1
|
Groß M, Dika B, Loos E, Aliyeva-Schnorr L, Deising HB. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Mol Microbiol 2024; 121:912-926. [PMID: 38400525 DOI: 10.1111/mmi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched β-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.
Collapse
Affiliation(s)
- Maximilian Groß
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Dika
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisabeth Loos
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lala Aliyeva-Schnorr
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Kitisin T, Ampawong S, Muangkaew W, Sukphopetch P. Phenomic profiling of a novel sibling species within the Scedosporium complex in Thailand. BMC Microbiol 2021; 21:42. [PMID: 33563219 PMCID: PMC7874643 DOI: 10.1186/s12866-021-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Scedosporium species are a group of pathogenic fungi, which can be found worldwide around high human-impacted areas. Infections of Scedosporium have been reported in several immunocompromised and immunocompetent patients with a high mortality rate. Recently, we have isolated and identified several Scedosporium strains during an environmental survey in Thailand. Results We describe the isolate, TMMI-012, possibly a new species isolated from soils in the Chatuchak public park, Bangkok, Thailand. TMMI-012 is phylogenetically related to the Scedosporium genus and is a sibling to S. boydii but shows distinct morphological and pathological characteristics. It is fast growing and highly resistant to antifungal drugs and abiotic stresses. Pathological studies of in vitro and in vivo models confirm its high virulence and pathogenicity. Conclusion TMMI-012 is considered a putative novel Scedosporium species. The high antifungal resistance of TMMI-012 compared with its sibling, Scedosporium species is likely related to its clinical impact on human health.
Collapse
Affiliation(s)
- T Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - W Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Gao M, Zhang N, Liang W. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis cinerea. Front Microbiol 2020; 11:594743. [PMID: 33193272 PMCID: PMC7649125 DOI: 10.3389/fmicb.2020.594743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine lactylation (Kla) is a newly discovered histone post-translational modification (PTM), playing important roles in regulating transcription in macrophages. However, the extent of this PTM in non-histone proteins remains unknown. Here, we report the first proteomic survey of this modification in Botrytis cinerea, a destructive necrotrophic fungal pathogen distributed worldwide. After a global lysine lactylome analysis using LC-MS/MS, we identified 273 Kla sites in 166 proteins, of which contained in 4 types of modification motifs. Our results show that the majority of lactylated proteins were distributed in nucleus (36%), mitochondria (27%), and cytoplasm (25%). The identified proteins were found to be involved in diverse cellular processes. Most strikingly, Kla was found in 43 structural constituent proteins of ribosome, indicating an impact of Kla in protein synthesis. Moreover, 12 lactylated proteins participated in fungal pathogenicity, suggesting a potential role for Kla in this process. Protein interaction network analysis suggested that a mass of protein interactions are regulated by lactylation. The combined data sets represent the first report of the lactylome of B. cinerea and provide a good foundation for further explorations of Kla in plant fungal pathogens.
Collapse
Affiliation(s)
- Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Gandía M, Garrigues S, Bolós B, Manzanares P, Marcos JF. The Myosin Motor Domain-Containing Chitin Synthases Are Involved in Cell Wall Integrity and Sensitivity to Antifungal Proteins in Penicillium digitatum. Front Microbiol 2019; 10:2400. [PMID: 31681248 PMCID: PMC6813208 DOI: 10.3389/fmicb.2019.02400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Penicillium digitatum is the main postharvest pathogen of citrus fruit and is responsible for important economic losses in spite of the massive use of fungicides. The fungal cell wall (CW) and its specific component chitin are potential targets for the development of new antifungal molecules. Among these are the antifungal peptides and proteins that specifically interact with fungal CW. Chitin is synthesized by a complex family of chitin synthases (Chs), classified into up to eight classes within three divisions. Previously, we obtained and characterized a mutant of P. digitatum in the class VII gene (ΔchsVII), which contains a short myosin motor-like domain (MMD). In this report, we extend our previous studies to the characterization of mutants in chsII and in the gene coding for the other MMD-Chs (chsV), and study the role of chitin synthases in the sensitivity of P. digitatum to the self-antifungal protein AfpB, and to AfpA obtained from P. expansum. The ΔchsII mutant showed no significant phenotypic and virulence differences with the wild type strain, except in the production and morphology of the conidia. In contrast, mutants in chsV showed a more dramatic phenotype than the previous ΔchsVII, with reduced growth and conidial production, increased chitin content, changes in mycelial morphology and a decrease in virulence to citrus fruit. Mutants in chsVII were specifically more tolerant than the wild type to nikkomycin Z, an antifungal inhibitor of chitin biosynthesis. Treatment of P. digitatum with its own antifungal protein AfpB resulted in an overall reduction in the expression of the chitin synthase genes. The mutants corresponding to MMD chitin synthases exhibited differential sensitivity to the antifungal proteins AfpA and AfpB, ΔchsVII being more susceptible than its parental strain and ΔchsV being slightly more tolerant despite its reduced growth in liquid broth. Taking these results together, we conclude that the MMD-containing chitin synthases affect cell wall integrity and sensitivity to antifungal proteins in P. digitatum.
Collapse
Affiliation(s)
- Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
5
|
Abstract
Chromoblastomycosis (CBM), also known as chromomycosis, is one of the most prevalent implantation fungal infections, being the most common of the gamut of mycoses caused by melanized or brown-pigmented fungi. CBM is mainly a tropical or subtropical disease that may affect individuals with certain risk factors around the world. The following characteristics are associated with this disease: (i) traumatic inoculation by implantation from an environmental source, leading to an initial cutaneous lesion at the inoculation site; (ii) chronic and progressive cutaneous and subcutaneous tissular involvement associated with fibrotic and granulomatous reactions associated with microabscesses and often with tissue proliferation; (iii) a nonprotective T helper type 2 (Th2) immune response with ineffective humoral involvement; and (iv) the presence of muriform (sclerotic) cells embedded in the affected tissue. CBM lesions are clinically polymorphic and are commonly misdiagnosed as various other infectious and noninfectious diseases. In its more severe clinical forms, CBM may cause an incapacity for labor due to fibrotic sequelae and also due to a series of clinical complications, and if not recognized at an early stage, this disease can be refractory to antifungal therapy.
Collapse
|
6
|
Teixeira M, Moreno L, Stielow B, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J, Priest M, Souza R, Young S, Ferreira K, Zeng Q, da Cunha M, Gladki A, Barker B, Vicente V, de Souza E, Almeida S, Henrissat B, Vasconcelos A, Deng S, Voglmayr H, Moussa T, Gorbushina A, Felipe M, Cuomo C, de Hoog GS. Exploring the genomic diversity of black yeasts and relatives ( Chaetothyriales, Ascomycota). Stud Mycol 2017; 86:1-28. [PMID: 28348446 PMCID: PMC5358931 DOI: 10.1016/j.simyco.2017.01.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
Collapse
Affiliation(s)
- M.M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - L.F. Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B.J. Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M. Hainaut
- Université Aix-Marseille (CNRS), Marseille, France
| | - L. Gonzaga
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | | | - J.S.L. Patané
- Department of Biochemistry, University of São Paulo, Brazil
| | - M. Priest
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - R. Souza
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Young
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - K.S. Ferreira
- Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Q. Zeng
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - M.M.L. da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia UFRJ-Xerém-NUMPEX-BIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Gladki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - B. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - V.A. Vicente
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
| | - E.M. de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - S. Almeida
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, SP, Brazil
| | - B. Henrissat
- Université Aix-Marseille (CNRS), Marseille, France
| | - A.T.R. Vasconcelos
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Deng
- Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Voglmayr
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - T.A.A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A. Gorbushina
- Federal Institute for Material Research and Testing (BAM), Berlin, Germany
| | - M.S.S. Felipe
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - C.A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Yoshimi A, Miyazawa K, Abe K. Cell wall structure and biogenesis in Aspergillus species. Biosci Biotechnol Biochem 2016; 80:1700-11. [DOI: 10.1080/09168451.2016.1177446] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Fernandes C, Gow NA, Gonçalves T. The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
do Nascimento MMF, de Hoog GS, Gomes RR, Furuie JL, Gelinski JML, Najafzadeh MJ, Boeger WAP, Vicente VA. Shared Physiological Traits of Exophiala Species in Cold-Blooded Vertebrates, as Opportunistic Black Yeasts. Mycopathologia 2016; 181:353-62. [PMID: 27028446 DOI: 10.1007/s11046-016-0001-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Several species of the genus Exophiala are found as opportunistic pathogens on humans, while others cause infections in cold-blooded waterborne vertebrates. Opportunism of these fungi thus is likely to be multifactorial. Ecological traits [thermotolerance and pH tolerance, laccase activity, assimilation of mineral oil, and decolorization of Remazol Brilliant Blue R (RBBR)] were studied in a set of 40 strains of mesophilic Exophiala species focused on the salmonis-clade mainly containing waterborne species. Thermophilic species and waterborne species outside the salmonis-clade were included for comparison. Strains were able to tolerate a wide range of pHs, although optimal growth was observed between pH 4.0 and 5.5. All strains tested were laccase positive. Strains were able to grow in the presence of the compounds (mineral oil and RBBR) with some differences in assimilation patterns between strains tested and also were capable of degrading the main chromophore of RBBR. The study revealed that distantly related mesophilic species behave similarly, and no particular trend in evolutionary adaptation was observed.
Collapse
Affiliation(s)
- Mariana Machado Fidelis do Nascimento
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil.,CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD, Utrecht, The Netherlands
| | - G Sybren de Hoog
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil.,CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Renata Rodrigues Gomes
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil
| | - Jason Lee Furuie
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil
| | - Jane Mary Lafayette Gelinski
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil.,University of West of Santa Catarina - UNOESC, Videira, 89900-000, Brazil
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Walter Antonio Pereira Boeger
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil.,Department of Zoology, Federal University of Paraná, Curitiba, 81540-970, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Vania Aparecida Vicente
- Microbiology, Parasitology and Pathology Graduate Programme, Department of Basic Pathology, Federal University of Paraná, Curitiba, 81540-970, Brazil. .,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.
| |
Collapse
|
10
|
Gandía M, Xu S, Font C, Marcos JF. Disruption of ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum. Fungal Biol 2015; 120:317-23. [PMID: 26895860 DOI: 10.1016/j.funbio.2015.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
The dominant mechanism to repair double-stranded DNA breaks in filamentous fungi is the non-homologous end joining (NHEJ) pathway, and not the homologous recombination (HR) pathway that operates in the mutation of genes by replacement of target DNA for selection cassettes. The key to improve HR frequency is the inactivation of the NHEJ pathway by eliminating components of its Ku70/80 heterodimeric complex. We have obtained ku70 mutants of Penicillium digitatum, the main citrus postharvest pathogen. The increased efficiency of HR in Δku70 strains was demonstrated by the generation of mutants in two different chitin synthase genes (PdchsII and PdchsV). P. digitatum Δku70 strains showed no differences from the parental strain in vegetative growth, asexual development or virulence to citrus fruit, when experiments were conducted at the optimal temperature of 24°C. However, growth of Δku70 strains at temperatures higher than 24°C demonstrated a detrimental effect in axenic growth and conidia production. These observations are in agreement with previous studies describing differences between ku70 mutants and their parental strains in some fungal species, and must be taken into account for future applications of the Δku approach to increase HR efficiency in fungi.
Collapse
Affiliation(s)
- Mónica Gandía
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Shaomei Xu
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Cristina Font
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Jose F Marcos
- Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Takeshita N, Wernet V, Tsuizaki M, Grün N, Hoshi HO, Ohta A, Fischer R, Horiuchi H. Transportation of Aspergillus nidulans Class III and V Chitin Synthases to the Hyphal Tips Depends on Conventional Kinesin. PLoS One 2015; 10:e0125937. [PMID: 25955346 PMCID: PMC4425547 DOI: 10.1371/journal.pone.0125937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cell wall formation and maintenance are crucial for hyphal morphogenesis. In many filamentous fungi, chitin is one of the main structural components of the cell wall. Aspergillus nidulans ChsB, a chitin synthase, and CsmA, a chitin synthase with a myosin motor-like domain (MMD) at its N-terminus, both localize predominantly at the hyphal tip regions and at forming septa. ChsB and CsmA play crucial roles in polarized hyphal growth in A. nidulans. In this study, we investigated the mechanism by which CsmA and ChsB accumulate at the hyphal tip in living hyphae. Deletion of kinA, a gene encoding conventional kinesin (kinesin-1), impaired the localization of GFP-CsmA and GFP-ChsB at the hyphal tips. The transport frequency of GFP-CsmA and GFP-ChsB in both anterograde and retrograde direction appeared lower in the kinA-deletion strain compared to wild type, although the velocities of the movements were comparable. Co-localization of GFP-ChsB and GFP-CsmA with mRFP1-KinArigor, a KinA mutant that binds to microtubules but does not move along them, was observed in the posterior of the hyphal tip regions. KinA co-immunoprecipitated with ChsB and CsmA. Co-localization and association of CsmA with KinA did not depend on the MMD. These findings indicate that ChsB and CsmA are transported along microtubules to the subapical region by KinA.
Collapse
Affiliation(s)
- Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Makusu Tsuizaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nathalie Grün
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiro-omi Hoshi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Granato MQ, Massapust PDA, Rozental S, Alviano CS, dos Santos ALS, Kneipp LF. 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation. Mycopathologia 2014; 179:231-42. [PMID: 25502596 DOI: 10.1007/s11046-014-9832-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022]
Abstract
Phialophora verrucosa is one of the etiologic agents of chromoblastomycosis, a fungal infection that affects cutaneous and subcutaneous tissues. This disease is chronic, recurrent and difficult to treat. Several studies have shown that secreted peptidases by fungi are associated with important pathophysiological processes. Herein, we have identified and partially characterized the peptidase activity secreted by P. verrucosa conidial cells. Using human serum albumin as substrate, the best hydrolysis profile was detected at extreme acidic pH (3.0) and at 37 °C. The enzymatic activity was completely blocked by classical metallopeptidase inhibitors/chelating agents as 1,10-phenanthroline and EGTA. Zinc ions stimulated the metallo-type peptidase activity in a dose-dependent manner. Several proteinaceous substrates were cleaved, in different extension, by the P. verrucosa metallopeptidase activity, including immunoglobulin G, fibrinogen, collagen types I and IV, fibronectin, laminin and keratin; however, mucin and hemoglobin were not susceptible to proteolysis. As metallopeptidases participate in different cellular metabolic pathways in fungal cells, we also tested the influence of 1,10-phenanthroline and EGTA on P. verrucosa development. Contrarily to EGTA, 1,10-phenanthroline inhibited the fungal viability (MIC 0.8 µg/ml), showing fungistatic effect, and induced profound morphological alterations as visualized by transmission electron microscopy. In addition, 1,10-phenanthroline arrested the filamentation process in P. verrucosa. Our results corroborate the supposition that metallopeptidase inhibitors/chelating agents have potential to control crucial biological events in fungal agents of chromoblastomycosis.
Collapse
Affiliation(s)
- Marcela Queiroz Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 2014. [DOI: 10.1007/s11557-014-0990-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Myosin Motor-Like Domain of the Class VI Chitin Synthase CsmB Is Essential to Its Functions inAspergillus nidulans. Biosci Biotechnol Biochem 2014; 73:1163-7. [DOI: 10.1271/bbb.90074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob Agents Chemother 2014; 58:2894-904. [PMID: 24614372 DOI: 10.1128/aac.02647-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present work reports the effects of caspofungin, a β-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting β-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the β-glucan synthase inhibitor against this fungus.
Collapse
|
16
|
Oliveira-Garcia E, Deising HB. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize. THE PLANT CELL 2013; 25:2356-78. [PMID: 23898035 PMCID: PMC3723631 DOI: 10.1105/tpc.112.103499] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 05/19/2013] [Accepted: 06/03/2013] [Indexed: 05/21/2023]
Abstract
β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan-triggered immunity.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Holger B. Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
- Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Bugeja HE, Hynes MJ, Andrianopoulos A. HgrA is necessary and sufficient to drive hyphal growth in the dimorphic pathogen Penicillium marneffei. Mol Microbiol 2013; 88:998-1014. [PMID: 23656348 DOI: 10.1111/mmi.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2013] [Indexed: 12/17/2022]
Abstract
Fungi produce multiple morphological forms as part of developmental programs or in response to changing, often stressful, environmental conditions. An opportunistic pathogen of humans, Penicillium marneffei displays multicellular hyphal growth and asexual development (conidiation) in the environment at 25°C and unicellular yeast growth in macrophages at 37°C. We characterized the transcription factor, hgrA, which contains a C(2)H(2) DNA binding domain closely related to that of the stress-response regulators Msn2/4 of Saccharomyces cerevisiae. Northern hybridization analysis demonstrated that hgrA expression is specific to hyphal growth, and its constitutive overexpression prevents conidiation and yeast growth, even in the presence of inductive cues, and causes apical hyperbranching during hyphal growth. Consistent with its expression pattern, deletion of hgrA causes defects in hyphal morphogenesis and the dimorphic transition from yeast cells to hyphae. Specifically, loss of HgrA causes cell wall defects, reduced expression of cell wall biosynthetic enzymes and increased sensitvity to cell wall, oxidative, but not osmotic stress agents. These data suggest that HgrA does not have a direct role in the response to stress but is an inducer of the hyphal growth program and its activity must be downregulated to allow alternative developmental programs, including the morphogenesis of yeast cells in macrophages.
Collapse
Affiliation(s)
- Hayley E Bugeja
- Department of Genetics, University of Melbourne, Melbourne, Vic., 3010, Australia
| | | | | |
Collapse
|
18
|
Myosin Motor-Like Domain of Class VI Chitin Synthase CsmB of Aspergillus nidulans Is Not Functionally Equivalent to That of Class V Chitin Synthase CsmA. Biosci Biotechnol Biochem 2013; 77:369-74. [DOI: 10.1271/bbb.120822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Côte E, Gajek K, Chapeland-Leclerc F, Expert D, Soulie MC. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genet Biol 2012; 52:1-8. [PMID: 23268147 DOI: 10.1016/j.fgb.2012.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/15/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
Abstract
Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target.
Collapse
Affiliation(s)
- Serena Morcx
- UPMC Univ. Paris 06, UMR217, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob Agents Chemother 2012; 56:6121-31. [PMID: 22964252 DOI: 10.1128/aac.00752-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis.
Collapse
|
21
|
Feng P, Lu Q, Najafzadeh MJ, Gerrits van den Ende AHG, Sun J, Li R, Xi L, Vicente VA, Lai W, Lu C, de Hoog GS. Cyphellophora and its relatives in Phialophora: biodiversity and possible role in human infection. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0194-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Robledo-Briones M, Ruiz-Herrera J. Transcriptional regulation of the genes encoding chitin and β-1,3-glucan synthases from Ustilago maydis. Curr Microbiol 2012; 65:85-90. [PMID: 22538468 DOI: 10.1007/s00284-012-0129-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/05/2012] [Indexed: 03/17/2023]
Abstract
Transcriptional regulation of genes encoding chitin synthases (CHS) and β-1,3-glucan synthase (GLS) from Ustilago maydis was studied. Transcript levels were measured during the growth curve of yeast and mycelial forms, in response to ionic and osmotic stress, and during infection of maize plants. Expression of the single GLS gene was constitutive. In contrast, CHS genes expression showed differences depending on environmental conditions. Transcript levels were slightly higher in the mycelial forms, the highest levels occurring at the log phase. Ionic and osmotic stress induced alterations in the expression of CHS genes, but not following a defined pattern, some genes were induced and others repressed by the tested compounds. Changes in transcripts were more apparent during the pathogenic process. At early infection stages, only CHS6 gene showed significant transcript levels, whereas at the period of tumor formation CHS7 and CHS8 genes were also were induced.
Collapse
Affiliation(s)
- Mariana Robledo-Briones
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, GTO, Mexico
| | | |
Collapse
|
23
|
Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 2012; 31:214-27. [PMID: 22027862 PMCID: PMC3252574 DOI: 10.1038/emboj.2011.361] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/06/2011] [Indexed: 11/08/2022] Open
Abstract
Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.
Collapse
Affiliation(s)
| | - Steffi Treitschke
- Department of Biosciences, University of Exeter, Exeter, UK
- Personalisierte Tumortherapie, Fraunhofer ITEM-R, Regensburg, Germany
| | | | - Justin Molloy
- MRC National Institute for Medical Research, Mill Hill London, UK
| | | | - Gero Steinberg
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Rogg LE, Fortwendel JR, Juvvadi PR, Steinbach WJ. Regulation of expression, activity and localization of fungal chitin synthases. Med Mycol 2012; 50:2-17. [PMID: 21526913 PMCID: PMC3660733 DOI: 10.3109/13693786.2011.577104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in-depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets.
Collapse
Affiliation(s)
- Luise E. Rogg
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Jarrod R. Fortwendel
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
25
|
The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 2011; 90:759-69. [PMID: 21700357 DOI: 10.1016/j.ejcb.2011.04.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chitin is a polymer of N-acetylglucosamine, which assembles into microfibrils of about 20 sugar chains. These microfibrils serve as a structural component of natural biocomposites found in cell walls and specialized extracellular matrices such as cuticles and peritrophic membranes. Chitin synthesis is performed by a wide range of organisms including fungi and insects. The underlying biosynthetic machinery is highly conserved and involves several enzymes, of which the chitin synthase is the key enzyme. This membrane integral glycosyltransferase catalyzes the polymerization reaction. Most of what we know about chitin synthesis derives from studies of fungal and insect systems. In this review, common principles and differences will be worked out at the levels of gene organization, enzymatic properties, cellular localization and regulation.
Collapse
|
26
|
Guo P, Szaniszlo PJ. RNA interference ofWdFKS1mRNA expression causes slowed growth, incomplete septation and loss of cell wall integrity in yeast cells of the polymorphic, pathogenic fungusWangiella (Exophiala) dermatitidis. Med Mycol 2011; 49:806-18. [DOI: 10.3109/13693786.2011.572930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Pengfei Guo
- The Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
27
|
Abstract
The mechanism of Cd(II) uptake by the dead biomass of macrofungus Pleurotus platypus was investigated using different chemical and instrumental techniques. Sequential removal of cell wall components of the biosorbent revealed that structural polysaccharides play a predominant role in the biosorption of Cd(II). The adsorption kinetics fitted well with the pseudo second-order model suggested that the adsorption of Cd(II) on P platypus involved a chemisorption process. Transmission electron microscopy of the cadmium exposed biomass confirmed the deposition of the metal mainly in the cell wall. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbent confirmed the participation of -OH, -NH and C-O-C groups in the uptake of Cd(II). Energy dispersive X-ray analysis of the biosorbent before and after metal uptake revealed that the main mechanism of adsorption was ion-exchange. The effectiveness of CaCl2 in the desorption of cadmium perhaps suggested the exchange of Ca2+ with Cd(II).
Collapse
Affiliation(s)
- R Vimala
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| | | |
Collapse
|
28
|
Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1324-1334. [PMID: 20672878 DOI: 10.1094/mpmi-02-10-0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fungal cell wall is a dynamic structure that protects the cell from different environmental stresses suggesting that wall synthesizing enzymes are of great importance for fungal virulence. Previously, we reported the isolation and characterization of a mutant in class III chitin synthase, Bcchs3a, in the phytopathogenic fungus Botrytis cinerea. We demonstrated that virulence of this mutant is severely impaired. Here, we describe the virulence phenotype of the cell-wall mutant Bcchs3a on the model plant Arabidopsis thaliana and analyze its virulence properties, using a variety of A. thaliana mutants. We found that mutant Bcchs3a is virulent on pad2 and pad3 mutant leaves defective in camalexin. Mutant Bcchs3a was not more susceptible towards camalexin than the wild-type strain but induced phytoalexin accumulation at the infection site on Col-0 plants. Moreover, this increase in camalexin was correlated with overexpression of the PAD3 gene observed as early as 18 h postinoculation. The infection process of the mutant mycelium was always delayed by 48 h, even on pad3 plants, probably because of lack of mycelium adhesion. No loss in virulence was found when Bcchs3a conidia were used as the inoculum source. Collectively, these data led us to assign a critical role to the BcCHS3a chitin synthase isoform, both in fungal virulence and plant defense response.
Collapse
|
29
|
Treitschke S, Doehlemann G, Schuster M, Steinberg G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. THE PLANT CELL 2010; 22:2476-94. [PMID: 20663961 PMCID: PMC2929105 DOI: 10.1105/tpc.110.075028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/26/2010] [Accepted: 07/08/2010] [Indexed: 05/23/2023]
Abstract
Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 microm at a velocity of approximately 1.75 microm/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.
Collapse
Affiliation(s)
- Steffi Treitschke
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
30
|
Lenardon MD, Munro CA, Gow NAR. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 2010; 13:416-23. [PMID: 20561815 PMCID: PMC2923753 DOI: 10.1016/j.mib.2010.05.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/25/2022]
Abstract
Chitin is an essential part of the carbohydrate skeleton of the fungal cell wall and is a molecule that is not represented in humans and other vertebrates. Complex regulatory mechanisms enable chitin to be positioned at specific sites throughout the cell cycle to maintain the overall strength of the wall and enable rapid, life-saving modifications to be made under cell wall stress conditions. Chitin has also recently emerged as a significant player in the activation and attenuation of immune responses to fungi and other chitin-containing parasites. This review summarises latest advances in the analysis of chitin synthesis regulation in the context of fungal pathogenesis.
Collapse
Affiliation(s)
- Megan D Lenardon
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|
31
|
Disruption of the chitin synthase gene CHS1 from Fusarium asiaticum results in an altered structure of cell walls and reduced virulence. Fungal Genet Biol 2010; 47:205-15. [DOI: 10.1016/j.fgb.2009.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/22/2022]
|
32
|
Cui Z, Ding Z, Yang X, Wang K, Zhu T. Gene disruption and characterization of a class V chitin synthase in Botrytis cinerea. Can J Microbiol 2009; 55:1267-74. [DOI: 10.1139/w09-076] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-wall chitin biosynthesis in the phytopathogenic fungus Botrytis cinerea involves 7 classes of chitin synthases. In this study, we disrupted a gene encoding a chitin synthase with a myosin-like motor domain (BcchsV) through Agrobacterium tumefaciens mediated transformation. The resulting mutant was not significantly affected in either growth characteristics or pathogenicity on tomato leaves. Surprisingly, the BcchsV mutant exhibited a 31% (m/m) increase in its chitin content compared with the wild-type strain. In addition, the BcchsV mutant showed increased sensitivity to Calcofluor White and slightly enhanced tolerance to cell-wall disturbing substances and osmosis regulators, including SDS, sorbitol, and NaCl. These results suggest that Bcchs does not play an essential role in the synthesis of cell-wall chitin in B. cinerea. However, disruption of this gene provoked a compensatory mechanism regulating the cellular response to cell-wall damage.
Collapse
Affiliation(s)
- Zhifeng Cui
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenke Ding
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xiao Yang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Kun Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Tingheng Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| |
Collapse
|
33
|
Abramczyk D, Szaniszlo PJ. Immunoaffinity purification of the class V chitin synthase of Wangiella (Exophiala) dermatitidis. Prep Biochem Biotechnol 2009; 39:277-88. [PMID: 19431044 DOI: 10.1080/10826060902953244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The class V chitin synthase is unique because it has a myosin motor-like domain fused to its catalytic domain. The biochemical properties of this enzyme and its function remain undefined beyond the knowledge that it is the only single chitin synthase required for sustained cell growth at elevated temperatures and, consequently, virulence. This report describes our successful efforts to isolate and purify an active and soluble form of the enzyme from the cell membranes of Wangiella by using a specific polyclonal antibody. To our knowledge, this is the first purification of a single chitin synthase of a filamentous fungus.
Collapse
Affiliation(s)
- Dariusz Abramczyk
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.
| | | |
Collapse
|
34
|
Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity. Curr Genet 2009; 55:449-59. [DOI: 10.1007/s00294-009-0258-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
|
35
|
Wang Q, Szaniszlo PJ. Roles of the pH signaling transcription factor PacC in Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2009; 46:657-66. [PMID: 19501183 DOI: 10.1016/j.fgb.2009.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 01/03/2023]
Abstract
To study the function of the PacC transcription factor in Wangiella dermatitidis, a black, polymorphic fungal pathogen of humans with yeast-phase predominance, the PACC gene was cloned, sequenced, disrupted and expressed. Three zinc finger DNA-binding motifs were found at the N-terminus, and a signaling protease cleavage site at the C-terminus. PACC was more expressed at neutral-alkaline pH than at acidic pH. Truncation at about 40 residues of the coding sequence upstream of the conserved protease processing cleavage site of PacC affected growth on a nutrient-rich medium, increased sensitivity to Na(+) stress, decreased yeast growth at neutral-alkaline pH, and repressed hyphal growth on a nutrient-poor medium at 25 degrees C. Truncation at the coding sequence for the conserved signaling protease box of PacC impaired growth and reduced RNA expression of the class II chitin synthase gene at acidic pH. The results suggested that PacC is important not only for the adaptation of W. dermatitidis to different ambient pH conditions and Na(+) stress conditions, but also for influencing yeast-hyphal transitions in this agent of phaeohyphomycosis.
Collapse
Affiliation(s)
- Qin Wang
- Section of Molecular Genetics and Microbiology, School of Biological Sciences and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
36
|
Nyaoke A, Weber ES, Innis C, Stremme D, Dowd C, Hinckley L, Gorton T, Wickes B, Sutton D, de Hoog S, Frasca S. Disseminated Phaeohyphomycosis in Weedy Seadragons (Phyllopteryx Taeniolatus) and Leafy Seadragons (Phycodurus Eques) Caused by Species of Exophiala, Including a Novel Species. J Vet Diagn Invest 2009; 21:69-79. [DOI: 10.1177/104063870902100111] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the period from January 2002 to March 2007, infections by melanized fungi were identified with greater frequency in aquarium-maintained leafy seadragons ( Phycodurus eques)and weedy seadragons ( Phyllopteryx taeniolatus), pivotal species to the educational and environmental concerns of the aquarium industry and conservation groups. The objective of this study was to characterize the pathology and identify fungi associated with phaeohyphomycotic lesions in these species. Samples from 14 weedy and 6 leafy seadragons were received from 2 institutions and included fresh, frozen, and formalin-fixed tissues from necropsy and biopsy specimens. Fresh and frozen tissues were cultured for fungi on Sabouraud dextrose agar only or both Sabouraud dextrose agar and inhibitory mold agar with gentamicin and chloramphenicol at 30°C. Isolates were processed for morphologic identification and molecular sequence analysis of the internal transcribed spacer region and D1/D2 domains of the large subunit ribosomal RNA gene. Lesions were extensive and consisted of parenchymal and vascular necrosis with fungal invasion of gill (11/20), kidney (14/20), and other coelomic viscera with or without cutaneous ulceration (13/20). Exophiala sp. isolates were obtained from 4 weedy and 3 leafy seadragons and were identified to species level in 6 of 7 instances, namely Exophiala angulospora (1) and a novel species of Exophiala (5), based on nucleotide sequence comparisons and phylogenetic analyses. Disseminated phaeohyphomycosis represents an important pathologic condition of both weedy and leafy seadragons for which 2 species of Exophiala,1a novel species, have been isolated.
Collapse
Affiliation(s)
- Akinyi Nyaoke
- From the Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science
| | - E. Scott Weber
- University of Connecticut, Storrs, CT; New England Aquarium, Boston, MA
| | - Charles Innis
- University of Connecticut, Storrs, CT; New England Aquarium, Boston, MA
| | | | | | - Lynn Hinckley
- From the Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science
| | | | | | | | - Sybren de Hoog
- The University of Texas Health Science Center at San Antonio, San Antonio, TX; and Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands (de Hoog)
| | - Salvatore Frasca
- From the Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science
| |
Collapse
|
37
|
Cytolocalization of the class V chitin synthase in the yeast, hyphal and sclerotic morphotypes of Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2008; 46:28-41. [PMID: 18992354 DOI: 10.1016/j.fgb.2008.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/08/2008] [Accepted: 10/13/2008] [Indexed: 12/21/2022]
Abstract
Wangiella (Exophiala) dermatitidis is a polymorphic fungus that produces polarized yeast and hyphae, as well as a number of non-polarized sclerotic morphotypes. The phenotypic malleability of this agent of human phaeohyphomycosis allows detailed study of its biology, virulence and the regulatory mechanisms responsible for the transitions among the morphotypes. Our prior studies have demonstrated the existence of seven chitin synthase structural genes in W. dermatitidis, each of which encodes an isoenzyme of a different class. Among them, the class V chitin synthase (WdChs5p) is most unique in terms of protein structure, because it has an N-terminal myosin motor-like domain with a P-loop (MMD) fused to its C-terminal chitin synthase catalytic domain (CSCD). However, the exact role played by WdChs5p in the different morphotypes remains undefined beyond the knowledge that it is the only single chitin synthase required for sustained cell growth at 37 degrees C and consequently virulence. This report describes the expression in Escherichia coli of a 12kDa polypeptide (WdMyo12p) of WdChs5p, which was used to raise in rabbits a polyclonal antibody that recognized exclusively its MMD region. Results from the use of the antibody in immunocytolocalization studies supported our previous findings that WdChs5p is critically important at infection temperatures for maintaining the cell wall integrity of developing yeast buds, elongating tips of hyphae, and random sites of expansion in sclerotic forms. The results also suggested that WdChs5p localizes to the regions of cell wall growth in an actin-dependent fashion.
Collapse
|
38
|
Wheeler MH, Abramczyk D, Puckhaber LS, Naruse M, Ebizuka Y, Fujii I, Szaniszlo PJ. New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-Tetrahydroxynaphthalene as a novel precursor. EUKARYOTIC CELL 2008; 7:1699-711. [PMID: 18676950 PMCID: PMC2568069 DOI: 10.1128/ec.00179-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022]
Abstract
The predominant cell wall melanin of Wangiella dermatitidis, a black fungal pathogen of humans, is synthesized from 1,8-dihydroxynaphthalene (D2HN). An early precursor, 1,3,6,8-tetrahydroxynaphthalene (T4HN), in the pathway leading to D2HN is reportedly produced directly as a pentaketide by an iterative type I polyketide synthase (PKS). In contrast, the bluish-green pigment in Aspergillus fumigatus is produced after the enzyme Ayg1p converts the PKS product, the heptaketide YWA1, to T4HN. Previously, we created a new melanin-deficient mutant of W. dermatitidis, WdBrm1, by random molecular insertion. From this strain, the altered gene WdYG1 was cloned by a marker rescue strategy and found to encode WdYg1p, an ortholog of Ayg1p. In the present study, two gene replacement mutants devoid of the complete WdYG1 gene were derived to eliminate the possibility that the phenotype of WdBrm1 was due to other mutations. Characterization of the new mutants showed that they were phenotypically identical to WdBrm1. Chemical analyses of mutant cultures demonstrated that melanin biosynthesis was blocked, resulting in the accumulation of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (AT4HN) and its oxidative product 3-acetylflaviolin in the culture media. When given to an albino W. dermatitidis strain with an inactivated WdPKS1 gene, AT4HN was mostly oxidized to 3-acetylflaviolin and deacetylated to flaviolin. Under reduced oxygen conditions, cell-free homogenates of the albino converted AT4HN to D2HN. This is the first report of evidence that the hexaketide AT4HN is a melanin precursor for T4HN in W. dermatitidis.
Collapse
Affiliation(s)
- Michael H Wheeler
- United States Department of Agriculture, Cotton Pathology Research Unit, Agricultural Research Service, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chandler JM, Treece ER, Trenary HR, Brenneman JL, Flickner TJ, Frommelt JL, Oo ZM, Patterson MM, Rundle WT, Valle OV, Kim TD, Walker GR, Cooper CR. Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei. Proteome Sci 2008; 6:17. [PMID: 18533041 PMCID: PMC2478645 DOI: 10.1186/1477-5956-6-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37°C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei. Results Whole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous Aspergillus proteins. Conclusion This study clearly demonstrates the utility of proteomic approaches to studying dimorphism in P. marneffei. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in P. marneffei.
Collapse
Affiliation(s)
- Julie M Chandler
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Erin R Treece
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Heather R Trenary
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Jessica L Brenneman
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Tressa J Flickner
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Jonathan L Frommelt
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Zaw M Oo
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Megan M Patterson
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - William T Rundle
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Olga V Valle
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Thomas D Kim
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Gary R Walker
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Chester R Cooper
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| |
Collapse
|
40
|
Advances in understanding hyphal morphogenesis: Ontogeny, phylogeny and cellular localization of chitin synthases. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2008.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PRJ, Bulone V, van West P. Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. THE PLANT CELL 2008; 20:720-38. [PMID: 18349153 PMCID: PMC2329931 DOI: 10.1105/tpc.107.052043] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 02/14/2008] [Accepted: 03/03/2008] [Indexed: 05/20/2023]
Abstract
Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria. Expression of all four genes is coordinately upregulated during pre- and early infection stages of potato. Inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile leads to a dramatic reduction in the number of normal germ tubes with appressoria, severe disruption of the cell wall in the preinfection structures, and a complete loss of pathogenicity. Silencing of the entire gene family in P. infestans with RNA interference leads to a similar disruption of the cell wall surrounding appressoria and an inability to form typical functional appressoria. In addition, the cellulose content of the cell walls of the silenced lines is >50% lower than in the walls of the nonsilenced lines. Our data demonstrate that the isolated genes are involved in cellulose biosynthesis and that cellulose synthesis is essential for infection by P. infestans.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Aberdeen Oomycete Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Meyer V. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 2007; 78:17-28. [PMID: 18066545 DOI: 10.1007/s00253-007-1291-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
Abstract
As fungal infections are becoming more prevalent in the medical or agricultural fields, novel and more efficient antifungal agents are badly needed. Within the scope of developing new strategies for the management of fungal infections, antifungal compounds that target essential fungal cell wall components are highly preferable. Ideally, newly developed antimycotics should also combine major aspects such as sustainability, high efficacy, limited toxicity and low costs of production. A naturally derived molecule that possesses all the desired characteristics is the antifungal protein (AFP) secreted by the filamentous ascomycete Aspergillus giganteus. AFP is a small, basic and cysteine-rich peptide that exerts extremely potent antifungal activity against human- and plant-pathogenic fungi without affecting the viability of bacteria, yeast, plant and mammalian cells. This review summarises the current knowledge of the structure, mode of action and expression of AFP, and highlights similarities and differences concerning these issues between AFP and its related proteins from other Ascomycetes. Furthermore, the potential use of AFP in the combat against fungal contaminations and infections will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- TU Berlin, Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
43
|
Liu H, Szaniszlo PJ. Transcription and expression analyses of WdCHS5, which encodes a class V chitin synthase with a myosin motor-like domain in Wangiella (Exophiala) dermatitidis. FEMS Microbiol Lett 2007; 276:99-105. [PMID: 17937668 DOI: 10.1111/j.1574-6968.2007.00920.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
WdChs5p in Wangiella dermatitidis is a class V chitin synthase that is required for sustained cell growth at the temperature of infection (37 degrees C) and its encoding gene, WdCHS5, has a differential expression feature. Nuclear run-on and mRNA stability assays showed that increased WdCHS5 mRNA synthesis was the major factor responsible for the increased WdCHS5 transcript at 37 degrees C. Epitope tagging of WdChs5p in W. dermatitidis showed that the WdChs5p-myc protein had a differential expression feature that was similar to the differential transcription of the WdCHS5 gene. In conclusion, it is shown that transcriptional regulation is the first and probably the most important control point of the expression of WdCHS5.
Collapse
Affiliation(s)
- Hongbo Liu
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712-1095, USA
| | | |
Collapse
|
44
|
Werner S, Sugui JA, Steinberg G, Deising HB. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1555-1567. [PMID: 17990963 DOI: 10.1094/mpmi-20-12-1555] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chitin synthesis contributes to cell wall biogenesis and is essential for invasion of solid substrata and pathogenicity of filamentous fungi. In contrast to yeasts, filamentous fungi contain up to 10 chitin synthases (CHS), which might reflect overlapping functions and indicate their complex lifestyle. Previous studies have shown that a class VI CHS of the maize anthracnose fungus Colletotrichum graminicola is essential for cell wall synthesis of conidia and vegetative hyphae. Here, we report on cloning and characterization of three additional CHS genes, CgChsI, CgChsIII, and CgChsV, encoding class I, III, and V CHS, respectively. All CHS genes are expressed during vegetative and pathogenic development. DeltaCgChsI and DeltaCgChsIII mutants did not differ significantly from the wild-type isolate with respect to hyphal growth and pathogenicity. In contrast, null mutants in the CgChsV gene, which encodes a CHS with an N-terminal myosin-like motor domain, are strongly impaired in vegetative growth and pathogenicity. Even in osmotically stabilized media, vegetative hyphae of DeltaCgChsV mutants exhibited large balloon-like swellings, appressorial walls appeared to disintegrate during maturation, and infection cells were nonfunctional. Surprisingly, DeltaCgChsV mutants were able to form dome-shaped hyphopodia that exerted force and showed host cell wall penetration rates comparable with the wild type. However, infection hyphae that formed within the plant cells exhibited severe swellings and were not able to proceed with plant colonization efficiently. Consequently, DeltaCgChsV mutants did not develop macroscopically visible anthracnose disease symptoms and, thus, were nonpathogenic.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität-Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
45
|
ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. EUKARYOTIC CELL 2007; 7:112-21. [PMID: 17993572 DOI: 10.1128/ec.00347-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new myosin motor-like chitin synthase gene, chsVb, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Phylogenetic analysis of the deduced amino acid sequence of the chsVb chitin synthase 2 domain (CS2) revealed that ChsVb belongs to class VII chitin synthases. The ChsVb myosin motor-like domain (MMD) is shorter than the MMD of class V chitin synthases and does not contain typical ATP-binding motifs. Targeted disrupted single (DeltachsVb) and double (DeltachsV DeltachsVb) mutants were unable to infect and colonize tomato plants or grow invasively on tomato fruit tissue. These strains were hypersensitive to compounds that interfere with fungal cell wall assembly, produced lemon-like shaped conidia, and showed swollen balloon-like structures in hyphal subapical regions, thickened walls, aberrant septa, and intrahyphal hyphae. Our results suggest that the chsVb gene is likely to function in polarized growth and confirm the critical importance of cell wall integrity in the complex infection process of this fungus.
Collapse
|
46
|
Liu H, Abramczyk D, Cooper CR, Zheng L, Park C, Szaniszlo PJ. Molecular cloning and characterization of WdTUP1, a gene that encodes a potential transcriptional repressor important for yeast-hyphal transitions in Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2007; 45:646-56. [PMID: 18061494 DOI: 10.1016/j.fgb.2007.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 10/07/2007] [Accepted: 10/12/2007] [Indexed: 11/28/2022]
Abstract
The general transcriptional repressor Tup1p is known to influence cell development in many fungi. To determine whether the Tup1p ortholog (WdTup1p) of Wangiella dermatitidis also influences cellular development in this melanized, polymorphic human pathogen, the gene (WdTUP1) that encodes this transcription factor was isolated, sequenced and disrupted. Phylogenetic analysis showed that the WdTup1p sequence was closely related to homologues in other polymorphic, conidiogenous fungi. Disruption of WdTUP1 produced mutants (wdtup1Delta) with pronounced growth and cellular abnormalities, including slow growth on various agar media and exclusively as a filamentous morphotype in liquid media. We concluded that WdTup1p represents an important switch regulator that controls the yeast-to-filamentous growth transition. However, detailed observations of the filamentous growth of the disruption mutant showed that the hyphae produced by the wdtup1Delta mutants, unlike those of the wild-type, were arrested at a stage prior to the formation of true hyphae and subsequent conidia production.
Collapse
Affiliation(s)
- Hongbo Liu
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- Unite des Aspergillus, Institut Pasteur, 25, rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
48
|
Wang Q, Szaniszlo PJ. WdStuAp, an APSES transcription factor, is a regulator of yeast-hyphal transitions in Wangiella (Exophiala) dermatitidis. EUKARYOTIC CELL 2007; 6:1595-605. [PMID: 17693595 PMCID: PMC2043362 DOI: 10.1128/ec.00037-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
APSES transcription factors are well-known regulators of fungal cellular development and differentiation. To study the function of an APSES protein in the fungus Wangiella dermatitidis, a conidiogenous and polymorphic agent of human phaeohyphomycosis with yeast predominance, the APSES transcription factor gene WdSTUA was cloned, sequenced, disrupted, and overexpressed. Analysis showed that its derived protein was most similar to the APSES proteins of other conidiogenous molds and had its APSES DNA-binding domain located in the amino-terminal half. Deletion of WdSTUA in W. dermatitidis induced convoluted instead of normal smooth colony surface growth on the rich yeast maintenance agar medium yeast extract-peptone-dextrose agar (YPDA) at 37 degrees C. Additionally, deletion of WdSTUA repressed aerial hyphal growth, conidiation, and invasive hyphal growth on the nitrogen-poor, hypha-inducing agar medium potato dextrose agar (PDA) at 25 degrees C. Ectopic overexpression of WdSTUA repressed the convoluted colony surface growth on YPDA at 37 degrees C, and also strongly repressed hyphal growth on PDA at 25 degrees C and 37 degrees C. These new results provide additional insights into the diverse roles played by APSES factors in fungi. They also suggest that the transcription factor encoded by WdSTUA is both a positive and negative morphotype regulator in W. dermatitidis and possibly other of the numerous human pathogenic, conidiogenous fungi capable of yeast growth.
Collapse
Affiliation(s)
- Qin Wang
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
49
|
Isolation and characterization of the gene encoding a chitin synthase with a myosin motor-like domain from the edible basidiomycetous mushroom, Lentinula edodes, and its expression in the course of fruit-body formation. MYCOSCIENCE 2007. [DOI: 10.1007/s10267-006-0339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Hagen S, Marx F, Ram AF, Meyer V. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 2007; 73:2128-34. [PMID: 17277210 PMCID: PMC1855660 DOI: 10.1128/aem.02497-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal protein AFP from Aspergillus giganteus is highly effective in restricting the growth of major human- and plant-pathogenic filamentous fungi. However, a fundamental prerequisite for the use of AFP as an antifungal drug is a complete understanding of its mode of action. In this study, we performed several analyses focusing on the assumption that the chitin biosynthesis of sensitive fungi is targeted by AFP. Here we show that the N-terminal domain of AFP (amino acids 1 to 33) is sufficient for efficient binding of AFP to chitin but is not adequate for inhibition of the growth of sensitive fungi. AFP susceptibility tests and SYTOX Green uptake experiments with class III and class V chitin synthase mutants of Fusarium oxysporum and Aspergillus oryzae showed that deletions made the fungi less sensitive to AFP and its membrane permeabilization effect. In situ chitin synthase activity assays revealed that chitin synthesis is specifically inhibited by AFP in sensitive fungi, indicating that AFP causes cell wall stress and disturbs cell integrity. Further evidence that there was AFP-induced cell wall stress was obtained by using an Aspergillus niger reporter strain in which the cell wall integrity pathway was strongly induced by AFP.
Collapse
Affiliation(s)
- Silke Hagen
- Berlin University of Technology, Institute of Biotechnology, Department Microbiology and Genetics, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany
| | | | | | | |
Collapse
|