1
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
2
|
Beaudoin J, Normant V, Brault A, Henry DJ, Bachand F, Massé É, Chua G, Labbé S. Fission yeast RNA-binding proteins Puf2 and Puf4 are involved in repression of ferrireductase Frp1 expression in response to iron. Mol Microbiol 2021; 116:1361-1377. [PMID: 34614242 DOI: 10.1111/mmi.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022]
Abstract
This study identifies a post-transcriptional mechanism of iron uptake regulation by Puf2 and Puf4 of the Pumilio and FBF (Puf) family of RNA-binding proteins in Schizosaccharomyces pombe. Cells expressing Puf2 and Puf4 stimulate decay of the frp1+ mRNA encoding a key enzyme of the reductive iron uptake pathway. Results consistently showed that frp1+ mRNA is stabilized in puf2Δ puf4Δ mutant cells under iron-replete conditions. As a result, puf2Δ puf4Δ cells exhibit an increased sensitivity to iron accompanied by enhanced ferrireductase activity. A pool of GFP-frp1+ 3'UTR RNAs was generated using a reporter gene containing the 3' untranslated region (UTR) of frp1+ that was under the control of a regulatable promoter. Results showed that Puf2 and Puf4 accelerate the destabilization of mRNAs containing the frp1+ 3'UTR which harbors two Pumilio response elements (PREs). Binding studies revealed that the PUM-homology RNA-binding domain of Puf2 and Puf4 expressed in Escherichia coli specifically interacts with PREs in the frp1+ 3'UTR. Using RNA immunoprecipitation in combination with reverse transcription qPCR assays, results showed that Puf2 and Puf4 interact preferentially with frp1+ mRNA under basal and iron-replete conditions, thereby contributing to inhibit Frp1 production and protecting cells against toxic levels of iron.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Darren J Henry
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - François Bachand
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric Massé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gordon Chua
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
4
|
Zhao G, Liu C, Li S, Wang X, Yao Y. Exploring the flavor formation mechanism under osmotic conditions during soy sauce fermentation in Aspergillus oryzae by proteomic analysis. Food Funct 2020; 11:640-648. [PMID: 31895399 DOI: 10.1039/c9fo02314c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Aspergillus oryzae is a common starter in the soy sauce industry and struggles to grow under complex fermentation conditions. However, little is known about the flavor formation mechanism under osmotic conditions (low-temperature and high-salt) in A. oryzae. This work investigated the flavors and the relative protein expression patterns by gas chromatography-mass spectrometry (GC-MS) and proteomic analysis. Low-temperature and a high-salt content are unfavorable to the secretion of hydrolases and the formation of fragrant aldehydes. The aldehyde contents under osmotic conditions were reduced to 1.4-3.7 times lower than that of the control. Besides, copper amine oxidases which decreased under low-temperature stress and salt stress were shown to be important in catalyzing the oxidative deamination of several amine substrates to fragrant aldehydes. Furthermore, alcohol dehydrogenase and polyketide synthase are beneficial to the formation of alcohols and aromatic flavors under low-temperature stress and salt stress. Particularly, the ethanol content under 16 °C stress was 3.5 times higher than that under 28 °C.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
5
|
Abstract
Fungal cells colonize and proliferate in distinct niches, from soil and plants to diverse tissues in human hosts. Consequently, fungi are challenged with the goal of obtaining nutrients while simultaneously elaborating robust regulatory mechanisms to cope with a range of availability of nutrients, from scarcity to excess. Copper is essential for life but also potentially toxic. In this review we describe the sophisticated homeostatic mechanisms by which fungi acquire, utilize, and control this biochemically versatile trace element. Fungal pathogens, which can occupy distinct host tissues that have their own intrinsic requirements for copper homeostasis, have evolved mechanisms to acquire copper to successfully colonize the host, disseminate to other tissues, and combat host copper bombardment mechanisms that would otherwise mitigate virulence.
Collapse
Affiliation(s)
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology.,Department of Molecular Genetics and Microbiology, and.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
6
|
Plante S, Normant V, Ramos-Torres KM, Labbé S. Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination. J Biol Chem 2017; 292:11896-11914. [PMID: 28572514 PMCID: PMC5512082 DOI: 10.1074/jbc.m117.794677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Indexed: 11/06/2022] Open
Abstract
During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.
Collapse
MESH Headings
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Copper/metabolism
- Enzyme Activation
- Gene Deletion
- Gene Expression Regulation, Fungal
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Interference
- Microscopy, Phase-Contrast
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- RNA, Fungal/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SLC31 Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/growth & development
- Schizosaccharomyces/metabolism
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Spores, Fungal/cytology
- Spores, Fungal/growth & development
- Spores, Fungal/metabolism
- Spores, Fungal/physiology
- Superoxide Dismutase-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Samuel Plante
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Karla M Ramos-Torres
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|
7
|
Hirano Y, Chonan K, Murayama K, Sakasegawa SI, Matsumoto H, Sugimori D. Syncephalastrum racemosum amine oxidase with high catalytic efficiency toward ethanolamine and its application in ethanolamine determination. Appl Microbiol Biotechnol 2015; 100:3999-4013. [PMID: 26691518 DOI: 10.1007/s00253-015-7198-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Our screening study yielded a copper amine oxidase (SrAOX) from Syncephalastrum racemosum, which showed much higher affinity and catalytic efficiency toward ethanolamine (EA) than any other amine oxidase (AOX). Following purification of the enzyme to electrophoretic homogeneity from a cell-free extract, the maximum activity toward EA was detected at pH 7.2-7.5 and 45 °C. The SrAOX complementary DNA (cDNA) was composed of a 2052-bp open reading frame encoding a 683-amino acid protein with a molecular mass of 77,162 Da. The enzyme functions as a homodimer. The deduced amino acid sequence of SrAOX showed 55.3 % identity to Rhizopus delemar AOX and contains two consensus sequences of Cu-AOX, NYDY, and HHQH, suggesting SrAOX is a type 1 Cu-AOX (i.e., a topaquinone enzyme). Structural homology modeling showed that residues (112)ML(113), (141)FADTWG(146) M158, and N318 are unique, and T144 possibly characterizes the substrate specificity of SrAOX. The recombinant enzyme (rSrAOX) was produced using Escherichia coli. Steady-state kinetic analysis of rSrAOX activity toward EA (pH 7.5 and 45 °C) gave K m and k cat values of 0.848 ± 0.009 mM and 9.11 ± 0.13 s(-1), respectively. The standard curves were linear between 0.1 and 2 mM EA, and 10 μg mL(-1)-2.5 mg mL(-1) (15 μM-3.6 mM) phosphatidylethanolamine using Streptomyces chromofuscus phospholipase D, respectively, was sufficiently sensitive for clinical use.
Collapse
Affiliation(s)
- Yoshitaka Hirano
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Keisuke Chonan
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | | | - Hideyuki Matsumoto
- Asahi Kasei Pharma Corp, 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| |
Collapse
|
8
|
Primary Amine Oxidase of Escherichia coli Is a Metabolic Enzyme that Can Use a Human Leukocyte Molecule as a Substrate. PLoS One 2015; 10:e0142367. [PMID: 26556595 PMCID: PMC4640556 DOI: 10.1371/journal.pone.0142367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli amine oxidase (ECAO), encoded by the tynA gene, catalyzes the oxidative deamination of aromatic amines into aldehydes through a well-established mechanism, but its exact biological role is unknown. We investigated the role of ECAO by screening environmental and human isolates for tynA and characterizing a tynA-deletion strain using microarray analysis and biochemical studies. The presence of tynA did not correlate with pathogenicity. In tynA+ Escherichia coli strains, ECAO enabled bacterial growth in phenylethylamine, and the resultant H2O2 was released into the growth medium. Some aminoglycoside antibiotics inhibited the enzymatic activity of ECAO, which could affect the growth of tynA+ bacteria. Our results suggest that tynA is a reserve gene used under stringent environmental conditions in which ECAO may, due to its production of H2O2, provide a growth advantage over other bacteria that are unable to manage high levels of this oxidant. In addition, ECAO, which resembles the human homolog hAOC3, is able to process an unknown substrate on human leukocytes.
Collapse
|
9
|
Abstract
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Collapse
|
10
|
Plante S, Ioannoni R, Beaudoin J, Labbé S. Characterization of Schizosaccharomyces pombe copper transporter proteins in meiotic and sporulating cells. J Biol Chem 2014; 289:10168-81. [PMID: 24569997 DOI: 10.1074/jbc.m113.543678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4(+) and ctr5(+) revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6(+), its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4(+) and ctr5(+) is exclusively dependent on the presence of Cuf1, ctr6(+) gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4(+) and ctr6(+) results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.
Collapse
Affiliation(s)
- Samuel Plante
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | | | | | | |
Collapse
|
11
|
Beaudoin J, Ioannoni R, López-Maury L, Bähler J, Ait-Mohand S, Guérin B, Dodani SC, Chang CJ, Labbé S. Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J Biol Chem 2011; 286:34356-72. [PMID: 21828039 DOI: 10.1074/jbc.m111.280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.
Collapse
Affiliation(s)
- Jude Beaudoin
- Départements de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McGrath AP, Caradoc-Davies T, Collyer CA, Guss JM. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis . Biochemistry 2010; 49:8316-24. [PMID: 20722416 DOI: 10.1021/bi1010915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper-containing amine oxidases (CAOs) require a protein-derived topaquinone cofactor (TPQ) for activity. TPQ biogenesis is a self-processing reaction requiring the presence of copper and molecular oxygen. Recombinant human diamine oxidase (hDAO) was heterologously expressed in Drosophila S2 cells, and analysis indicates that the purified hDAO contains substoichiometric amounts of copper and TPQ. The crystal structure of a complex of an inhibitor, aminoguanidine, and hDAO at 2.05 Å resolution shows that the aminoguanidine forms a covalent adduct with the TPQ and that the site is ∼75% occupied. Aminoguanidine is a potent inhibitor of hDAO with an IC(50) of 153 ± 9 nM. The structure indicates that the catalytic metal site, normally occupied by copper, is fully occupied. X-ray diffraction data recorded below the copper edge, between the copper and zinc edges, and above the zinc edge have been used to show that the metal site is occupied approximately 75% by copper and 25% by zinc and the formation of the TPQ cofactor is correlated with copper occupancy.
Collapse
Affiliation(s)
- Aaron P McGrath
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
13
|
Copper-dependent trafficking of the Ctr4-Ctr5 copper transporting complex. PLoS One 2010; 5:e11964. [PMID: 20694150 PMCID: PMC2915924 DOI: 10.1371/journal.pone.0011964] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 07/13/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In Schizosaccharomyces pombe, copper uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Copper-induced differential subcellular localization may play a critical role with respect to fine tuning the number of Ctr4 and Ctr5 molecules at the cell surface. METHODOLOGY/PRINCIPAL FINDINGS We have developed a bimolecular fluorescence complementation (BiFC) assay to analyze protein-protein interactions in vivo in S. pombe. The assay is based on the observation that N- and C-terminal subfragments of the Venus fluorescent protein can reconstitute a functional fluorophore only when they are brought into tight contact. Wild-type copies of the ctr4(+) and ctr5(+) genes were inserted downstream of and in-frame with the nonfluorescent C-terminal (VC) and N-terminal (VN) coding fragments of Venus, respectively. Co-expression of Ctr4-VC and Ctr5-VN fusion proteins allowed their detection at the plasma membrane of copper-limited cells. Similarly, cells co-expressing Ctr4-VN and Ctr4-VC in the presence of Ctr5-Myc(12) displayed a fluorescence signal at the plasma membrane. In contrast, Ctr5-VN and Ctr5-VC co-expressed in the presence of Ctr4-Flag(2) failed to be visualized at the plasma membrane, suggesting a requirement for a combination of two Ctr4 molecules with one Ctr5 molecule. We found that plasma membrane-located Ctr4-VC-Ctr5-VN fluorescent complexes were internalized when the cells were exposed to high levels of copper. The copper-induced internalization of Ctr4-VC-Ctr5-VN complexes was not dependent on de novo protein synthesis. When cells were transferred back from high to low copper levels, there was reappearance of the BiFC fluorescent signal at the plasma membrane. SIGNIFICANCE These findings reveal a copper-dependent internalization and recycling of the heteromeric Ctr4-Ctr5 complex as a function of copper availability.
Collapse
|
14
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
15
|
Labbé S. Simon Labbé's work on iron and copper homeostasis. World J Biol Chem 2010; 1:196-200. [PMID: 21541004 PMCID: PMC3083951 DOI: 10.4331/wjbc.v1.i5.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 02/05/2023] Open
Abstract
Iron and copper have a wealth of functions in biological systems, which makes them essential micronutrients for all living organisms. Defects in iron and copper homeostasis are directly responsible for diseases, and have been linked to impaired development, metabolic syndromes and fungal virulence. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of iron- and copper-dependent proteins in living systems. Simon Labbé maintains parallel programs on iron and copper homeostasis using the fission yeast Schizosaccharomyces pombe (Schiz. pombe) as a model system. The study of fission yeast transition-metal metabolism has been successful, not only in discerning the genes and pathways functioning in Schiz. pombe, but also the genes and pathways that are active in mammalian systems and for other fungi.
Collapse
Affiliation(s)
- Simon Labbé
- Simon Labbé, Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| |
Collapse
|
16
|
Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010. [PMID: 20205585 DOI: 10.1146/annurev-biochem-030409-143539]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
17
|
Abstract
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the Cu(A) and intramembrane Cu(B) sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution.
Collapse
Affiliation(s)
- Nigel J Robinson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4HH, United Kingdom.
| | | |
Collapse
|
18
|
abc3+ encodes an iron-regulated vacuolar ABC-type transporter in Schizosaccharomyces pombe. EUKARYOTIC CELL 2009; 9:59-73. [PMID: 19915076 DOI: 10.1128/ec.00262-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies have shown the fundamental contribution of the yeast vacuole as a site for storage and detoxification of metals. Whereas the transmembrane proteins responsible for iron transport into and out of the vacuole have been identified in Saccharomyces cerevisiae, less information is available concerning the mobilization of vacuolar iron stores in Schizosaccharomyces pombe. In this study, we report the identification of a gene designated abc3(+) that encodes a protein which exhibits sequence homology with the ABCC subfamily of ATP-binding cassette transporters. The transcription of abc3(+) is induced by low concentrations of iron but repressed by high levels of iron. The iron-mediated repression of abc3(+) required a functional fep1(+) gene. Chromatin immunoprecipitation assays showed that Fep1 associates with the abc3(+) promoter in vivo, in an iron-dependent manner. Microscopic analyses revealed that a functional Abc3-green fluorescent protein localizes to the membrane vacuole when iron levels were low. Abc3 was required for growth in low-iron medium in the absence of the transport system mediated by Fio1 and Fip1. abc3Delta cells exhibited increased levels of expression of the frp1(+)-encoded ferric reductase, suggesting a loss of Fep1 repression and, consequently, the activation of Fep1-regulated genes. When abc3(+) was expressed using the nmt1(+) promoter system, its induction led to a reduced transcriptional activity of the frp1(+) gene. Because S. pombe does not possess vacuolar membrane-localized orthologs to S. cerevisiae Fth1, Fet5, and Smf3, our findings suggested that Abc3 may be responsible for mobilizing stored iron from the vacuole to the cytosol in response to iron deficiency.
Collapse
|
19
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|