO/IR/75/ER). METHODS This study was conducted in 2015. Clinical isolates of CL patients from north, center, west and south parts of Iran were collected and identified by PCRRFLP. After RNA extraction of promastigotes and amastigotes and cDNA synthesis, the expression level of p27 gene was compared by real-time RT-PCR. RESULTS By comparison of expression level between amastigote and promastigote forms of Iranian strain of L. major, up-regulation of p27 gene (2.73 fold) was observed in amastigotes. Moreover, there was no significant difference in p27 gene expression between L. major isolates. CONCLUSION p27 gene and protein can be considered as a target in recombinant vaccine production and treatment process.
Collapse
Affiliation(s)
- Samira ELIKAEE
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi MOHEBALI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, Center for Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran,Correspondence
| | - Hamid ESLAMI
- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sassan REZAEI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza NAJAFIAN
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein KESHAVARZ
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza ESHRAGHIAN
- Dept. of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa HAJJARAN
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali OSHAGHI
- Dept. of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara AYAZIAN MAVI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog 2017; 13:e1006679. [PMID: 29267392 PMCID: PMC5739487 DOI: 10.1371/journal.ppat.1006679] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| | - Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Mbang-Benet DE, Sterkers Y, Crobu L, Sarrazin A, Bastien P, Pagès M. RNA interference screen reveals a high proportion of mitochondrial proteins essential for correct cell cycle progress in Trypanosoma brucei. BMC Genomics 2015; 16:297. [PMID: 25888089 PMCID: PMC4445814 DOI: 10.1186/s12864-015-1505-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/30/2015] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei. Results A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K). Conclusions These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diane-Ethna Mbang-Benet
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| | - Yvon Sterkers
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France. .,Département de Parasitologie-Mycologie, CHRU (Centre Hospitalier Universitaire de Montpellier), Montpellier, France.
| | - Lucien Crobu
- CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUS, UMS3426, Arnaud de Villeneuve Campus Imaging Facility - Institut de Génétique Humaine-CNRS, Montpellier, France.
| | - Patrick Bastien
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France. .,Département de Parasitologie-Mycologie, CHRU (Centre Hospitalier Universitaire de Montpellier), Montpellier, France.
| | - Michel Pagès
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| |
Collapse
|
15
|
Daviel C, Carter PM, Nation CS, Pizarro JC, Guidry J, Aiyar A, Kelly BL. LACK, a RACK1 ortholog, facilitates cytochrome c oxidase subunit expression to promote Leishmania major fitness. Mol Microbiol 2015; 96:95-109. [PMID: 25582232 PMCID: PMC6055511 DOI: 10.1111/mmi.12924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Abstract
Leishmania are kinetoplastid parasites that cause the sandfly-transmitted disease leishmaniasis. To maintain fitness throughout their infectious life cycle, Leishmania must undergo rapid metabolic adaptations to the dramatically distinct environments encountered during transition between sandfly and vertebrate hosts. We performed proteomic and immunoblot analyses of attenuated L. major strains deficient for LACK, the Leishmania ortholog of the mammalian receptor for activated c kinase (RACK1), that is important for parasite thermotolerance and virulence. This approach identified cytochrome c oxidase (LmCOX) subunit IV as a LACK-dependent fitness protein. Consistent with decreased levels of LmCOX subunit IV at mammalian temperature, and in amastigotes, LmCOX activity and mitochondrial function were also impaired in LACK-deficient L. major under these conditions. Importantly, overexpression of LmCOX subunit IV in LACK-deficient L. major restored thermotolerance and macrophage infectivity. Interestingly, overexpression of LmCOX subunit IV enhanced LmCOX subunit VI expression at mammalian temperature. Collectively, our data suggest LACK promotes Leishmania adaptation to the mammalian host environment by sustaining LmCOX subunit IV expression and hence energy metabolism in response to stress stimuli such as heat. These findings extend the repertoire of RACK1 protein utility to include a role in mitochondrial function.
Collapse
Affiliation(s)
- Cardenas Daviel
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Pamela M. Carter
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Catherine S. Nation
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jessie Guidry
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ben L. Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
17
|
The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei. EUKARYOTIC CELL 2015; 14:297-310. [PMID: 25616281 DOI: 10.1128/ec.00238-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.
Collapse
|
18
|
The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 2014; 19 Pt B:338-49. [DOI: 10.1016/j.mito.2014.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/17/2022]
|
19
|
Kovárová J, Horáková E, Changmai P, Vancová M, Lukeš J. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:353-62. [PMID: 24243795 PMCID: PMC3957590 DOI: 10.1128/ec.00235-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.
Collapse
Affiliation(s)
- Julie Kovárová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | | | | | | | | |
Collapse
|
20
|
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol 2014; 193:55-65. [DOI: 10.1016/j.molbiopara.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
21
|
Abstract
Parasitic protozoa belonging to the genus Leishmania are the cause of a spectrum of diseases in humans, as well as chronic long-term infections. These parasites exhibit a remarkable capacity to survive and proliferate within the phagolysosome compartment of host macrophages. Studies with defined Leishmania mutants in mouse models of infection have highlighted processes that are required for parasite survival in macrophages. Parasite mutants have been identified that (i) are poorly virulent when the insect (promastigote) stage is used to initiate infection, but retain wild-type virulence following transformation to the obligate intracellular amastigote stage, (ii) are highly attenuated when either promastigotes or amastigotes are used, and (iii) are unable to induce characteristic lesion granulomas, but can persist within macrophages in other tissues. From these analyses it can be concluded that promastigote stages of some species require the surface expression of lipophosphoglycan, but not other surface components. Survival and subsequent proliferation of Leishmania in macrophages requires the activation of heat-shock responses (involving the up-regulation and/or phosphorylation of heat-shock proteins), the presence of oxidative and nitrosative defence mechanisms, and uptake and catabolism of carbon sources (glycoproteins, hexoses and amino acids) and essential nutrients (purines, amino acids and vitamins). Parasite mutants with defects in specific kinase/phosphatase-dependent signalling pathways are also severely attenuated in amastigote virulence, highlighting the potential importance of post-translational regulatory mechanisms in parasite adaptation to this host niche.
Collapse
|
22
|
Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol Biochem Parasitol 2012; 184:90-8. [PMID: 22569586 DOI: 10.1016/j.molbiopara.2012.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
The Trypanosoma brucei cytochrome c oxidase (respiratory complex IV) is a very divergent complex containing a surprisingly high number of trypanosomatid-specific subunits with unknown function. To gain insight into the functional organization of this large protein complex, the expression of three novel subunits (TbCOX VII, TbCOX X and TbCOX 6080) were down-regulated by RNA interference. We demonstrate that all three subunits are important for the proper function of complex IV and the growth of the procyclic stage of T. brucei. These phenotypes were manifested by the structural instability of the complex when these indispensible subunits were repressed. Furthermore, the impairment of cytochrome c oxidase resulted in other severe mitochondrial phenotypes, such as a decreased mitochondrial membrane potential, reduced ATP production via oxidative phoshorylation and redirection of oxygen consumption to the trypanosome-specific alternative oxidase, TAO. Interestingly, the inspected subunits revealed some disparate phenotypes, particularly regarding the activity of cytochrome c reductase (respiratory complex III). While the activity of complex III was down-regulated in RNAi induced cells for TbCOX X and TbCOX 6080, the TbCOX VII silenced cell line actually exhibited higher levels of complex III activity and elevated levels of ROS formation. This result suggests that the examined subunits may have different functional roles within complex IV of T. brucei, perhaps involving the ability to communicate between sequential enzymes in the respiratory chain. In summary, by characterizing the function of three hypothetical components of complex IV, we are able to assign these proteins as genuine and indispensable subunits of the procyclic T. brucei cytochrome c oxidase, an essential component of the respiratory chain in these evolutionary ancestral and medically important parasites.
Collapse
|
23
|
McConville MJ, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 2012; 65:543-61. [PMID: 21721937 DOI: 10.1146/annurev-micro-090110-102913] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leishmania spp. are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases and lifelong chronic infections in humans. In the mammalian host, these parasites proliferate within acidified vacuoles in several phagocytic host cells, including macrophages, dendritic cells, and neutrophils. In this review, we discuss recent progress that has been made in defining the nutrient composition of the Leishmania parasitophorous vacuole, as well as metabolic pathways required by these parasites for virulence. Analysis of the virulence phenotype of Leishmania mutants has been particularly useful in defining carbon sources and nutrient salvage pathways that are essential for parasite persistence and/or induction of pathology. We also review data suggesting that intracellular parasite stages modulate metabolic processes in their host cells in order to generate a more permissive niche.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
24
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|
25
|
Duncan R, Gannavaram S, Dey R, Debrabant A, Lakhal-Naouar I, Nakhasi HL. Identification and characterization of genes involved in leishmania pathogenesis: the potential for drug target selection. Mol Biol Int 2011; 2011:428486. [PMID: 22091403 PMCID: PMC3200065 DOI: 10.4061/2011/428486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/26/2011] [Accepted: 04/28/2011] [Indexed: 12/14/2022] Open
Abstract
Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.
Collapse
Affiliation(s)
- Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gorman MA, Uboldi AD, Walsh PJ, Tan KS, Hansen G, Huyton T, Ji H, Curtis J, Kedzierski L, Papenfuss AT, Dogovski C, Perugini MA, Simpson RJ, Handman E, Parker MW. Crystal structure of the Leishmania major MIX protein: a scaffold protein that mediates protein-protein interactions. Protein Sci 2011; 20:1060-8. [PMID: 21465610 PMCID: PMC3104235 DOI: 10.1002/pro.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 01/07/2023]
Abstract
Infection by Leishmania and Trypanosoma causes severe disease and can be fatal. The reduced effectiveness of current treatments is largely due to drug resistance, hence the urgent need to develop new drugs, preferably against novel targets. We have recently identified a mitochondrial membrane-anchored protein, designated MIX, which occurs exclusively in these parasites and is essential for virulence. We have determined the crystal structure of Leishmania major MIX to a resolution of 2.4 Å. MIX forms an all α-helical fold comprising seven α-helices that fold into a single domain. The distribution of helices is similar to a number of scaffold proteins, namely HEAT repeats, 14-3-3, and tetratricopeptide repeat proteins, suggesting that MIX mediates protein-protein interactions. Accordingly, using copurification and mass spectroscopy we were able to identify several proteins that may interact with MIX in vivo. Being parasite specific, MIX is a promising new drug target and, thus, the structure and potential interacting partners provide a basis for structure-guided drug discovery.
Collapse
Affiliation(s)
- Michael A Gorman
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical ResearchVictoria 3065, Australia
| | - Alex D Uboldi
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical ResearchVictoria 3052, Australia
| | - Peter J Walsh
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical ResearchVictoria 3065, Australia
| | - Kher Shing Tan
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical ResearchVictoria 3065, Australia
| | - Guido Hansen
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical ResearchVictoria 3065, Australia
| | - Trevor Huyton
- The Australia Synchrotron800 Blackburn Road, Victoria 3168, Australia
| | - Hong Ji
- Ludwig Institute for Cancer ResearchVictoria 3050, Australia
| | - Joan Curtis
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical ResearchVictoria 3052, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical ResearchVictoria 3052, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical ResearchVictoria 3052, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria 3010, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria 3010, Australia
| | | | - Emanuela Handman
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical ResearchVictoria 3052, Australia
| | - Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical ResearchVictoria 3065, Australia,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria 3010, Australia,*Correspondence to: Michael W. Parker, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia. E-mail:
| |
Collapse
|
27
|
Acestor N, Zíková A, Dalley RA, Anupama A, Panigrahi AK, Stuart KD. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 2011; 10:M110.006908. [PMID: 21610103 DOI: 10.1074/mcp.m110.006908] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F₀F₁-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen.
Collapse
|
28
|
Shateri Najafabadi H, Salavati R. Functional genome annotation by combined analysis across microarray studies of Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4. [PMID: 20824174 PMCID: PMC2930875 DOI: 10.1371/journal.pntd.0000810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Functional annotation of trypanosomatid genomes has been a daunting task due to the low similarity of their genes with annotated genes of other organisms. Three recent studies have provided gene expression profiles in several different conditions and life stages for one of the main disease-causing trypanosomatids, Trypanosoma brucei. These data can be used to study the gene functions and regulatory mechanisms in this organism. METHODOLOGY/PRINCIPAL FINDINGS Combining the data from three different microarray studies of T. brucei, we show that functional linkages among T. brucei genes can be identified based on gene coexpression, leading to a powerful approach for gene function prediction. These predictions can be further improved by considering the expression profiles of orthologous genes from other trypanosomatids. Furthermore, gene expression profiles can be used to discover potential regulatory elements within 3' untranslated regions. CONCLUSIONS/SIGNIFICANCE These results suggest that although trypanosomatids do not regulate genes at transcription level, trypanosomatid genes with related functions are coregulated post-transcriptionally via modulation of mRNA stability, implying the presence of complex regulatory networks in these organisms. Our analysis highlights the demand for a thorough transcript profiling of T. brucei genome in parallel with other trypanosomatid genomes, which can provide a powerful means to improve their functional annotation.
Collapse
Affiliation(s)
- Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
29
|
Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol 2010; 77:399-414. [DOI: 10.1111/j.1365-2958.2010.07214.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2010; 9:866-77. [PMID: 20418380 DOI: 10.1128/ec.00018-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.
Collapse
|
31
|
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 2010; 9:5497-508. [PMID: 19834910 DOI: 10.1002/pmic.200900354] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC-MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate-to-low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, approximately 50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.
Collapse
|