1
|
Donzella L, Sousa MJ, Morrissey JP. Evolution and functional diversification of yeast sugar transporters. Essays Biochem 2023; 67:811-827. [PMID: 36928992 PMCID: PMC10500205 DOI: 10.1042/ebc20220233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
While simple sugars such as monosaccharides and disaccharide are the typical carbon source for most yeasts, whether a species can grow on a particular sugar is generally a consequence of presence or absence of a suitable transporter to enable its uptake. The most common transporters that mediate sugar import in yeasts belong to the major facilitator superfamily (MFS). Some of these, for example the Saccharomyces cerevisiae Hxt proteins have been extensively studied, but detailed information on many others is sparce. In part, this is because there are many lineages of MFS transporters that are either absent from, or poorly represented in, the model S. cerevisiae, which actually has quite a restricted substrate range. It is important to address this knowledge gap to gain better understanding of the evolution of yeasts and to take advantage of sugar transporters to exploit or engineer yeasts for biotechnological applications. This article examines the full repertoire of MFS proteins in representative budding yeasts (Saccharomycotina). A comprehensive analysis of 139 putative sugar transporters retrieved from 10 complete genomes sheds new light on the diversity and evolution of this family. Using the phylogenetic lens, it is apparent that proteins have often been misassigned putative functions and this can now be corrected. It is also often seen that patterns of expansion of particular genes reflects the differential importance of transport of specific sugars (and related molecules) in different yeasts, and this knowledge also provides an improved resource for the selection or design of tailored transporters.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria João Sousa
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
| |
Collapse
|
2
|
Sampaio FC, de Faria JT, da Silva MF, de Souza Oliveira RP, Converti A. Cheese whey permeate fermentation by Kluyveromyces lactis: a combined approach to wastewater treatment and bioethanol production. ENVIRONMENTAL TECHNOLOGY 2020; 41:3210-3218. [PMID: 30955482 DOI: 10.1080/09593330.2019.1604813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Cheese whey is a dairy industry by-product responsible for serious environmental problems. Its fermentation would allow reducing its environmental impact and producing, at the same time, high-value products, hence ensuring cleaner production. Batch fermentations of cheese whey permeate, either as such or 1.5-fold or twice-concentrated, by Kluyveromyces lactis CBS2359 were performed in flasks with or without agitation to select the best conditions to produce simultaneously ethanol and biomass with high β-galactosidase activity. In shake cultures, the highest ethanol concentration (15.0 g L-1), yield on consumed lactose (0.47 g g-1) and productivity (0.31 g L-1 h-1), were obtained on cheese whey permeate as such, corresponding to 87.4% fermentation efficiency, but β-galactosidase activity was disappointing (449.3-680.0 U g-1). In static cultures on twice-concentrated whey permeate, despite a decrease in fermentation efficiency and yield, ethanol production increased by 48% and β-galactosidase activity by no less than 209-367%. Therefore, cheese whey should be considered an alternative feedstock rather than an undesirable dairy industry by-product.
Collapse
Affiliation(s)
| | - Janaína Teles de Faria
- Agricultural Sciences Institute, Federal University of Minas Gerais, Montes Claros, Brazil
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Genoa University, Genoa, Italy
| |
Collapse
|
3
|
Santomartino R, Ottaviano D, Camponeschi I, Landicho TAA, Falato L, Visca A, Soulard A, Lemaire M, Bianchi MM. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis. FEMS Yeast Res 2020; 19:5519861. [PMID: 31210264 DOI: 10.1093/femsyr/foz041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.
Collapse
Affiliation(s)
- Rosa Santomartino
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Camponeschi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Luca Falato
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandre Soulard
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Marc Lemaire
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Michele Maria Bianchi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
De Angelis L, Rinaldi T, Cirigliano A, Bello C, Reverberi M, Amaretti A, Montanari A, Santomartino R, Raimondi S, Gonzalez A, Bianchi MM. Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. MICROBIOLOGY-SGM 2016; 162:1435-1445. [PMID: 27233577 DOI: 10.1099/mic.0.000315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in Kluyveromyces lactis. To this purpose, we have deleted the genes FAD2 and FAD3 encoding Δ12 and ω3 desaturases in Kluyveromyces lactis, thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene KlOLE1 resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes KlOLE1, FAD2 and FAD3 and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.
Collapse
Affiliation(s)
- Lorenzo De Angelis
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy.,Pasteur Institute Cenci-Bolognetti Foundation, Viale Regina Elena 291, 00161 Roma, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Cristiano Bello
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Alberto Amaretti
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Stefano Raimondi
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Alicia Gonzalez
- Department of Biochemistry and Structural Biology, Universidad Nacional Autónoma de México, Mexico
| | - Michele M Bianchi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
5
|
Ottaviano D, Montanari A, De Angelis L, Santomartino R, Visca A, Brambilla L, Rinaldi T, Bello C, Reverberi M, Bianchi MM. Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis. FEMS Yeast Res 2015; 15:fov028. [PMID: 26019145 DOI: 10.1093/femsyr/fov028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 01/03/2023] Open
Abstract
In the yeast Kluyveromyces lactis, the inactivation of structural or regulatory glycolytic and fermentative genes generates obligate respiratory mutants which can be characterized by sensitivity to the mitochondrial drug antimycin A on glucose medium (Rag(-) phenotype). Rag(-) mutations can occasionally be generated by the inactivation of genes not evidently related to glycolysis or fermentation. One such gene is the hypoxic regulatory gene KlMGA2. In this work, we report a study of the many defects, in addition to the Rag(-) phenotype, generated by KlMGA2 deletion. We analyzed the fermentative and respiratory metabolism, mitochondrial functioning and morphology in the Klmga2Δ strain. We also examined alterations in the regulation of the expression of lipid biosynthetic genes, in particular fatty acids, ergosterol and cardiolipin, under hypoxic and cold stress and the phenotypic suppression by unsaturated fatty acids of the deleted strain. Results indicate that, despite the fact that the deleted mutant strain had a typical glycolytic/fermentative phenotype and KlMGA2 is a hypoxic regulatory gene, the deletion of this gene generated defects linked to mitochondrial functions suggesting new roles of this protein in the general regulation and cellular fitness of K. lactis. Supplementation of unsaturated fatty acids suppressed or modified these defects suggesting that KlMga2 modulates membrane functioning or membrane-associated functions, both cytoplasmic and mitochondrial.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo De Angelis
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Luca Brambilla
- Department of Biotechnology and Biosciences, Bicocca University of Milan, p.zza Della Scienza 2, 20126 Milan, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy Pasteur Institut Cenci-Bolognetti Foundation, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristiano Bello
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Departement of Environmental Biology, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michele M Bianchi
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Ottaviano D, Micolonghi C, Tizzani L, Lemaire M, Wésolowski-Louvel M, De Stefano ME, Ranieri D, Bianchi MM. Autoregulation of the Kluyveromyces lactis pyruvate decarboxylase gene KlPDC1 involves the regulatory gene RAG3. MICROBIOLOGY-SGM 2014; 160:1369-1378. [PMID: 24763423 DOI: 10.1099/mic.0.078543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Kluyveromyces lactis, the pyruvate decarboxylase gene KlPDC1 is strongly regulated at the transcription level by different environmental factors. Sugars and hypoxia act as inducers of transcription, while ethanol acts as a repressor. Their effects are mediated by gene products, some of which have been characterized. KlPDC1 transcription is also strongly repressed by its product--KlPdc1--through a mechanism called autoregulation. We performed a genetic screen that allowed us to select and identify the regulatory gene RAG3 as a major factor in the transcriptional activity of the KlPDC1 promoter in the absence of the KlPdc1 protein, i.e. in the autoregulatory mechanism. We also showed that the two proteins Rag3 and KlPdc1 interact, co-localize in the cell and that KlPdc1 may control Rag3 nuclear localization.
Collapse
Affiliation(s)
- Daniela Ottaviano
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Chiara Micolonghi
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Lorenza Tizzani
- Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Marc Lemaire
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Micheline Wésolowski-Louvel
- CNRS, Villeurbanne, France.,Université Lyon1, Lyon, France.,Génétique Moléculaire des Levures, UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, France
| | - Maria Egle De Stefano
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| | - Danilo Ranieri
- Dip. Medicina clinica e molecolare, Sapienza Università di Roma, via di Grottarossa 1035, 00189 Roma, Italy
| | - Michele M Bianchi
- Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy.,Dip. Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
7
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
8
|
Dias O, Gombert AK, Ferreira EC, Rocha I. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis. BMC Genomics 2012; 13:517. [PMID: 23025710 PMCID: PMC3508617 DOI: 10.1186/1471-2164-13-517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. RESULTS In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. CONCLUSIONS The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
Collapse
Affiliation(s)
- Oscar Dias
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
9
|
Micolonghi C, Ottaviano D, Di Silvio E, Damato G, Heipieper HJ, Bianchi MM. A dual signalling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis. MICROBIOLOGY-SGM 2012; 158:1734-1744. [PMID: 22516223 DOI: 10.1099/mic.0.059402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the respiratory yeast Kluyveromyces lactis, little is known about the factors regulating the metabolic response to oxygen shortage. After searching for homologues of characterized Saccharomyces cerevisiae regulators of the hypoxic response, we identified a gene that we named KlMGA2, which is homologous to MGA2. The deletion of KlMGA2 strongly reduced both the fermentative and respiratory growth rate and altered fatty acid composition and the unsaturation index of membranes. The reciprocal heterologous expression of MGA2 and KlMGA2 in the corresponding deletion mutant strains suggested that Mga2 and KlMga2 are functional homologues. KlMGA2 transcription was induced by hypoxia and the glucose sensor Rag4 mediated the hypoxic induction of KlMGA2. Transcription of lipid biosynthetic genes KlOLE1, KlERG1, KlFAS1 and KlATF1 was induced by hypoxia and was dependent on KlMga2, except for KlOLE1. Rag4 was required for hypoxic induction of transcription for both KlMga2-dependent (KlERG1) and KlMga2-independent (KlOLE1) structural genes.
Collapse
Affiliation(s)
- Chiara Micolonghi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eva Di Silvio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Damato
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Michele M Bianchi
- Pasteur Institut Cenci-Bolognetti Foundation, Sapienza University of Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|