1
|
Laux K, Teixeira MDM, Barker B. Love in the time of climate change: A review of sexual reproduction in the order Onygenales. Fungal Genet Biol 2023; 167:103797. [PMID: 37100376 DOI: 10.1016/j.fgb.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.
Collapse
Affiliation(s)
- Klaire Laux
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA; Nùcleo de Medicina Tropical, University of Brasilia, Universitário Darcy Ribeiro, s/n -Asa Norte, Brasília, DF 70910-900, Brazil
| | - Bridget Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| |
Collapse
|
2
|
Molecular Phylogenetic Analysis of Paracoccidioides Species Complex Present in Paracoccidioidomycosis Patient Tissue Samples. Microorganisms 2023; 11:microorganisms11030562. [PMID: 36985136 PMCID: PMC10055015 DOI: 10.3390/microorganisms11030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the main and most prevalent systemic mycosis in Latin America, that until recently, it was believed to be caused only by Paracoccidioides brasiliensis (P. brasiliensis). In 2006, researchers described three cryptic species: S1, PS2, PS3, and later, another one, PS4. In 2009, Paracoccidioides lutzii (Pb01-like) was described, and in 2017, a new nomenclature was proposed for the different agents: P. brasiliensis (S1), P. americana (PS2), P. restrepiensis (PS3), and P. venezuelensis (PS4). These species are not uniformly distributed throughout Latin America and, knowing that more than one cryptic species could coexist in some regions, we aimed to identify those species in patients’ biopsy samples for a better understanding of the distribution and occurrence of these recently described species in Botucatu region. The Hospital of Medical School of Botucatu—UNESP, which is a PCM study pole, is located in São Paulo State mid-west region and is classified as a PCM endemic area. Genotyping analyses of clinical specimens from these patients that have been diagnosed and treated in our Hospital could favor a possible correlation between genetic groups and mycological and clinical characteristics. For this, molecular techniques to differentiate Paracoccidioides species in these biopsies, such as DNA extraction, PCR, and sequencing of three target genes (ITS, CHS2, and ARF) were conducted. All the sequences were analyzed at BLAST to testify the presence of P. brasiliensis. The phylogenetic trees were constructed using Mega 7.0 software and showed that 100% of our positive samples were from S1 cryptic species, therefore P. brasiliensis. This is important data, demonstrating the predominance of this species in the São Paulo State region.
Collapse
|
3
|
Andrade-Silva J, Andrade-Silva LE, Paes HC, Alves L, Rosa A, Tenório BG, Ferreira MS, Felipe MSS, Teixeira MDM, Silva-Vergara ML. Molecular epidemiology of Paracoccidiodes spp. recovered from patients with paracoccidioidomycosis in a teaching hospital from Minas Gerais State of Brazil. PLoS Negl Trop Dis 2021; 15:e0009956. [PMID: 34843484 PMCID: PMC8659327 DOI: 10.1371/journal.pntd.0009956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/09/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Paracoccidioidomycosis (PCM) is caused by several species of the Paracoccidioides genus which can be differentiated by interspecific genetic variations, morphology and geographic distribution. Intraspecific variability correlation with clinical and epidemiological aspects of these species still remains unclear. This study aimed to sequence the loci GP43, exon 2 and ARF of 23 clinical isolates of Paracoccidioides spp. from patients in the Southeast Region of Brazil. Methodology and main findings GenBank was used to compare the present (23) with previous described sequences (151) that included ARF and GP43. It was identified a high polymorphism rate among the 23 isolates in comparison to the other 151. Among the isolates, 22 (95.66%) were S1/P. brasiliensis and 1 (4.34%) was identified as PS2/P. americana. A total of 45 haplotypes were found as follows: 19 from S1/P. brasiliensis (13 from the present study), 15 from P. lutzii, 6 from PS2/P. americana (1 from the present study), 3 from PS3/P. restrepiensis and 2 from PS4/P. venezuelensis. Moreover, exclusive haplotypes according to clinical origin and geographical area were found. S1/P. brasiliensis (HD = 0.655 and K = 4.613) and P. lutzii (HD = 0.649 and K = 2.906) presented the highest rate of polymorphism among all species, from which 12 isolates of the present study were clustered within S1b/P. brasiliensis. The GP43 locus showed a higher variability and was found to be the main reason for the species differentiation. Conclusions The results herein decribed show a high intraspecific genetic variability among S1/P. brasiliensis isolates and confirm the predominance of this species in the Southeast region of Brazil. The finding of exclusive haplotypes according to clinical origin and geographical area would suggest correlation between the molecular profile with the clinical form and geographic origin of patients with PCM. Paracoccidioidomycosis (PCM) is one of the most important systemic mycosis of Latin America. This disease can be caused by Paracoccidioides lutzii and four different phylogenetic species: S1/Paracoccidioides brasiliensis sensu stricto that harboring S1a and S1b, PS2/Paracoccidioides americana, PS3/Paracoccidioides restrepiensis and PS4/Paracoccidioides venezuelensis. Some of these species show differences in their main geographic region of predominance such as PS2/P. americana that can be found in Venezuela and Southern Brazil; PS3/P. restrepiensis and PS4/P. venezuelensis which are distributed in Colombia and Venezuela. However, and due to their wide geographical distribution, the species S1/P. brasiliensis and P. lutzii overlapping ecological niches and can be found in different regions of Brazil and other Latin American countries. Regarding eco-epidemiological aspects, the habitat is believed to be the soil due to the predominance of the disease among rural workers who become infected by inhaling infectious propagules during their farm activities. According to other authors, these species could have relation with the different PCM clinical presentation. This study aimed to describe the molecular epidemiology associated with clinical and epidemiological data of Paracoccidiodes spp. in the Minas Gerais State, located in the Southeast region, Brazil. Among the 23 isolates herein evaluated, 22 were S1/P. brasiliensis and 1 was identified as PS2/P. americana. A total of 45 haplotypes were found when these isolates were compared with other 151 deposited in the Genbank. The preliminar finding of exclusive haplotypes according to clinical origin and geographical area would suggest correlation between the molecular profile with the clinical form and geographic origin of patients with PCM. The GP43 locus showed a higher variability and was found to be the main promotor of species differentiation. The results herein described pointed out a high intraspecific genetic variability among S1/P. brasiliensis isolates and confirm the predominance of this species in the Southeast region of Brazil.
Collapse
Affiliation(s)
- Juliana Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Triangulo Mineiro Federal University, Uberaba, Brazil
| | | | - Hugo Costa Paes
- Faculty of Medicina, University of Brasília, Brasília, Brazil
| | - Lucas Alves
- Faculty of Medicina, University of Brasília, Brasília, Brazil
| | - Adair Rosa
- Faculty of Medicina, University of Brasília, Brasília, Brazil
| | | | - Marcelo Simão Ferreira
- Infectious diseases Unit, Internal Medicine Department Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Mario León Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Triangulo Mineiro Federal University, Uberaba, Brazil
- * E-mail:
| |
Collapse
|
4
|
Roberto T, de Carvalho J, Beale M, Hagen F, Fisher M, Hahn R, de Camargo Z, Rodrigues A. Exploring genetic diversity, population structure, and phylogeography in Paracoccidioides species using AFLP markers. Stud Mycol 2021; 100:100131. [PMID: 34934463 PMCID: PMC8645518 DOI: 10.1016/j.simyco.2021.100131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection acquired after inhalation of Paracoccidioides propagules from the environment. The main agents include members of the P. brasiliensis complex (phylogenetically-defined species S1, PS2, PS3, and PS4) and P. lutzii. DNA-sequencing of protein-coding loci (e.g., GP43, ARF, and TUB1) is the reference method for recognizing Paracoccidioides species due to a lack of robust phenotypic markers. Thus, developing new molecular markers that are informative and cost-effective is key to providing quality information to explore genetic diversity within Paracoccidioides. We report using new amplified fragment length polymorphism (AFLP) markers and mating-type analysis for genotyping Paracoccidioides species. The bioinformatic analysis generated 144 in silico AFLP profiles, highlighting two discriminatory primer pairs combinations (#1 EcoRI-AC/MseI-CT and #2 EcoRI-AT/MseI-CT). The combinations #1 and #2 were used in vitro to genotype 165 Paracoccidioides isolates recovered from across a vast area of South America. Considering the overall scored AFLP markers in vitro (67-87 fragments), the values of polymorphism information content (PIC = 0.3345-0.3456), marker index (MI = 0.0018), effective multiplex ratio (E = 44.6788-60.3818), resolving power (Rp = 22.3152-34.3152), discriminating power (D = 0.5183-0.5553), expected heterozygosity (H = 0.4247-0.4443), and mean heterozygosity (H avp = 0.00002-0.00004), demonstrated the utility of AFLP markers to speciate Paracoccidioides and to dissect both deep and fine-scale genetic structures. Analysis of molecular variance (AMOVA) revealed that the total genetic variance (65-66 %) was due to variability among P. brasiliensis complex and P. lutzii (PhiPT = 0.651-0.658, P < 0.0001), supporting a highly structured population. Heterothallism was the exclusive mating strategy, and the distributions of MAT1-1 or MAT1-2 idiomorphs were not significantly skewed (1:1 ratio) for P. brasiliensis s. str. (χ2 = 1.025; P = 0.3113), P. venezuelensis (χ2 = 0.692; P = 0.4054), and P. lutzii (χ2 = 0.027; P = 0.8694), supporting random mating within each species. In contrast, skewed distributions were found for P. americana (χ2 = 8.909; P = 0.0028) and P. restrepiensis (χ2 = 4.571; P = 0.0325) with a preponderance of MAT1-1. Geographical distributions confirmed that P. americana, P. restrepiensis, and P. lutzii are more widespread than previously thought. P. brasiliensis s. str. is by far the most widely occurring lineage in Latin America countries, occurring in all regions of Brazil. Our new DNA fingerprint assay proved to be rapid, reproducible, and highly discriminatory, to give insights into the taxonomy, ecology, and epidemiology of Paracoccidioides species, guiding disease-control strategies to mitigate PCM.
Collapse
Affiliation(s)
- T.N. Roberto
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - J.A. de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - M.A. Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - F. Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China
| | - M.C. Fisher
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - R.C. Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, 78060900, Brazil
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá, 78048902, Brazil
| | - Z.P. de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| |
Collapse
|
5
|
Silva LBR, Taira CL, Cleare LG, Martins M, Junqueira M, Nosanchuk JD, Taborda CP. Identification of Potentially Therapeutic Immunogenic Peptides From Paracoccidioides lutzii Species. Front Immunol 2021; 12:670992. [PMID: 34046037 PMCID: PMC8144467 DOI: 10.3389/fimmu.2021.670992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.
Collapse
Affiliation(s)
- Leandro B R Silva
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Cleison L Taira
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Levi G Cleare
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Michele Martins
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos P Taborda
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratorio de Micologia Medica (LIM53), Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
7
|
Zeminian de Oliveira LB, Della Coletta AM, Gardizani TP, Barrozo LV, Miot HA, De Faveri J, Dias-Melicio LA. Paracoccidioimycosis and white individuals: Susceptibility and biogeographic aspects in an important endemic area in Brazil. PLoS Negl Trop Dis 2021; 15:e0009086. [PMID: 33561154 PMCID: PMC7899320 DOI: 10.1371/journal.pntd.0009086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 02/22/2021] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a neglected mycosis most commonly occurring in Latin America. The etiologic agents are thermo dimorphic fungi of the genus Paracoccidioides, and cause an important granulomatous response in affected tissues. The Botucatu Medical School, from São Paulo State University (UNESP), is a PCM study pole, located in São Paulo State Midwest region, which is classified as a hyperendemic area in the Southeast region in Brazil. This study aimed to perform a retrospective epidemiological, geographical, and clinical analysis by the information available in medical records. It was listed as socio-demographic data along with clinical characteristics from patients diagnosed and treated during a 10-year period in Botucatu, totaling 177 patients with Paracoccidioidomycosis confirmed by the histopathological test. It was observed that the main clinical presentation was the chronic type (76,3%), most commonly identified in white male individuals over the age of 29 years old, smokers, and alcoholics, providing evidences for the first time that white individuals were more affected by the disease, in comparison to non-white individuals that may be more resistant to infection. This data opens new avenues for study within ancestry, resistance and susceptibility in paracoccidioidomycosis.
Collapse
Affiliation(s)
- Luciana Bonome Zeminian de Oliveira
- São Paulo State University (UNESP), Medical School of Botucatu, Laboratory of Immunopathology and Infectious Agents—LIAI, UNIPEX—Experimental Research Unity, Sector 5, Botucatu, São Paulo State, Brazil
| | - Amanda Manoel Della Coletta
- São Paulo State University (UNESP), Medical School of Botucatu, Laboratory of Immunopathology and Infectious Agents—LIAI, UNIPEX—Experimental Research Unity, Sector 5, Botucatu, São Paulo State, Brazil
| | - Taiane Priscila Gardizani
- São Paulo State University (UNESP), Medical School of Botucatu, Laboratory of Immunopathology and Infectious Agents—LIAI, UNIPEX—Experimental Research Unity, Sector 5, Botucatu, São Paulo State, Brazil
| | - Ligia Vizeu Barrozo
- University of São Paulo (USP), Department of Geography, School of Philosophy, Literature and Human Sciences, São Paulo, São Paulo State, Brazil
| | - Hélio Amante Miot
- São Paulo State University (UNESP), Medical School of Botucatu, Division of Dermatology and Radiotherapy, Botucatu, São Paulo State, Brazil
| | - Julio De Faveri
- São Paulo State University (UNESP), Medical School of Botucatu, Department of Pathology, Botucatu/SP–Brazil
| | - Luciane Alarcão Dias-Melicio
- São Paulo State University (UNESP), Medical School of Botucatu, Laboratory of Immunopathology and Infectious Agents—LIAI, UNIPEX—Experimental Research Unity, Sector 5, Botucatu, São Paulo State, Brazil
- São Paulo State University (UNESP), Medical School of Botucatu, Department of Pathology, Botucatu/SP–Brazil
| |
Collapse
|
8
|
de Araújo MV, Santos Júnior SRD, Nosanchuk JD, Taborda CP. Therapeutic Vaccination with Cationic Liposomes Formulated with Dioctadecyldimethylammonium and Trehalose Dibehenate (CAF01) and Peptide P10 Is Protective in Mice Infected with Paracoccidioides brasiliensis. J Fungi (Basel) 2020; 6:jof6040347. [PMID: 33302372 PMCID: PMC7762540 DOI: 10.3390/jof6040347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The peptide P10 is a vaccine candidate for Paracoccidioidomycosis, a systemic mycosis caused by fungal species of the genus Paracoccidioides spp. We have previously shown that peptide P10 vaccination, in the presence of several different adjuvants, induced a protective cellular immune response mediated by CD4+ Th1 lymphocytes that was associated with the increased production of IFN-γ in mice challenged with a virulent isolate of Paracoccidoides brasiliensis. Cationic liposomes formulated with dioctadecyldimethylammonium and trehalose dibehenate (DDA/TDB, termed also CAF01–cationic adjuvant formulation) have been developed for safe administration in humans and CAF01 liposomes are utilized as an adjuvant for modulating a robust Th1/Th17 cellular response. We evaluated the efficacy of the adsorption of peptide P10 to CAF01 cationic liposomes and used the generated liposomes to vaccinate C57Bl/6 mice infected with P. brasiliensis. Our results showed that P10 was efficiently adsorbed onto CAF01 liposomes. The vaccination of infected mice with cationic liposomes formulated with DDA/TDB 250/50 µg/mL and 20 µg of P10 induced an effective cellular immune response with increased levels of Th17 cytokines, which correlated with significant decreases in the fungal burdens in lungs and protective granulomatous tissue responses. Hence, cationic liposomes of DDA/TDB 250/50 µg/mL with 20 µg of P10 are a promising therapeutic for safely and effectively improving the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Marcelo Valdemir de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (M.V.d.A.); (S.R.D.S.J.)
| | - Samuel Rodrigues Dos Santos Júnior
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (M.V.d.A.); (S.R.D.S.J.)
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Disease), Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Carlos Pelleschi Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (M.V.d.A.); (S.R.D.S.J.)
- Departamento de Dermatologia, Instituto de Medicina Tropical de São Paulo—LIM53, Faculdade de Medicina, Universidade de São Paulo, São Paulo 4023-062, Brazil
- Correspondence: ; Tel.: +55-11-3091-7351
| |
Collapse
|
9
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
10
|
Hrycyk MF, Garcia Garces H, Bosco SDMG, de Oliveira SL, Marques SA, Bagagli E. Ecology of Paracoccidioides brasiliensis, P. lutzii and related species: infection in armadillos, soil occurrence and mycological aspects. Med Mycol 2018; 56:950-962. [DOI: 10.1093/mmy/myx142] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/16/2017] [Indexed: 11/14/2022] Open
|
11
|
Turissini DA, Gomez OM, Teixeira MM, McEwen JG, Matute DR. Species boundaries in the human pathogen Paracoccidioides. Fungal Genet Biol 2017; 106:9-25. [PMID: 28602831 PMCID: PMC8335726 DOI: 10.1016/j.fgb.2017.05.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022]
Abstract
The use of molecular taxonomy for identifying recently diverged species has transformed the study of speciation in fungi. The pathogenic fungus Paracoccidioides spp has been hypothesized to be composed of five phylogenetic species, four of which compose the brasiliensis species complex. Nuclear gene genealogies support this divergence scenario, but mitochondrial loci do not; while all species from the brasiliensis complex are differentiated at nuclear coding loci, they are not at mitochondrial loci. We addressed the source of this incongruity using 11 previously published gene fragments, 10 newly-sequenced nuclear non-coding loci, and 10 microsatellites. We hypothesized and further demonstrated that the mito-nuclear incongruence in the brasiliensis species complex results from interspecific hybridization and mitochondrial introgression, a common phenomenon in eukaryotes. Additional population genetic analyses revealed possible nuclear introgression but much less than that seen in the mitochondrion. Our results are consistent with a divergence scenario of secondary contact and subsequent mitochondrial introgression despite the continued persistence of species boundaries. We also suggest that yeast morphology slightly-but significantly-differs across all five Paracoccidioides species and propose to elevate four of these phylogenetic species to formally described taxonomic species.
Collapse
Affiliation(s)
- David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar M Gomez
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; Biology Institute, Universidad de Antioquia, Medellín, Colombia
| | - Marcus M Teixeira
- Northern Arizona Center for Valley Fever Research, Flagstaff, AZ, USA
| | - Juan G McEwen
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Abstract
Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis. The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis. Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.
Collapse
|
13
|
Muñoz JF, Farrer RA, Desjardins CA, Gallo JE, Sykes S, Sakthikumar S, Misas E, Whiston EA, Bagagli E, Soares CMA, Teixeira MDM, Taylor JW, Clay OK, McEwen JG, Cuomo CA. Genome Diversity, Recombination, and Virulence across the Major Lineages of Paracoccidioides. mSphere 2016; 1:e00213-16. [PMID: 27704050 PMCID: PMC5040785 DOI: 10.1128/msphere.00213-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The Paracoccidioides genus includes two species of thermally dimorphic fungi that cause paracoccidioidomycosis, a neglected health-threatening human systemic mycosis endemic to Latin America. To examine the genome evolution and the diversity of Paracoccidioides spp., we conducted whole-genome sequencing of 31 isolates representing the phylogenetic, geographic, and ecological breadth of the genus. These samples included clinical, environmental and laboratory reference strains of the S1, PS2, PS3, and PS4 lineages of P. brasiliensis and also isolates of Paracoccidioides lutzii species. We completed the first annotated genome assemblies for the PS3 and PS4 lineages and found that gene order was highly conserved across the major lineages, with only a few chromosomal rearrangements. Comparing whole-genome assemblies of the major lineages with single-nucleotide polymorphisms (SNPs) predicted from the remaining 26 isolates, we identified a deep split of the S1 lineage into two clades we named S1a and S1b. We found evidence for greater genetic exchange between the S1b lineage and all other lineages; this may reflect the broad geographic range of S1b, which is often sympatric with the remaining, largely geographically isolated lineages. In addition, we found evidence of positive selection for the GP43 and PGA1 antigen genes and genes coding for other secreted proteins and proteases and lineage-specific loss-of-function mutations in cell wall and protease genes; these together may contribute to virulence and host immune response variation among natural isolates of Paracoccidioides spp. These insights into the recent evolutionary events highlight important differences between the lineages that could impact the distribution, pathogenicity, and ecology of Paracoccidioides. IMPORTANCE Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages.
Collapse
Affiliation(s)
- José F. Muñoz
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rhys A. Farrer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Juan E. Gallo
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sean Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Emily A. Whiston
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Eduardo Bagagli
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Celia M. A. Soares
- Laboratório de Biología Molecular, Instituto de Ciências Biológicas, ICBII, Goiânia, Brazil
| | - Marcus de M. Teixeira
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Division of Pathogen Genomics, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
14
|
de Macedo PM, Almeida-Paes R, de Medeiros Muniz M, Oliveira MME, Zancopé-Oliveira RM, Costa RLB, do Valle ACF. Paracoccidioides brasiliensis PS2: First Autochthonous Paracoccidioidomycosis Case Report in Rio de Janeiro, Brazil, and Literature Review. Mycopathologia 2016; 181:701-8. [PMID: 27161127 DOI: 10.1007/s11046-016-0015-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by pathogenic dimorphic fungi of the Paracoccidioides brasiliensis complex. It is the most important systemic mycosis in Latin America, mainly in Brazil. Despite its severity and high mortality rates, it is considered a neglected disease. Species within the genus Paracoccidioides present genetics and morphological variations with probable clinical, diagnostic and therapeutic consequences. In fact, there are a very small number of detailed case reports with molecular identification of these fungal agents. Here, it is reported a case of PCM due to Paracoccidioides brasiliensis PS2. Molecular identification of the isolate was performed by amplification and sequencing of the arf and gp43 genes. Clinical cases and strain reports with molecular identification in the literature are also reviewed. The case herein presented is the first autochthonous report of PCM due to Paracoccidioides brasiliensis PS2 species in the state of Rio de Janeiro, Brazil, an important endemic area. The patient presented a chronic pulmonary form of PCM and had a satisfactory response to sulfamethoxazole/trimethoprim although sequelae such as adrenal insufficiency and dysphonia were observed. This study may contribute to improve the knowledge about this severe disease, its causative cryptic species and their consequences to patients.
Collapse
Affiliation(s)
- Priscila Marques de Macedo
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mauro de Medeiros Muniz
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Regina Lana Braga Costa
- Coordenação de Pesquisa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Antonio Carlos Francesconi do Valle
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|
15
|
Taborda CP, Urán ME, Nosanchuk JD, Travassos LR. PARACOCCIDIOIDOMYCOSIS: CHALLENGES IN THE DEVELOPMENT OF A VACCINE AGAINST AN ENDEMIC MYCOSIS IN THE AMERICAS. Rev Inst Med Trop Sao Paulo 2016; 57 Suppl 19:21-4. [PMID: 26465365 PMCID: PMC4711196 DOI: 10.1590/s0036-46652015000700005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by Paracoccidioides spp, is an
important endemic mycosis in Latin America. There are two recognized
Paracoccidioides species, P. brasiliensis and
P. lutzii, based on phylogenetic differences; however, the
pathogenesis and disease manifestations of both are indistinguishable at present.
Approximately 1,853 (~51,2%) of 3,583 confirmed deaths in Brazil due to systemic
mycoses from 1996-2006 were caused by PCM. Antifungal treatment is required for
patients with PCM. The initial treatment lasts from two to six months and sulfa
derivatives, amphotericin B, azoles and terbinafine are used in clinical practice;
however, despite prolonged therapy, relapses are still a problem. An effective
Th1-biased cellular immune response is essential to control the disease, which can be
induced by exogenous antigens or modulated by prophylactic or therapeutic vaccines.
Stimulation of B cells or passive transference of monoclonal antibodies are also
important means that may be used to improve the efficacy of paracoccidioidomycosis
treatment in the future. This review critically details major challenges facing the
development of a vaccine to combat PCM.
Collapse
Affiliation(s)
| | - M E Urán
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brasil
| | - J D Nosanchuk
- Departments of Medicine, Division of Infectious Diseases and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - L R Travassos
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
16
|
Gaviria M, Rivera V, Muñoz-Cadavid C, Cano LE, Naranjo TW. Validation and clinical application of a nested PCR for paracoccidioidomycosis diagnosis in clinical samples from Colombian patients. Braz J Infect Dis 2015; 19:376-83. [PMID: 26100437 PMCID: PMC9427526 DOI: 10.1016/j.bjid.2015.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
Paracoccidioidomycosis is a systemic and endemic mycosis, restricted to tropical and subtropical areas of Latin America. The infection is caused by the thermal dimorphic fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The diagnosis of paracoccidioidomycosis is usually performed by microscopic examination, culture and immunodiagnostic tests to respiratory specimens, body fluids and/or biopsies; however these methods require laboratory personnel with experience and several days to produce a result. In the present study, we have validated and evaluated a nested PCR assay targeting the gene encoding the Paracoccidioides gp43 membrane protein in 191 clinical samples: 115 samples from patients with proven infections other than paracoccidioidomycosis, 51 samples as negative controls, and 25 samples from patients diagnosed with paracoccidioidomycosis. Additionally, the specificity of the nested PCR assay was also evaluated using purified DNA isolated from cultures of different microorganisms (n=35) previously identified by culture and/or sequencing. The results showed that in our hands, this nested PCR assay for gp43 protein showed specificity and sensitivity rates of 100%. The optimized nested PCR conditions in our laboratory allowed detection down to 1fg of P. brasiliensis DNA.
Collapse
Affiliation(s)
- Marcela Gaviria
- Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Vanessa Rivera
- Corporación para Investigaciones Biológicas, Medellín, Colombia
| | | | - Luz Elena Cano
- Corporación para Investigaciones Biológicas, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Tonny Williams Naranjo
- Corporación para Investigaciones Biológicas, Medellín, Colombia; Escuela de Ciencias de la Salud, Universidad Pontifica Bolivariana, Medellín, Colombia.
| |
Collapse
|
17
|
Prado RS, Bailão AM, Silva LC, de Oliveira CMA, Marques MF, Silva LP, Silveira-Lacerda EP, Lima AP, Soares CM, Pereira M. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone. Front Microbiol 2015; 6:616. [PMID: 26150808 PMCID: PMC4471430 DOI: 10.3389/fmicb.2015.00616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied.
Collapse
Affiliation(s)
- Renata S Prado
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Lívia C Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Cecília M A de Oliveira
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás Goiânia, Brazil
| | - Monique F Marques
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás Goiânia, Brazil
| | - Luciano P Silva
- Laboratório de Espectrometria de Massa (PBI), Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária Brasília, Brazil
| | - Elisângela P Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Aliny P Lima
- Laboratório de Genética Molecular e Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Célia M Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| |
Collapse
|
18
|
Soares MA, de Carvalho Araújo RA, Marini MM, de Oliveira LM, de Lima LG, de Souza Alves V, Felipe MSS, Brigido MM, de Almeida Soares CM, da Silveira JF, Ruiz JC, Cisalpino PS. Identification and characterization of expressed retrotransposons in the genome of the Paracoccidioides species complex. BMC Genomics 2015; 16:376. [PMID: 25962381 PMCID: PMC4427930 DOI: 10.1186/s12864-015-1564-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes. RESULTS We identified five different retrotransposon families (four LTR-like and one LINE-like element) in the genomes of three Paracoccidioides isolates. Retrotransposons were present in all of the genomes analyzed. P. brasiliensis and P. lutzii species harbored the same retrotransposon lineages but differed in their copy numbers. In the Pb01, Pb03 and Pb18 genomes, the number of LTR retrotransposons was higher than the number of LINE-like elements, and the LINE-like element RtPc5 was transcribed in Paracoccidioides lutzii (Pb01) but could not be detected in P. brasiliensis (Pb03 and Pb18) by semi-quantitative RT-PCR. CONCLUSION Five new potentially active retrotransposons have been identified in the genomic assemblies of the Paracoccidioides species complex using a combined computational and experimental approach. The distribution across the two known species, P. brasiliensis and P. lutzii, and phylogenetics analysis indicate that these elements could have been acquired before speciation occurred. The presence of active retrotransposons in the genome may have implications regarding the evolution and genetic diversification of the Paracoccidioides genus.
Collapse
Affiliation(s)
- Marco Aurélio Soares
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| | - Roberta Amália de Carvalho Araújo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| | - Marjorie Mendes Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil.
| | - Luciana Márcia de Oliveira
- Programa de Pós-graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. .,Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ-Minas, 30190-002, Belo Horizonte, MG, Brazil.
| | - Leonardo Gomes de Lima
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Viviane de Souza Alves
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| | - Maria Sueli Soares Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, DF, Brazil.
| | - Marcelo Macedo Brigido
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, DF, Brazil.
| | - Celia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Jose Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil.
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ-Minas, 30190-002, Belo Horizonte, MG, Brazil.
| | - Patrícia Silva Cisalpino
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. .,Programa de Pós-graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Asexual propagation of a virulent clone complex in a human and feline outbreak of sporotrichosis. EUKARYOTIC CELL 2014; 14:158-69. [PMID: 25480940 DOI: 10.1128/ec.00153-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.
Collapse
|
20
|
Teixeira MDM, Theodoro RC, Oliveira FFMD, Machado GC, Hahn RC, Bagagli E, San-Blas G, Soares Felipe MS. Paracoccidioides lutzii sp. nov.: biological and clinical implications. Med Mycol 2014; 52:19-28. [PMID: 23768243 DOI: 10.3109/13693786.2013.794311] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Paracoccidioides lutzii, formerly known as 'Pb01-like' strains in the P. brasiliensis complex, is proposed as a new species based on phylogenetic and comparative genomics data, recombination analysis, and morphological characteristics. Conidia of P. lutzii are elongated, different from those of P. brasiliensis. P. lutzii occurs in the central and northern regions of Brazil. Studies comparing P. brasiliensis and P. lutzii may have significant clinical consequences for the diagnosis and treatment of paracoccidioidomycosis.
Collapse
|
21
|
Abstract
Owing to their small size and paucity of phenotypic characters, progress in the evolutionary biology of microbes in general, and human pathogenic fungi in particular, has been linked to a series of advances in DNA sequencing over the past quarter century. Phylogenetics was the first area to benefit, with the achievement of a basic understanding of fungal phylogeny. Population genetics was the next advance, finding cryptic species everywhere, and recombination in species previously thought to be asexual. Comparative genomics saw the next advance, in which variation in gene content and changes in gene family size were found to be important sources of variation. Fungal population genomics is showing that gene flow among closely related populations and species provides yet another source of adaptive, genetic variation. Now, two means to associate genetic variation with phenotypic variation, "reverse ecology" for adaptive phenotypes, and genome-wide association of any phenotype, are letting evolutionary biology make a profound contribution to molecular developmental biology of pathogenic fungi.
Collapse
Affiliation(s)
- John W Taylor
- University of California, Berkeley, California 94720-3102
| |
Collapse
|
22
|
Teixeira MM, Theodoro RC, Nino-Vega G, Bagagli E, Felipe MSS. Paracoccidioides species complex: ecology, phylogeny, sexual reproduction, and virulence. PLoS Pathog 2014; 10:e1004397. [PMID: 25357210 PMCID: PMC4214758 DOI: 10.1371/journal.ppat.1004397] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Marcus M. Teixeira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
| | - Raquel C. Theodoro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Maria S. S. Felipe
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
23
|
Hahn RC, Rodrigues AM, Fontes CJF, Nery AF, Tadano T, Queiroz LDP, de Camargo ZP. Fatal fungemia due to Paracoccidioides lutzii. Am J Trop Med Hyg 2014; 91:394-8. [PMID: 24821845 DOI: 10.4269/ajtmh.13-0482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report the first case of fungemia caused by Paracoccidioides lutzii in a 51-year-old male farm worker from the central-west region of Brazil. The fungus was isolated from blood cultures and the species was confirmed by phylogenetic identification. Despite specific treatment and intensive care, the patient died 39 days after admission.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Anderson Messias Rodrigues
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Cor Jesus Fernandes Fontes
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Andreia Ferreira Nery
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Tomoko Tadano
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Luiz de Pádua Queiroz
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| | - Zoilo Pires de Camargo
- Núcleo de Doenças Infecciosas e Tropicais, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil; Universidade Federal de São Paulo (UNIFESP), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Yáñez-Carrillo P, Robledo-Márquez KA, Ramírez-Zavaleta CY, De Las Peñas A, Castaño I. The mating type-like loci of Candida glabrata. Rev Iberoam Micol 2014; 31:30-4. [DOI: 10.1016/j.riam.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022] Open
|
25
|
Muniz MM, Sousa CN, Evangelista Oliveira MM, Pizzini CV, Almeida MA, Rodríguez-Arellanes G, Taylor ML, Zancopé-Oliveira RM. Sexual variability in Histoplasma capsulatum and its possible distribution: what is going on? Rev Iberoam Micol 2013; 31:7-10. [PMID: 24262630 DOI: 10.1016/j.riam.2013.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/01/2013] [Indexed: 11/16/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen naturally found in the soil. Inhalation of conidia can result in pulmonary histoplasmosis and, in some cases, causes severe disseminated disease and death. This fungus is an ascomycete that has an anamorphic or asexual stage and a teleomorphic or sexual stage, known as Ajellomyces capsulatus, which results from (+) and (-) mating types. Sexual reproduction is regulated by a specialized genomic region known as the mating-type (MAT1) locus. The mating process in this heterothallic species is represented by isolates that contain only one of the two different MAT1 locus idiomorphs (MAT1-1 or MAT1-2) that have unrelated sequences encoding different transcription factors. In medically important dimorphic pathogens and in most ascomycete molds, one MAT locus idiomorph encodes a high-mobility-group (HMG) box-domain transcription factor, and the other idiomorph encodes an alpha-box domain transcription factor. There is scarce molecular information about H. capsulatum mating type although recombinant population structures have been reported that could occur in nature and this process has been documented in distinct models such as parasites and other fungi. In this review, we shall focus on published studies on H. capsulatum sexuality, and outline the distribution of the two H. capsulatum mating types in Latin America. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).
Collapse
Affiliation(s)
- Mauro Medeiros Muniz
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC/FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | - Claudia Vera Pizzini
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC/FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Abreu Almeida
- Instituto de Pesquisa Clínica Evandro Chagas, IPEC/FIOCRUZ, Rio de Janeiro, Brazil
| | - Gabriela Rodríguez-Arellanes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México D.F., Mexico
| | - Maria Lucia Taylor
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México D.F., Mexico
| | | |
Collapse
|
26
|
Gazzoni FF, Severo LC, Marchiori E, Irion KL, Guimarães MD, Godoy MC, Sartori APG, Hochhegger B. Fungal diseases mimicking primary lung cancer: radiologic-pathologic correlation. Mycoses 2013; 57:197-208. [DOI: 10.1111/myc.12150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/05/2013] [Accepted: 09/24/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Fernando F. Gazzoni
- Radiology Department; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
| | | | - Edson Marchiori
- Radiology Department; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Klaus L. Irion
- Department of Radiology; Liverpool Heart and Chest Hospital; Liverpool United Kingdom
| | | | - Myrna C. Godoy
- Department of Diagnostic Radiology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Ana P. G. Sartori
- Medical Imaging Research Lab; Santa Casa de Porto Alegre/Federal University of Health Sciences of Porto Alegre; Porto Alegre Brazil
| | - Bruno Hochhegger
- Medical Imaging Research Lab; Santa Casa de Porto Alegre/Federal University of Health Sciences of Porto Alegre; Porto Alegre Brazil
| |
Collapse
|
27
|
Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, Soares Felipe MS. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol 2013; 8:1177-91. [DOI: 10.2217/fmb.13.68] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acquired by inhalation of the thermal dimorphic fungi Paracoccidioides spp. conidia, paracoccidioidomycosis ranges from symptomatic to severe and potentially fatal disseminated disease. The main focus of this review is to highlight clinical aspects of paracoccidioidomycosis and, its pathogens’ diversity ecology and particularities. In addition, we present strategies for therapy, including DNA vaccines and nanostructured drugs. Molecular and morphological data supported the split of the Paracoccidioides genus into two species, Paracoccidioides brasiliensis and Paracoccidioides lutzii. An acute form of the disease affects approximately 5% of cases and involves the phagocytic mononuclear system, resulting in progressive lymphadenopathy. The chronic form affects adult men and frequently involves lungs, skin and mucous membranes, lymph nodes, and adrenal glands. The clinical manifestations depend on the ability of the host to control the fungal multiplication and dissemination. The long survival time of the fungus in the host tissues allows it to evade immune responses; therefore, successful treatment often requires long-time therapy. The consensus for treatment must consider the severity of the disease and includes sulfone derivatives, amphotericin B and azoles. Novel strategies for therapy, based on DNA vaccines and nanostructured drugs are also presented and discussed in this review.
Collapse
Affiliation(s)
| | - André Corrêa Amaral
- Biotechnology, Institute of Tropical Pathology & Public Health, Universidade Federal de Goiás, Goiania, GO, Brazil
| | | | - Paula Keiko Sato
- Laboratory of Clinical Immunology, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, Brazil
| | - Maria Aparecida Shikanai-Yasuda
- Laboratory of Clinical Immunology, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, Brazil
- Department of Infectious & Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|