1
|
Azimova D, Herrera N, Duvenage L, Voorhies M, Rodriguez RA, English BC, Hoving JC, Rosenberg O, Sil A. Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis. PLoS Pathog 2022; 18:e1010417. [PMID: 35731824 PMCID: PMC9255746 DOI: 10.1371/journal.ppat.1010417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/05/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Intracellular pathogens secrete effectors to manipulate their host cells. Histoplasma capsulatum (Hc) is a fungal intracellular pathogen of humans that grows in a yeast form in the host. Hc yeasts are phagocytosed by macrophages, where fungal intracellular replication precedes macrophage lysis. The most abundant virulence factor secreted by Hc yeast cells is Calcium Binding Protein 1 (Cbp1), which is absolutely required for macrophage lysis. Here we take an evolutionary, structural, and cell biological approach to understand Cbp1 function. We find that Cbp1 is present only in the genomes of closely related dimorphic fungal species of the Ajellomycetaceae family that lead primarily intracellular lifestyles in their mammalian hosts (Histoplasma, Paracoccidioides, and Emergomyces), but not conserved in the extracellular fungal pathogen Blastomyces dermatitidis. We observe a high rate of fixation of non-synonymous substitutions in the Cbp1 coding sequences, indicating that Cbp1 is under positive selection. We determine the de novo structures of Hc H88 Cbp1 and the Paracoccidioides americana (Pb03) Cbp1, revealing a novel "binocular" fold consisting of a helical dimer arrangement wherein two helices from each monomer contribute to a four-helix bundle. In contrast to Pb03 Cbp1, we show that Emergomyces Cbp1 orthologs are unable to stimulate macrophage lysis when expressed in the Hc cbp1 mutant. Consistent with this result, we find that wild-type Emergomyces africanus yeast are able to grow within primary macrophages but are incapable of lysing them. Finally, we use subcellular fractionation of infected macrophages and indirect immunofluorescence to show that Cbp1 localizes to the macrophage cytosol during Hc infection, making this the first instance of a phagosomal human fungal pathogen directing an effector into the cytosol of the host cell. We additionally show that Cbp1 forms a complex with Yps-3, another known Hc virulence factor that accesses the cytosol. Taken together, these data imply that Cbp1 is a fungal virulence factor under positive selection that localizes to the cytosol to trigger host cell lysis.
Collapse
Affiliation(s)
- Dinara Azimova
- University of California San Francisco, San Francisco, California, United States of America
| | - Nadia Herrera
- University of California San Francisco, San Francisco, California, United States of America
| | - Lucian Duvenage
- AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mark Voorhies
- University of California San Francisco, San Francisco, California, United States of America
| | - Rosa A. Rodriguez
- University of California San Francisco, San Francisco, California, United States of America
| | - Bevin C. English
- University of California Davis, Davis, California, United States of America
| | - Jennifer C. Hoving
- AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Oren Rosenberg
- University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
3
|
Edwards JA, Chen C, Kemski MM, Hu J, Mitchell TK, Rappleye CA. Histoplasma yeast and mycelial transcriptomes reveal pathogenic-phase and lineage-specific gene expression profiles. BMC Genomics 2013; 14:695. [PMID: 24112604 PMCID: PMC3852720 DOI: 10.1186/1471-2164-14-695] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 11/13/2022] Open
Abstract
Background The dimorphic fungus Histoplasma capsulatum causes respiratory and systemic disease in mammalian hosts by expression of factors that enable survival within phagocytic cells of the immune system. Histoplasma’s dimorphism is distinguished by growth either as avirulent mycelia or as pathogenic yeast. Geographically distinct strains of Histoplasma differ in their relative virulence in mammalian hosts and in production of and requirement for specific virulence factors. The close similarity in the genome sequences of these diverse strains suggests that phenotypic variations result from differences in gene expression rather than gene content. To provide insight into how the transcriptional program translates into morphological variation and the pathogenic lifestyle, we compared the transcriptional profile of the pathogenic yeast phase and the non-pathogenic mycelial phase of two clinical isolates of Histoplasma. Results To overcome inaccuracies in ab initio genome annotation of the Histoplasma genome, we used RNA-seq methodology to generate gene structure models based on experimental evidence. Quantitative analyses of the sequencing reads revealed 6% to 9% of genes are differentially regulated between the two phases. RNA-seq-based mRNA quantitation was strongly correlated with gene expression levels determined by quantitative RT-PCR. Comparison of the yeast-phase transcriptomes between strains showed 7.6% of all genes have lineage-specific expression differences including genes contributing, or potentially related, to pathogenesis. GFP-transcriptional fusions and their introduction into both strain backgrounds revealed that the difference in transcriptional activity of individual genes reflects both variations in the cis- and trans-acting factors between Histoplasma strains. Conclusions Comparison of the yeast and mycelial transcriptomes highlights genes encoding virulence factors as well as those involved in protein glycosylation, alternative metabolism, lipid remodeling, and cell wall glycanases that may contribute to Histoplasma pathogenesis. These studies lay an essential foundation for understanding how gene expression variations contribute to the strain- and phase-specific virulence differences of Histoplasma.
Collapse
Affiliation(s)
- Jessica A Edwards
- The Department of Microbiology, Ohio State University, 484 W, 12th Ave,, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailão AM, Brigido MM, Ferreira MEDS, Garcia AM, Grynberg M, Gujja S, Heiman DI, Henn MR, Kodira CD, León-Narváez H, Longo LVG, Ma LJ, Malavazi I, Matsuo AL, Morais FV, Pereira M, Rodríguez-Brito S, Sakthikumar S, Salem-Izacc SM, Sykes SM, Teixeira MM, Vallejo MC, Walter MEMT, Yandava C, Young S, Zeng Q, Zucker J, Felipe MS, Goldman GH, Haas BJ, McEwen JG, Nino-Vega G, Puccia R, San-Blas G, Soares CMDA, Birren BW, Cuomo CA. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet 2011; 7:e1002345. [PMID: 22046142 PMCID: PMC3203195 DOI: 10.1371/journal.pgen.1002345] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
Collapse
Affiliation(s)
| | - Mia D. Champion
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jason W. Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jonathan Goldberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Alexandre M. Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Ana Maria Garcia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - David I. Heiman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chinnappa D. Kodira
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Henry León-Narváez
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Larissa V. G. Longo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Li-Jun Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Iran Malavazi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alisson L. Matsuo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia V. Morais
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Pesquisa y Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Rodríguez-Brito
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Sharadha Sakthikumar
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Silvia M. Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sean M. Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Milene C. Vallejo
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Chandri Yandava
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeremy Zucker
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Maria Sueli Felipe
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, São Paulo, Brazil
| | - Brian J. Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Juan G. McEwen
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia, e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gioconda San-Blas
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|