1
|
Huang Y, Chen J, Xia H, Gao Z, Gu Q, Liu W, Tang G. FvMbp1-Swi6 complex regulates vegetative growth, stress tolerance, and virulence in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134576. [PMID: 38759405 DOI: 10.1016/j.jhazmat.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.
Collapse
Affiliation(s)
- Yufei Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinfeng Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Zheng D, Yue D, Shen J, Li D, Song Z, Huang Y, Yong J, Li Y. Berberine inhibits Candida albicans growth by disrupting mitochondrial function through the reduction of iron absorption. J Appl Microbiol 2023; 134:lxad276. [PMID: 37994672 DOI: 10.1093/jambio/lxad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
AIMS This study aimed to investigate whether berberine (BBR) can inhibit the iron reduction mechanism of Candida albicans, lowering the iron uptake of the yeast and perhaps having antimicrobial effects. METHODS AND RESULTS We determined that BBR may cause extensive transcriptional remodeling in C. albicans and that iron permease Ftr1 played a crucial role in this process through eukaryotic transcriptome sequencing. Mechanistic research showed that BBR might selectively inhibit the iron reduction pathway to lower the uptake of exogenous iron ions, inhibiting C. albicans from growing and metabolizing. Subsequent research revealed that BBR caused significant mitochondrial dysfunction, which triggered the process of mitochondrial autophagy. Moreover, we discovered that C. albicans redox homeostasis, susceptibility to antifungal drugs, and hyphal growth are all impacted by the suppression of this mechanism by BBR. CONCLUSIONS The iron reduction mechanism in C. albicans is disrupted by BBR, which disrupts mitochondrial function and inhibits fungal growth. These findings highlight the potential promise of BBR in antifungal applications.
Collapse
Affiliation(s)
- Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Jinyang Shen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Dongmei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Zhen Song
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Yifu Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| | - Jiangyan Yong
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan 610075, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China
| |
Collapse
|
4
|
Gutzmann DJ, Kramer JJ, Toomey BM, Boone CHT, Atkin AL, Nickerson KW. Transcriptional regulation of the synthesis and secretion of farnesol in the fungus Candida albicans: examination of the Homann transcription regulator knockout collection. G3 (BETHESDA, MD.) 2023; 13:jkad172. [PMID: 37522561 PMCID: PMC10542173 DOI: 10.1093/g3journal/jkad172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Candida albicans is an efficient colonizer of human gastrointestinal tracts and skin and is an opportunistic pathogen. C. albicans exhibits morphological plasticity, and the ability to switch between yeast and filamentous morphologies is associated with virulence. One regulator of this switch is the quorum sensing molecule farnesol that is produced by C. albicans throughout growth. However, the synthesis, secretion, regulation, and turnover of farnesol are not fully understood. To address this, we used our improved farnesol assay to screen a transcription regulator knockout library for differences in farnesol accumulation in whole cultures, pellets, and supernatants. All screened mutants produced farnesol and they averaged 9.2× more farnesol in the pellet than the supernatant. Nineteen mutants had significant differences with ten mutants producing more farnesol than their SN152+ wild-type control strain while nine produced less. Seven mutants exhibited greater secretion of farnesol while two exhibited less. We examined the time course for farnesol accumulation in six mutants with the greatest accumulation differences and found that those differences persisted throughout growth and they were not time dependent. Significantly, two high-accumulating mutants did not exhibit the decay in farnesol levels during stationary phase characteristic of wild-type C. albicans, suggesting that a farnesol modification/degradation mechanism is absent in these mutants. Identifying these transcriptional regulators provides new insight into farnesol's physiological functions regarding cell cycle progression, white-opaque switching, yeast-mycelial dimorphism, and response to cellular stress.
Collapse
Affiliation(s)
- Daniel J Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Jaxon J Kramer
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Brigid M Toomey
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Cory H T Boone
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Audrey L Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kenneth W Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Luther CH, Brandt P, Vylkova S, Dandekar T, Müller T, Dittrich M. Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans. Front Cell Infect Microbiol 2023; 13:1108235. [PMID: 37082713 PMCID: PMC10111165 DOI: 10.3389/fcimb.2023.1108235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.
Collapse
Affiliation(s)
- Christian H. Luther
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Dandekar
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Tobias Müller
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Marcus Dittrich
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
- University of Würzburg, Institut of Human Genetics, Biocenter/Am Hubland 97074, Würzburg, Germany
- *Correspondence: Marcus Dittrich,
| |
Collapse
|
6
|
Quintanilha-Peixoto G, Marone MP, Raya FT, José J, Oliveira A, Fonseca PLC, Tomé LMR, Bortolini DE, Kato RB, Araújo DS, De-Paula RB, Cuesta-Astroz Y, Duarte EAA, Badotti F, de Carvalho Azevedo VA, Brenig B, Soares ACF, Carazzolle MF, Pereira GAG, Aguiar ERGR, Góes-Neto A. Phylogenomics and gene selection in Aspergillus welwitschiae: Possible implications in the pathogenicity in Agave sisalana. Genomics 2022; 114:110517. [PMID: 36306958 DOI: 10.1016/j.ygeno.2022.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium‑calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.
Collapse
Affiliation(s)
| | - Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana José
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriele Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Dener Eduardo Bortolini
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Bentes Kato
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, United States
| | - Ruth B De-Paula
- Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Yesid Cuesta-Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Elizabeth A A Duarte
- Centro Universitário Maria Milza, Cruz das Almas, Brazil; Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eric Roberto Guimarães Rocha Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Response and regulatory mechanisms of heat resistance in pathogenic fungi. Appl Microbiol Biotechnol 2022; 106:5415-5431. [PMID: 35941254 PMCID: PMC9360699 DOI: 10.1007/s00253-022-12119-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Abstract Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi. Key points • Mechanisms of fungal perception of heat pressure are reviewed. • The regulatory mechanism of fungal resistance to heat stress is discussed. • The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.
Collapse
|
8
|
Lee Y, Liston SD, Lee D, Robbins N, Cowen LE. Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 2022; 25:104432. [PMID: 35663022 PMCID: PMC9160768 DOI: 10.1016/j.isci.2022.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a leading cause of death due to systemic fungal infections. Poor patient outcomes are attributable to the limited number of antifungal classes and the increasing prevalence of drug resistance. Protein kinases have emerged as rewarding targets in the development of drugs for diverse diseases, yet kinases remain untapped in the quest for new antifungals. Here, we performed a comprehensive analysis of the C. albicans kinome to identify genes for which loss-of-function confers hypersensitivity to the two most widely deployed antifungals, echinocandins and azoles. Through this analysis, we found a role for the casein kinase 1 (CK1) homologue Hrr25 in regulating tolerance to both antifungals as well as target-mediated echinocandin resistance. Follow-up investigations established that Hrr25 regulates these responses through its interaction with the SBF transcription factor. Thus, we provide insights into the circuitry governing cellular responses to antifungals and implicate Hrr25 as a key mediator of drug resistance. Screening Candida albicans kinase mutants reveals 47 regulators of antifungal tolerance Hrr25 is important for growth and cell wall/membrane stress tolerance Hrr25 enables target-mediated echinocandin resistance Hrr25 interacts with the SBF transcription factor complex
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dongyeob Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
9
|
Chen X, Lu Z, Chen Y, Wu R, Luo Z, Lu Q, Guan N, Chen D. Deletion of the MBP1 Gene, Involved in the Cell Cycle, Affects Respiration and Pseudohyphal Differentiation in Saccharomyces cerevisiae. Microbiol Spectr 2021; 9:e0008821. [PMID: 34346754 PMCID: PMC8552743 DOI: 10.1128/spectrum.00088-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Mbp1p is a component of MBF (MluI cell cycle box binding factor, Mbp1p-Swi6p) and is well known to regulate the G1-S transition of the cell cycle. However, few studies have provided clues regarding its role in fermentation. This work aimed to recognize the function of the MBP1 gene in ethanol fermentation in a wild-type industrial Saccharomyces cerevisiae strain. MBP1 deletion caused an obvious decrease in the final ethanol concentration under oxygen-limited (without agitation), but not under aerobic, conditions (130 rpm). Furthermore, the mbp1Δ strain showed 84% and 35% decreases in respiration intensity under aerobic and oxygen-limited conditions, respectively. These findings indicate that MBP1 plays an important role in responding to variations in oxygen content and is involved in the regulation of respiration and fermentation. Unexpectedly, mbp1Δ also showed pseudohyphal growth, in which cells elongated and remained connected in a multicellular arrangement on yeast extract-peptone-dextrose (YPD) plates. In addition, mbp1Δ showed an increase in cell volume, associated with a decrease in the fraction of budded cells. These results provide more detailed information about the function of MBP1 and suggest some clues to efficiently improve ethanol production by industrially engineered yeast strains. IMPORTANCE Saccharomyces cerevisiae is an especially favorable organism used for ethanol production. However, inhibitors and high osmolarity conferred by fermentation broth, and high concentrations of ethanol as fermentation runs to completion, affect cell growth and ethanol production. Therefore, yeast strains with high performance, such as rapid growth, high tolerance, and high ethanol productivity, are highly desirable. Great efforts have been made to improve their performance by evolutionary engineering, and industrial strains may be a better start than laboratory ones for industrial-scale ethanol production. The significance of our research is uncovering the function of MBP1 in ethanol fermentation in a wild-type industrial S. cerevisiae strain, which may provide clues to engineer better-performance yeast in producing ethanol. Furthermore, the results that lacking MBP1 caused pseudohyphal growth on YPD plates could shed light on the development of xylose-fermenting S. cerevisiae, as using xylose as the sole carbon source also caused pseudohyphal growth.
Collapse
Affiliation(s)
- Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhilong Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ying Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Renzhi Wu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhenzhen Luo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ni Guan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
10
|
Ding JL, Hou J, Li XH, Feng MG, Ying SH. Transcription Activator Swi6 Interacts with Mbp1 in MluI Cell Cycle Box-Binding Complex and Regulates Hyphal Differentiation and Virulence in Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7060411. [PMID: 34070348 PMCID: PMC8273693 DOI: 10.3390/jof7060411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Mbp1 protein acts as a DNA-binding protein in MluI cell cycle box-binding complex (MBF) and plays an essential role in filamentous myco-pathogen Beauveria bassiana.In the current study, BbSwi6 (a homologue of yeast Swi6) was functionally characterized in B.bassiana. Both BbSwi6 and BbMbp1 localize in the nucleus and display a direct interaction relationship which is indicated by a yeast two-hybrid assay. BbSwi6 significantly contributes to hyphal growth, asexual sporulation and virulence. On the aerial surface, ΔBbSwi6 grew slower on various nutrients and displayed abnormal conidia-producing structures, which hardly produced conidia. In liquid media, BbSwi6 loss led to 90% reduction in blastospore yield. Finally, the virulence of the ΔBbSwi6 mutant was modestly weakened with a reduction of 20% in median lethal time. Comparative transcriptomics revealed that BbSwi6 mediated different transcriptomes during fungal development into conidia and blastospores. Notably, under the indicated condition, the BbSwi6-mediated transcriptome significantly differed to that mediated by BbMbp1. Our results demonstrate that, in addition to their roles as the interactive components in MBF, BbSwi6 and BbMbp1 mediate divergent genetic pathways during morphological transitions in B. bassiana.
Collapse
|
11
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
12
|
Qasim MN, Valle Arevalo A, Nobile CJ, Hernday AD. The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch. J Fungi (Basel) 2021; 7:37. [PMID: 33435404 PMCID: PMC7826875 DOI: 10.3390/jof7010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as "white" and "opaque". These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively "simple" model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.
Collapse
Affiliation(s)
- Mohammad N. Qasim
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| |
Collapse
|
13
|
Ding J, Lin H, Feng M, Ying S. Mbp1, a component of the MluI cell cycle box‐binding complex, contributes to morphological transition and virulence in the filamentous entomopathogenic fungus
Beauveria bassiana. Environ Microbiol 2019; 22:584-597. [DOI: 10.1111/1462-2920.14868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jin‐Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Hai‐Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Ming‐Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Sheng‐Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
14
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
15
|
Hendler A, Medina EM, Buchler NE, de Bruin RAM, Aharoni A. The evolution of a G1/S transcriptional network in yeasts. Curr Genet 2018; 64:81-86. [PMID: 28744706 DOI: 10.1007/s00294-017-0726-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 , 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF-MCB and SBF-SCB interactions in different fungal species.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel
| | - Edgar M Medina
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
| |
Collapse
|
16
|
Glory A, van Oostende CT, Geitmann A, Bachewich C. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genet Biol 2017; 107:51-66. [DOI: 10.1016/j.fgb.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
17
|
Xie JL, Qin L, Miao Z, Grys BT, Diaz JDLC, Ting K, Krieger JR, Tong J, Tan K, Leach MD, Ketela T, Moran MF, Krysan DJ, Boone C, Andrews BJ, Selmecki A, Ho Wong K, Robbins N, Cowen LE. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nat Commun 2017; 8:499. [PMID: 28894103 PMCID: PMC5593949 DOI: 10.1038/s41467-017-00547-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
The capacity to coordinate environmental sensing with initiation of cellular responses underpins microbial survival and is crucial for virulence and stress responses in microbial pathogens. Here we define circuitry that enables the fungal pathogen Candida albicans to couple cell cycle dynamics with responses to cell wall stress induced by echinocandins, a front-line class of antifungal drugs. We discover that the C. albicans transcription factor Cas5 is crucial for proper cell cycle dynamics and responses to echinocandins, which inhibit β-1,3-glucan synthesis. Cas5 has distinct transcriptional targets under basal and stress conditions, is activated by the phosphatase Glc7, and can regulate the expression of target genes in concert with the transcriptional regulators Swi4 and Swi6. Thus, we illuminate a mechanism of transcriptional control that couples cell wall integrity with cell cycle regulation, and uncover circuitry governing antifungal drug resistance.Cas5 is a transcriptional regulator of responses to cell wall stress in the fungal pathogen Candida albicans. Here, Xie et al. show that Cas5 also modulates cell cycle dynamics and responses to antifungal drugs.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Longguang Qin
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ben T Grys
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Jacinto De La Cruz Diaz
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth Ting
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Jonathan R Krieger
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
| | - Jiefei Tong
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Abderdeen, AB252ZD, UK
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Damian J Krysan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
- Department of Pediatrics and Microbiology/Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1.
| |
Collapse
|
18
|
Hendler A, Medina EM, Kishkevich A, Abu-Qarn M, Klier S, Buchler NE, de Bruin RAM, Aharoni A. Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet 2017; 13:e1006778. [PMID: 28505153 PMCID: PMC5448814 DOI: 10.1371/journal.pgen.1006778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Edgar M. Medina
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mehtap Abu-Qarn
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Steffi Klier
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Nicolas E. Buchler
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
19
|
Pais P, Costa C, Cavalheiro M, Romão D, Teixeira MC. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison. Front Cell Infect Microbiol 2016; 6:131. [PMID: 27812511 PMCID: PMC5072224 DOI: 10.3389/fcimb.2016.00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.
Collapse
Affiliation(s)
- Pedro Pais
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Catarina Costa
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Mafalda Cavalheiro
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Daniela Romão
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Miguel C Teixeira
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| |
Collapse
|
20
|
Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans. Genetics 2016; 203:1161-76. [PMID: 27206717 DOI: 10.1534/genetics.116.189274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
By testing the susceptibility to DNA damaging agents of several Candida albicans mutant strains derived from the commonly used laboratory strain, CAI4, we uncovered sensitivity to methyl methanesulfonate (MMS) in CAI4 and its derivatives, but not in CAF2-1. This sensitivity is not a result of URA3 disruption because the phenotype was not restored after URA3 reintroduction. Rather, we found that homozygosis of a short region of chromosome 3R (Chr3R), which is naturally heterozygous in the MMS-resistant-related strains CAF4-2 and CAF2-1, confers MMS sensitivity and modulates growth polarization in response to MMS. Furthermore, induction of homozygosity in this region in CAF2-1 or CAF4-2 resulted in MMS sensitivity. We identified 11 genes by SNP/comparative genomic hybridization containing only the a alleles in all the MMS-sensitive strains. Four candidate genes, SNF5, POL1, orf19.5854.1, and MBP1, were analyzed by generating hemizygous configurations in CAF2-1 and CAF4-2 for each allele of all four genes. Only hemizygous MBP1a/mbp1b::SAT1-FLIP strains became MMS sensitive, indicating that MBP1a in the homo- or hemizygosis state was sufficient to account for the MMS-sensitive phenotype. In yeast, Mbp1 regulates G1/S genes involved in DNA repair. A second region of homozygosis on Chr2L increased MMS sensitivity in CAI4 (Chr3R homozygous) but not CAF4-2 (Chr3R heterozygous). This is the first example of sign epistasis in C. albicans.
Collapse
|
21
|
Metabolic regulation in model ascomycetes--adjusting similar genomes to different lifestyles. Trends Genet 2015; 31:445-53. [PMID: 26051071 DOI: 10.1016/j.tig.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
The related yeasts Saccharomyces cerevisiae and Candida albicans have similar genomes but very different lifestyles. These fungi have modified transcriptional and post-translational regulatory processes to adapt their similar genomes to the distinct biological requirements of the two yeasts. We review recent findings comparing the differences between these species, highlighting how they have achieved specialized metabolic capacities tailored to their lifestyles despite sharing similar genomes. Studying this transcriptional and post-transcriptional rewiring may improve our ability to interpret phenotype from genotype.
Collapse
|
22
|
Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe. PLoS Genet 2012; 8:e1003104. [PMID: 23236291 PMCID: PMC3516552 DOI: 10.1371/journal.pgen.1003104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/03/2012] [Indexed: 01/07/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, the transcriptional-regulatory network that governs flocculation remains poorly understood. Here, we systematically screened an array of transcription factor deletion and overexpression strains for flocculation and performed microarray expression profiling and ChIP-chip analysis to identify the flocculin target genes. We identified five transcription factors that displayed novel roles in the activation or inhibition of flocculation (Rfl1, Adn2, Adn3, Sre2, and Yox1), in addition to the previously-known Mbx2, Cbf11, and Cbf12 regulators. Overexpression of mbx2(+) and deletion of rfl1(+) resulted in strong flocculation and transcriptional upregulation of gsf2(+)/pfl1(+) and several other putative flocculin genes (pfl2(+)-pfl9(+)). Overexpression of the pfl(+) genes singly was sufficient to trigger flocculation, and enhanced flocculation was observed in several combinations of double pfl(+) overexpression. Among the pfl1(+) genes, only loss of gsf2(+) abrogated the flocculent phenotype of all the transcription factor mutants and prevented flocculation when cells were grown in inducing medium containing glycerol and ethanol as the carbon source, thereby indicating that Gsf2 is the dominant flocculin. In contrast, the mild flocculation of adn2(+) or adn3(+) overexpression was likely mediated by the transcriptional activation of cell wall-remodeling genes including gas2(+), psu1(+), and SPAC4H3.03c. We also discovered that Mbx2 and Cbf12 displayed transcriptional autoregulation, and Rfl1 repressed gsf2(+) expression in an inhibitory feed-forward loop involving mbx2(+). These results reveal that flocculation in S. pombe is regulated by a complex network of multiple transcription factors and target genes encoding flocculins and cell wall-remodeling enzymes. Moreover, comparisons between the flocculation transcriptional-regulatory networks of Saccharomyces cerevisiae and S. pombe indicate substantial rewiring of transcription factors and cis-regulatory sequences.
Collapse
|
23
|
Wang H, Gao J, Li W, Wong AHH, Hu K, Chen K, Wang Y, Sang J. Pph3 dephosphorylation of Rad53 is required for cell recovery from MMS-induced DNA damage in Candida albicans. PLoS One 2012; 7:e37246. [PMID: 22606354 PMCID: PMC3351423 DOI: 10.1371/journal.pone.0037246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/16/2012] [Indexed: 01/16/2023] Open
Abstract
The pathogenic fungus Candida albicans switches from yeast growth to filamentous growth in response to genotoxic stresses, in which phosphoregulation of the checkpoint kinase Rad53 plays a crucial role. Here we report that the Pph3/Psy2 phosphatase complex, known to be involved in Rad53 dephosphorylation, is required for cellular responses to the DNA-damaging agent methyl methanesulfonate (MMS) but not the DNA replication inhibitor hydroxyurea (HU) in C. albicans. Deletion of either PPH3 or PSY2 resulted in enhanced filamentous growth during MMS treatment and continuous filamentous growth even after MMS removal. Moreover, during this growth, Rad53 remained hyperphosphorylated, MBF-regulated genes were downregulated, and hypha-specific genes were upregulated. We have also identified S461 and S545 on Rad53 as potential dephosphorylation sites of Pph3/Psy2 that are specifically involved in cellular responses to MMS. Therefore, our studies have identified a novel molecular mechanism mediating DNA damage response to MMS in C. albicans.
Collapse
Affiliation(s)
- Haitao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Jiaxin Gao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Ada Hang-Heng Wong
- Protein Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kangdi Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Kun Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (JS); (YW)
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China
- * E-mail: (JS); (YW)
| |
Collapse
|
24
|
Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans. EUKARYOTIC CELL 2012; 11:916-31. [PMID: 22581526 DOI: 10.1128/ec.00134-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Collapse
|
25
|
Tebbets B, Stewart D, Lawry S, Nett J, Nantel A, Andes D, Klein BS. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay. PLoS One 2012; 7:e36021. [PMID: 22574132 PMCID: PMC3344848 DOI: 10.1371/journal.pone.0036021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/29/2012] [Indexed: 12/04/2022] Open
Abstract
New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK) from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay.
Collapse
Affiliation(s)
- Brad Tebbets
- The Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, The University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Douglas Stewart
- The Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Stephanie Lawry
- The Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- The Cellular and Molecular Pathology Program, The University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeniel Nett
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Andre Nantel
- Biotechnology Research Institute, The National Research Council of Canada, Montreal, Quebec, Canada
| | - David Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- The Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Ofir A, Hofmann K, Weindling E, Gildor T, Barker KS, Rogers PD, Kornitzer D. Role of a Candida albicans Nrm1/Whi5 homologue in cell cycle gene expression and DNA replication stress response. Mol Microbiol 2012; 84:778-94. [PMID: 22463761 DOI: 10.1111/j.1365-2958.2012.08056.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1- and G1/S-specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal-specific genes is dampened under certain conditions in the Canrm1(-/-) mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.
Collapse
Affiliation(s)
- Ayala Ofir
- Department of Molecular Microbiology, Technion - IIT and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C, Bantun F, Quenault T, Boag PR, Ramm G, Callaghan J, Beilharz TH, Nantel A, Peleg AY, Traven A. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet 2012; 8:e1002613. [PMID: 22496666 PMCID: PMC3320594 DOI: 10.1371/journal.pgen.1002613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/07/2012] [Indexed: 01/01/2023] Open
Abstract
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Collapse
Affiliation(s)
- Nathalie Uwamahoro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yue Qu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Branka Jelicic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tricia L. Lo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Cecile Beaurepaire
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - Farkad Bantun
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tara Quenault
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - André Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
- * E-mail: (AT); (AN)
| | - Anton Y. Peleg
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (AT); (AN)
| |
Collapse
|