1
|
Diver P, Ward BA, Cunliffe M. Cell morphological plasticity in response to substrate availability of a cosmopolitan polymorphic yeast from the open ocean. Mycologia 2025; 117:95-109. [PMID: 39585805 DOI: 10.1080/00275514.2024.2418784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024]
Abstract
Polymorphic yeasts can switch between unicellular division and multicellular filamentous growth. Although prevalent in aquatic ecosystems, such as the open ocean, we have a limited understanding of the controlling factors on their morphological variation in an aquatic ecology context. Here we show that substrate concentration regulates cell morphogenesis in a cosmopolitan polymorphic yeast, Aureobasidium pullulans, isolated from the pelagic open ocean and analyzed in liquid batch culture. Filamentous cell development was triggered only under high initial substrate conditions, suggesting that hyphal growth could be more advantageous under eutrophic conditions and may influence pelagic fungal interactions with particulate organic matter. Filamentous growth proportionally declined before the exhaustion of substrate and before budding yeast-type cell division entered stationary phase, possibly modulated by quorum sensing as previously evidenced in other polymorphic yeasts. We also found that budding yeast-type unicells decreased in size and became more elongated in shape in response to substrate depletion, resulting in higher cell surface area to volume ratios, which could affect yeast dispersal and/or provide a nutrient uptake advantage under oligotrophic conditions. Our results demonstrate resource-responsive morphological plasticity in a marine-derived polymorphic yeast, providing mechanistic insight into the ability of fungi to survive fluctuating environmental conditions such as in the open ocean.
Collapse
Affiliation(s)
- Poppy Diver
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Ben A Ward
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
2
|
Veiga FF, Marcomini EK, Salvador A, Chiavelli LUR, Barros ILE, de Castro LV, Lucca DL, Ochikubo LMK, Baesso ML, Pomini AM, Svidzinski TIE, Negri M. Detection of 2-ethyl-1-hexanol and its modulating effect in biofilm of Fusarium oxysporum. Mol Microbiol 2024; 122:630-642. [PMID: 38038143 DOI: 10.1111/mmi.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
In immunocompetent individuals, Fusarium spp. stands out as the causative agent of onychomycosis, among the non-dermatophyte molds. Despite evidence indicating that Fusarium oxysporum organizes itself in the form of a biofilm causing onychomycosis, there is little literature on the etiopathogenesis of the biofilm on the nail, specifically the signaling molecules present, known as quorum sensing (QS). Thus, this study detected the presence of a molecule related to QS from the ex vivo biofilm of F. oxysporum on human nail and investigated its effect on preformed biofilm in vitro. The detection and physicochemical characterization of a QS molecule, from the extracellular matrix (ECM), was carried out by Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflectance (ATR) accessory and by headspace gas chromatography coupled to mass spectrometry (GC-MS) analyses. Determination of viable cells, cell activity, total biomass, ECM components and scanning electron microscopy (SEM) were performed to evaluate the influence of the QS molecule on the in vitro biofilm of F. oxysporum. The beginning, in the ex vivo biofilm of F. oxysporum on human nails, the volatile organic compound 2-ethyl-1-hexanol (2EH) was detected as a component of QS. Thereafter in vitro analyses, synthetic 2EH was able to modulate the biofilm by stimulating its filament, increasing total biomass and ECM production in terms of total carbohydrates, but with a reduction in total proteins and nucleic acids. We thus evidence, for the first time, the presence of 2EH in the biofilm of F. oxysporum, developed on the human nail, and the in vitro action of this compound as a QS molecule.
Collapse
Affiliation(s)
- Flavia Franco Veiga
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Alana Salvador
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | - Diego Luis Lucca
- Department of Chemistry, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | | | - Melyssa Negri
- Clinical Analysis Department, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
3
|
Puyo M, Scalabrino L, Romanet R, Simonin S, Klein G, Alexandre H, Tourdot-Maréchal R. Competition for Nitrogen Resources: An Explanation of the Effects of a Bioprotective Strain Metschnikowia pulcherrima on the Growth of Hanseniaspora Genus in Oenology. Foods 2024; 13:724. [PMID: 38472837 DOI: 10.3390/foods13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
As a biological alternative to the antimicrobial action of SO2, bioprotection has been proposed to winemakers as a means to limit or prevent grape musts microbial alteration. Competition for nitrogenous nutrients and for oxygen are often cited as potential explanations for the effectiveness of bioprotection. This study analyses the effect of a bioprotective M. pulcherrima strain on the growth of one H. valbyensis strain and one H. uvarum strain. Bioprotection efficiency was observed only against H. valbyensis inoculated at the two lowest concentrations. These results indicate a potential species-dependent efficiency of the bioprotective strain and a strong impact of the initial ratio between bioprotective and apiculate yeasts. The analysis of the consumption of nitrogen compounds revealed that leucine, isoleucine, lysine and tryptophan were consumed preferentially by all three strains. The weaker assimilation percentages of these amino acids observed in H. valbyensis at 24 h growth suggest competition with M. pulcherrima that could negatively affects the growth of the apiculate yeast in co-cultures. The slowest rate of O2 consumption of H. valbyensis strain, in comparison with M. pulcherrima, was probably not involved in the bioprotective effect. Non-targeted metabolomic analyses of M. pulcherrima and H. valbyensis co-culture indicate that the interaction between both strains particularly impact lysin and tryptophan metabolisms.
Collapse
Affiliation(s)
- Maëlys Puyo
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Léa Scalabrino
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform, UMR Procédés Alimentaires et Microbiologiques, IUVV, 2 Rue 11 Claude Ladrey, 21000 Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Géraldine Klein
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| |
Collapse
|
4
|
Leal CM, Geiger A, Molnár A, Váczy KZ, Kgobe G, Zsófi Z, Geml J. Disentangling the effects of terroir, season, and vintage on the grapevine fungal pathobiome. Front Microbiol 2024; 14:1322559. [PMID: 38298541 PMCID: PMC10829339 DOI: 10.3389/fmicb.2023.1322559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
The composition, diversity and dynamics of microbial communities associated with grapevines may be influenced by various environmental factors, including terroir, vintage, and season. Among these factors, terroir stands out as a unique possible determinant of the pathobiome, the community of plant-associated pathogens. This study employed high-throughput molecular techniques, including metabarcoding and network analysis, to investigate the compositional dynamics of grapevine fungal pathobiome across three microhabitats (soil, woody tissue, and bark) using the Furmint cultivar. Samples were collected during late winter and late summer in 2020 and 2021, across three distinct terroirs in Hungary's Tokaj wine region. Of the 123 plant pathogenic genera found, Diplodia, Phaeomoniella, and Fusarium displayed the highest richness in bark, wood, and soil, respectively. Both richness and abundance exhibited significant disparities across microhabitats, with plant pathogenic fungi known to cause grapevine trunk diseases (GTDs) demonstrating highest richness and abundance in wood and bark samples, and non-GTD pathogens prevailed soil. Abundance and richness, however, followed distinct patterns Terroir accounted for a substantial portion of the variance in fungal community composition, ranging from 14.46 to 24.67%. Season and vintage also contributed to the variation, explaining 1.84 to 2.98% and 3.67 to 6.39% of the variance, respectively. Notably, significant compositional differences in fungi between healthy and diseased grapevines were only identified in wood and bark samples. Cooccurrence networks analysis, using both unweighted and weighted metrics, revealed intricate relationships among pathogenic fungal genera. This involved mostly positive associations, potentially suggesting synergism, and a few negative relationships, potentially suggesting antagonistic interactions. In essence, the observed differences among terroirs may stem from environmental filtering due to varied edaphic and mesoclimatic conditions. Temporal weather and vine management practices could explain seasonal and vintage fungal dynamics. This study provides insights into the compositional dynamics of grapevine fungal pathobiome across different microhabitats, terroirs, seasons, and health statuses. The findings emphasize the importance of considering network-based approaches in studying microbial communities and have implications for developing improved viticultural plant health strategies.
Collapse
Affiliation(s)
- Carla Mota Leal
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Adrienn Geiger
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Anna Molnár
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z. Váczy
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Glodia Kgobe
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Gödöllő, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- ELKH-EKKE Lendulet Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
5
|
Cao J, Xie J, Yu M, Xu T, Zhang H, Chen L, Sun S. The Promoting Mechanism of the Sterile Fermentation Filtrate of Serratia odorifera on Hypsizygus marmoreus by Means of Metabolomics Analysis. Biomolecules 2023; 13:1804. [PMID: 38136674 PMCID: PMC10741993 DOI: 10.3390/biom13121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nutritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that the exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS) signaling molecules, 3-oxo-C6-HSL, cyclo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (p < 0.05). In addition, non-targeted metabolomic analysis revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (p < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respectively (p < 0.05). We speculate that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. marmoreus.
Collapse
Affiliation(s)
- Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Jiacheng Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Mingming Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Tao Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Huangru Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
6
|
Santos-Pascual R, Campoy I, Sanz Mata D, Martínez MJ, Prieto A, Barriuso J. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae. Microbiol Spectr 2023; 11:e0029023. [PMID: 37796004 PMCID: PMC10715110 DOI: 10.1128/spectrum.00290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This manuscript presents a comprehensive study on the molecular mechanisms triggered by the quorum sensing (QS) molecule farnesol in the biotechnologically relevant fungus Ophiostoma piceae. We present for the first time, using a multiomics approach, an in-depth analysis of the QS response in a saprotroph fungus, detailing the molecular components involved in the response and their possible mechanisms of action. We think that these results are particularly relevant in the knowledge of the functioning of the QS in eukaryotes, as well as for the exploitation of these mechanisms.
Collapse
Affiliation(s)
- Rodrigo Santos-Pascual
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Iván Campoy
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - David Sanz Mata
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Puyo M, Simonin S, Bach B, Klein G, Alexandre H, Tourdot-Maréchal R. Bio-protection in oenology by Metschnikowia pulcherrima: from field results to scientific inquiry. Front Microbiol 2023; 14:1252973. [PMID: 37664122 PMCID: PMC10469929 DOI: 10.3389/fmicb.2023.1252973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Finding alternatives to the use of chemical inputs to preserve the sanitary and organoleptic quality of food and beverages is essential to meet public health requirements and consumer preferences. In oenology, numerous manufacturers already offer a diverse range of bio-protection yeasts to protect must against microbiological alterations and therefore limit or eliminate sulphites during winemaking. Bio-protection involves selecting non-Saccharomyces yeasts belonging to different genera and species to induce negative interactions with indigenous microorganisms, thereby limiting their development and their impact on the matrix. Although the effectiveness of bio-protection in the winemaking industry has been reported in numerous journals, the underlying mechanisms are not yet well understood. The aim of this review is to examine the current state of the art of field trials and laboratory studies that demonstrate the effects of using yeasts for bio-protection, as well as the interaction mechanisms that may be responsible for these effects. It focuses on the yeast Metschnikowia pulcherrima, particularly recommended for the bio-protection of grape musts.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Benoit Bach
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| |
Collapse
|
8
|
Lv T, Zhan C, Pan Q, Xu H, Fang H, Wang M, Matsumoto H. Plant pathogenesis: Toward multidimensional understanding of the microbiome. IMETA 2023; 2:e129. [PMID: 38867927 PMCID: PMC10989765 DOI: 10.1002/imt2.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/14/2024]
Abstract
Single pathogen-targeted disease management measure has shown drawbacks in field efficacy under the scenario of global change. An in-depth understanding of plant pathogenesis will provide a promising solution but faces the challenges of the emerging paradigm involving the plant microbiome. While the beneficial impact of the plant microbiome is well characterized, their potential role in facilitating pathological processes has so far remained largely overlooked. To address these unsolved controversies and emerging challenges, we hereby highlight the pathobiome, the disease-assisting portion hidden in the plant microbiome, in the plant pathogenesis paradigm. We review the detrimental actions mediated by the pathobiome at multiple scales and further discuss how natural and human triggers result in the prevalence of the plant pathobiome, which would probably provide a clue to the mitigation of plant disease epidemics. Collectively, the article would advance the current insight into plant pathogenesis and also pave a new way to cope with the upward trends of plant disease by designing the pathobiome-targeted measure.
Collapse
Affiliation(s)
- Tianxing Lv
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Chengfang Zhan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Qianqian Pan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Haorong Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hongda Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Global Education Program for AgriScience Frontiers, Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Lyagin I, Aslanli A, Domnin M, Stepanov N, Senko O, Maslova O, Efremenko E. Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity. Int J Mol Sci 2023; 24:11359. [PMID: 37511117 PMCID: PMC10379199 DOI: 10.3390/ijms241411359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Active research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes (glucanases and proteases), in turn, exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms. A wide substrate range of enzymes allows the use of various mechanisms of their antifungal actions. In this review, we discuss the prospects of combining two different types of antifungal agents (metals and enzymes) against mycelial fungi and yeast cells. Special attention is paid to the possible influence of metals on the activity of the enzymes and the possible effects of proteins on the antifungal activity of metal-containing compounds.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Maksim Domnin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
10
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
11
|
Andes DR, Nett JE. Analysis of Candida Antifungal Resistance Using Animal Infection Models. Methods Mol Biol 2023; 2658:225-238. [PMID: 37024706 PMCID: PMC11577834 DOI: 10.1007/978-1-0716-3155-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Candida frequently produces three general disease states, including mucosal candidiasis, disseminated candidiasis, and biofilm infection (which can be present with either of the other disease states). Antifungal drug resistance is intrinsic to biofilm growth and has emerged in other disease states. Mechanistic studies have uncovered the genetic pathways governing resistance to a number of antifungal agents. However, analyzing the clinical relevance of distinct mechanisms is fundamental for broadening our knowledge of antifungal drug resistance and for delineating the potential impact of targeting these pathways medically. Also, as drug-resistant strains and biofilms represent important nosocomial problems, preclinical animal models to assess the activity of novel antifungals are of great interest. Here we describe two rodent models that mimic the most common biofilm device and disseminated candidiasis states in patients. The model systems incorporate the anatomical site, immune components, and antifungal exposures relevant for the study of antifungal resistance. The models can be used to analyze mutant strains, assess the extent of drug resistance, examine biofilm formation, test new antimicrobials, and help determine drug exposures that may be linked with clinical failure.
Collapse
|
12
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
13
|
Souza LS, Irie Y, Eda S. Black Queen Hypothesis, partial privatization, and quorum sensing evolution. PLoS One 2022; 17:e0278449. [PMID: 36449503 PMCID: PMC9710793 DOI: 10.1371/journal.pone.0278449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce costly cooperative goods whose benefit is partially shared with nonproducers, called 'mixed' goods. The Black Queen Hypothesis predicts that partial privatization has two major evolutionary implications. First, to favor strains producing several types of mixed goods over nonproducing strains. Second, to favor the maintenance of cooperative traits through different strains instead of having all cooperative traits present in a single strain (metabolic specialization). Despite the importance of quorum sensing regulation of mixed goods, it is unclear how partial privatization affects quorum sensing evolution. Here, we studied the influence of partial privatization on the evolution of quorum sensing. We developed a mathematical population genetics model of an unstructured microbial population considering four strains that differ in their ability to produce an autoinducer (quorum sensing signaling molecule) and a mixed good. Our model assumes that the production of the autoinducers and the mixed goods is constitutive and/or depends on quorum sensing. Our results suggest that, unless autoinducers are costless, partial privatization cannot favor quorum sensing. This result occurs because with costly autoinducers: (1) a strain that produces both autoinducer and goods (fully producing strain) cannot persist in the population; (2) the strain only producing the autoinducer and the strain producing mixed goods in response to the autoinducers cannot coexist, i.e., metabolic specialization cannot be favored. Together, partial privatization might have been crucial to favor a primordial form of quorum sensing-where autoinducers were thought to be a metabolic byproduct (costless)-but not the transition to nowadays costly autoinducers.
Collapse
Affiliation(s)
- Lucas Santana Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Yasuhiko Irie
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
14
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
15
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Hyphal Fusions Enable Efficient Nutrient Distribution in Colletotrichum graminicola Conidiation and Symptom Development on Maize. Microorganisms 2022; 10:microorganisms10061146. [PMID: 35744664 PMCID: PMC9231406 DOI: 10.3390/microorganisms10061146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyphal and germling fusion is a common phenomenon in ascomycetous fungi. Due to the formed hyphal network, this process enables a coordinated development as well as an interaction with plant hosts and efficient nutrient distribution. Recently, our laboratory work demonstrated a positive correlation between germling fusion and the formation of penetrating hyphopodia on maize leaves outgoing from Colletotrichum graminicola oval conidia. To investigate the probable interconnectivity of these processes, we generated a deletion mutant in Cgso, in which homologs are essential for cellular fusion in other fungal species. However, hyphopodia development was not affected, indicating that both processes are not directly connected. Instead, we were able to link the cellular fusion defect in ∆Cgso to a decreased formation of asexual fruiting bodies of C. graminicola on the leaves. The monitoring of a fluorescent-labelled autophagy marker, eGFP-CgAtg8, revealed a high autophagy activity in the hyphae surrounding the acervuli. These results support the hypothesis that the efficient nutrient transport of degraded cellular material by hyphal fusions enables proper acervuli maturation and, therefore, symptom development on the leaves.
Collapse
|
17
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
18
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
19
|
Anti-Candida Properties of Gossypium hirsutum L.: Enhancement of Fungal Growth, Biofilm Production and Antifungal Resistance. Pharmaceutics 2022; 14:pharmaceutics14040698. [PMID: 35456532 PMCID: PMC9031239 DOI: 10.3390/pharmaceutics14040698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Candida is a genus of yeasts with notable pathogenicity and significant ability to develop antimicrobial resistance. Gossypium hirsutum L., a medicinal plant that is traditionally used due to its antimicrobial properties, has demonstrated significant antifungal activity. Therefore, this study investigated the chemical composition and anti-Candida effects of aqueous (AELG) and hydroethanolic (HELG) extracts obtained from the leaves of this plant. (2) Methods: The extracts were chemically characterized by UPLC–QTOF-MS/MS, and their anti-Candida activities were investigated by analyzing cell viability, biofilm production, morphological transition, and enhancement of antifungal resistance. (3) Results: The UPLC–QTOF-MS/MS analysis revealed the presence of twenty-one compounds in both AELG and HELG, highlighting the predominance of flavonoids. The combination of the extracts with fluconazole significantly reduced its IC50 values against Candida albicans INCQS 40006, Candida tropicalis INCQS 40042, and C. tropicalis URM 4262 strains, indicating enhanced antifungal activity. About biofilm production, significant inhibition was observed only for the AELG-treated C. tropicalis URM 4262 strain in comparison with the untreated control. Accordingly, this extract showed more significant inhibitory effects on the morphological transition of the INCQS 40006 and URM 4387 strains of C. albicans (4) Conclusions: Gossypium hirsutum L. presents promising antifungal effects, that may be potentially linked to the combined activity of chemical constituents identified in its extracts.
Collapse
|
20
|
Enhancing Saccharomyces cerevisiae Taxane Biosynthesis and Overcoming Nutritional Stress-Induced Pseudohyphal Growth. Microorganisms 2022; 10:microorganisms10010163. [PMID: 35056611 PMCID: PMC8778766 DOI: 10.3390/microorganisms10010163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The recent technological advancements in synthetic biology have demonstrated the extensive potential socio-economic benefits at laboratory scale. However, translations of such technologies to industrial scale fermentations remains a major bottleneck. The existence and lack of understanding of the major discrepancies in cultivation conditions between scales often leads to the selection of suboptimal bioprocessing conditions, crippling industrial scale productivity. In this study, strategic design of experiments approaches were coupled with state-of-the-art bioreactor tools to characterize and overcome nutritional stress for the enhanced production of precursors to the blockbuster chemotherapy drug, Taxol, in S. cerevisiae cell factories. The batch-to-batch variation in yeast extract composition was found to trigger nutritional stress at a mini-bioreactor scale, resulting in profound changes in cellular morphology and the inhibition of taxane production. The cells shifted from the typical budding morphology into striking pseudohyphal cells. Doubling initial yeast extract and peptone concentrations (2×YP) delayed filamentous growth, and taxane accumulation improved to 108 mg/L. Through coupling a statistical definitive screening design approach with the state-of-the-art high-throughput micro-bioreactors, the total taxane titers were improved a further two-fold, compared to the 2×YP culture, to 229 mg/L. Filamentous growth was absent in nutrient-limited microscale cultures, underlining the complex and multifactorial nature of yeast stress responses. Validation of the optimal microscale conditions in 1L bioreactors successfully alleviated nutritional stress and improved the titers to 387 mg/L. Production of the key Taxol precursor, T5αAc, was improved two-fold to 22 mg/L compared to previous maxima. The present study highlights the importance of following an interdisciplinary approach combining synthetic biology and bioprocessing technologies for effective process optimization and scale-up.
Collapse
|
21
|
Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J Biol Sci 2021; 28:6765-6773. [PMID: 34866975 PMCID: PMC8626220 DOI: 10.1016/j.sjbs.2021.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia.,Center for Environment and Sustainability Science, UniversitasPadjadjaran, Bandung 40132, Indonesia
| | - Casey Dio
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joko Sulistiyo
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Elazmanawati Lembong
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yana Cahyana
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana384 002, Gujarat State, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
22
|
Tagele SB, Kim RH, Shin JH. Interactions between Brassica Biofumigants and Soil Microbiota: Causes and Impacts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11538-11553. [PMID: 34551253 DOI: 10.1021/acs.jafc.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofumigation is used to control soil-borne plant diseases, and it has paramount importance to reduce the cost of chemical fumigants. Information about the field control efficacies and impacts of Brassica-based biofumigation (BBF) on soil bacterial and fungal microbiota is scattered in the literature. Therefore, this review summarizes and discusses the nature and the underlying causes of soil bacterial and fungal community dynamics in response to BBF. In addition, the major factors influencing the interaction between a biofumigant and soil microbiota are discussed. The pros and cons of BBF to soil microbiota and the subsequent impacts on sustainable farming practices are also highlighted.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ryeong-Hui Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
25
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
26
|
Minerdi D, Maggini V, Fani R. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 2021; 97:6261439. [PMID: 33983430 DOI: 10.1093/femsec/fiab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Symbiosis involving two (or more) prokaryotic and/or eukaryotic partners is extremely widespread in nature, and it has performed, and is still performing, a key role in the evolution of several biological systems. The interaction between symbiotic partners is based on the emission and perception of a plethora of molecules, including volatile organic compounds (VOCs), synthesized by both prokaryotic and eukaryotic (micro)organisms. VOCs acquire increasing importance since they spread above and below ground and act as infochemicals regulating a very complex network. In this work we review what is known about the VOCs synthesized by fungi prior to and during the interaction(s) with their partners (either prokaryotic or eukaryotic) and their possible role(s) in establishing and maintaining the symbiosis. Lastly, we also describe the potential applications of fungal VOCs from different biotechnological perspectives, including medicinal, pharmaceutical and agronomical.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), Italy
| | - Valentina Maggini
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| | - Renato Fani
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| |
Collapse
|
27
|
Khalid S, Keller NP. Chemical signals driving bacterial-fungal interactions. Environ Microbiol 2021; 23:1334-1347. [PMID: 33511714 DOI: 10.1111/1462-2920.15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Microorganisms reside in diverse environmental communities where interactions become indispensable due to close physical associations. These interactions are driven by chemical communication among different microbial kingdoms, particularly between fungi and bacteria. Knowledge about these communication signals provides useful information about the nature of microbial interactions and allows predictions of community development in diverse environments. Here, we provide an update on the role of small signalling molecules in fungal-bacterial interactions with focus on agricultural and medicinal environments. This review highlights the range of - and response to - diverse biochemicals produced by both kingdoms with view to harnessing their properties towards drug discovery applications.
Collapse
Affiliation(s)
- Saima Khalid
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Physiological Basis of Smut Infectivity in the Early Stages of Sugar Cane Colonization. J Fungi (Basel) 2021; 7:jof7010044. [PMID: 33445484 PMCID: PMC7827540 DOI: 10.3390/jof7010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Sugar cane smut (Sporisorium scitamineum) interactions have been traditionally considered from the plant’s point of view: How can resistant sugar cane plants defend themselves against smut disease? Resistant plants induce several defensive mechanisms that oppose fungal attacks. Herein, an overall view of Sporisorium scitamineum’s mechanisms of infection and the defense mechanisms of plants are presented. Quorum sensing effects and a continuous reorganization of cytoskeletal components, where actin, myosin, and microtubules are required to work together, seem to be some of the keys to a successful attack.
Collapse
|
29
|
Virulence Traits of Candida spp.: An Overview. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Britton SJ, Neven H, Maskell DL. Microbial Small-Talk: Does Quorum Sensing Play a Role in Beer Fermentation? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott J. Britton
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Hedwig Neven
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- Centre for Food and Microbial Technology (CLMT), Department M2S, KU Leuven, Leuven, Belgium
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
31
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int 2020; 137:109742. [DOI: 10.1016/j.foodres.2020.109742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
33
|
Patil S, GS V, Baeshen H, Ali Sumayli MA, Saeed AlShahrani MA, Alkhallaf Najmi AI, Jafer MA, Vishwanathaiah S, Khan S. Current trends and future prospects of chemical management of oral biofilms. J Oral Biol Craniofac Res 2020; 10:660-664. [PMID: 32995256 PMCID: PMC7501456 DOI: 10.1016/j.jobcr.2020.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
Oral biofilm, a tribulation encountered on a general basis is known to associate and contribute to many oral and systemic diseases. Eradication of these biofilms is a primary step in treatment of the underlying malady. Management of a biofilm is governed by various factors: the microenvironment within a biofilm, bond between the adhered surface and the biofilm, location of the biofilm, access to the biofilm for removal. Though annihilation is the priority, the mode of approach to achieve the same is equally important, because biofilm's heterogenic nature and location govern the strategical treatment required. Literature supports that the consequences of oral biofilms is not restricted to its home ground, but disseminated to other systems of the body. This contemplates us to procure knowledge on its development, structure and progression to aim its eradication. Therefore, this review attempts to recognize the type of biofilm based on location and enumerate all the possible chemical modes of management for the specific type of oral biofilms encountered. In addition, to the traditional strategies prescribed or administered, newer approaches which are gaining popularity due to their ease and efficiency are also addressed. Frontiers in the above field, under investigation and promising in near future are also compiled. Thus, the present review aims to provide a comprehensive elucidation of chemical management of oral biofilms, both the conventional and novel approaches under investigation.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Vidya GS
- Sree NRJV Specialists Dental Clinic, Bangalore, India
| | - Hosam Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | - Mohammed Abdurabu Jafer
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Health Promotion Unit, Maastricht University, the Netherlands
| | - Satish Vishwanathaiah
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Shahrukh Khan
- School of Nursing and Midwifery, Faculty of Health, Deakin University, Geelong, Australia
- Alfred Health Partnership, Melbourne, Australia
- Centre for Rural Health, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
34
|
Álvarez-García S, Mayo-Prieto S, Gutiérrez S, Casquero PA. Self-Inhibitory Activity of Trichoderma Soluble Metabolites and Their Antifungal Effects on Fusarium oxysporum. J Fungi (Basel) 2020; 6:E176. [PMID: 32957718 PMCID: PMC7559637 DOI: 10.3390/jof6030176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
Self-inhibitory processes are a common feature shared by different organisms. One of the main mechanisms involved in these interactions regarding microorganisms is the release of toxic diffusible substances into the environment. These metabolites can exert both antimicrobial effects against other organisms as well as self-inhibitory ones. The in vitro evaluation of these effects against other organisms has been widely used to identify potential biocontrol agents against phytopathogenic microorganisms. In the present study, we performed membrane assays to compare the self-inhibitory effects of soluble metabolites produced by several Trichoderma isolates and their antifungal activity against a phytopathogenic strain of Fusarium oxysporum. The results demonstrated that Trichoderma spp. present a high self-inhibitory activity in vitro, being affected in both their growth rate and the macroscopic structure of their colonies. These effects were highly similar to those exerted against F. oxysporum in the same conditions, showing no significant differences in most cases. Consequently, membrane assays may not be very informative by themselves to assess putative biocontrol capabilities. Therefore, different methods, or a combination of antifungal and self-inhibitory experiments, could be a better approach to evaluate the potential biocontrol activity of microbial strains in order to pre-select them for further in vivo trials.
Collapse
Affiliation(s)
- Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain; (S.M.-P.); (P.A.C.)
| | - Sara Mayo-Prieto
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain; (S.M.-P.); (P.A.C.)
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain;
| | - Pedro Antonio Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain; (S.M.-P.); (P.A.C.)
| |
Collapse
|
35
|
Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLoS Genet 2020; 16:e1008744. [PMID: 32956370 PMCID: PMC7537855 DOI: 10.1371/journal.pgen.1008744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Diana K. Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Daniela S. Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
36
|
Winters M, Arneborg N, Appels R, Howell K. Can community-based signalling behaviour in Saccharomyces cerevisiae be called quorum sensing? A critical review of the literature. FEMS Yeast Res 2020; 19:5528315. [PMID: 31271429 DOI: 10.1093/femsyr/foz046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing is a well-described mechanism of intercellular signalling among bacteria, which involves cell-density-dependent chemical signal molecules. The concentration of these quorum-sensing molecules increases in proportion to cell density until a threshold value is exceeded, which triggers a community-wide response. In this review, we propose that intercellular signalling mechanisms can be associated with a corresponding ecological interaction type based on similarities between how the interaction affects the signal receiver and producer. Thus, we do not confine quorum sensing, a specific form of intercellular signalling, to only cooperative behaviours. Instead, we define it as cell-density-dependent responses that occur at a critical concentration of signal molecules and through a specific signalling pathway. For fungal species, the medically important yeast Candida albicans has a well-described quorum sensing system, while this system is not well described in Saccharomyces cerevisiae, which is involved in food and beverage fermentations. The more precise definition for quorum sensing proposed in this review is based on the studies suggesting that S. cerevisiae may undergo intercellular signalling through quorum sensing. Through this lens, we conclude that there is a lack of evidence to support a specific signalling mechanism and a critical signal concentration of these behaviours in S. cerevisiae, and, thus, these features require further investigation.
Collapse
Affiliation(s)
- Michela Winters
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Rudi Appels
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
37
|
Medina EQ, Oliveira AS, Medina HR, Rangel DE. Serendipity in the wrestle between Trichoderma and Metarhizium. Fungal Biol 2020; 124:418-426. [DOI: 10.1016/j.funbio.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
|
38
|
Fungal Infections and ABPA. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Nogueira F, Sharghi S, Kuchler K, Lion T. Pathogenetic Impact of Bacterial-Fungal Interactions. Microorganisms 2019; 7:microorganisms7100459. [PMID: 31623187 PMCID: PMC6843596 DOI: 10.3390/microorganisms7100459] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial–fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial–fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.
Collapse
Affiliation(s)
- Filomena Nogueira
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Shirin Sharghi
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Karl Kuchler
- Center of Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Medical University of Vienna, Vienna 1030, Austria.
| | - Thomas Lion
- CCRI-St. Anna Children's Cancer Research Institute, Vienna 1090, Austria.
- Labdia-Labordiagnostik GmbH, Vienna 1090, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
40
|
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
|
42
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
43
|
Sebaa S, Boucherit-Otmani Z, Courtois P. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep 2019; 19:3201-3209. [PMID: 30816484 PMCID: PMC6423612 DOI: 10.3892/mmr.2019.9981] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/13/2019] [Indexed: 11/06/2022] Open
Abstract
The present in vitro study examined the effects of the quorum‑sensing molecules farnesol and tyrosol on the development of Candida albicans biofilm in order to elucidate their role as novel adjuvants in oral hygiene. The investigation was conducted in C. albicans ATCC 10231 and C. albicans isolates from dentures and was performed in flat‑bottomed 96‑well polystyrene plates. Yeast growth and their capacity to form biofilms were evaluated following 24 and 48 h incubations at 37˚C in Sabouraud broth supplemented with 0.001‑3 mM farnesol and/or 1‑20 mM tyrosol. Yeast growth was assessed by turbidimetry and biofilms were quantitated by crystal violet staining, under aerobic and anaerobic conditions. The viability of the fungal cells was controlled by the culture of planktonic cells and by examination of the biofilms using fluorescence microscopy following staining with fluorescein diacetate and ethidium bromide. Farnesol at 3 mM exerted a stronger action when added at the beginning of biofilm formation (>50% inhibition) than when added to preformed biofilms (<10% inhibition). Similarly, tyrosol at 20 mM had a greater effect on biofilm formation (>80% inhibition) than on preformed biofilms (<40% inhibition). Despite significant reductions in attached biomass, yeast growth varied little in the presence of the investigated molecules, as corroborated by the turbidimetry, culture of supernatants on solid culture medium followed by counting of colony‑forming units and viability tests using fluorescence microscopy. At the highest tested concentration, the molecules had a greater effect during the initial phases of biofilm formation. The effect of farnesol during anaerobiosis was not significantly different from that observed during aerobiosis, unlike that of tyrosol during anaerobiosis, which exhibited slightly reduced yeast biofilm inhibition. In conclusion, the present study demonstrated the specific anti‑biofilm effect, independent of fungicidal or fungistatic action, of farnesol and tyrosol, as tested in C. albicans ATCC 10231 and 6 strains isolated from dentures. Prior to suggesting the use of these molecules for preventive purposes in oral hygiene, further studies are required in order to clarify the metabolic pathways and cellular mechanisms involved in their antibiofilm effect, as well as the repercussions on the oral microbiome.
Collapse
Affiliation(s)
- Sarra Sebaa
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, B‑1070 Brussels, Belgium
| | - Zahia Boucherit-Otmani
- Laboratory of Antibiotics and Antifungals, Physico‑Chemistry, Synthesis and Biological Activity, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Philippe Courtois
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, B‑1070 Brussels, Belgium
| |
Collapse
|
44
|
Klebsiella pneumoniae prevents spore germination and hyphal development of Aspergillus species. Sci Rep 2019; 9:218. [PMID: 30659217 PMCID: PMC6338788 DOI: 10.1038/s41598-018-36524-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Different bacteria and fungi live as commensal organisms as part of the human microbiota, but shifts to a pathogenic state potentially leading to septic infections commonly occur in immunocompromised individuals. Several studies have reported synergistic or antagonistic interactions between individual bacteria and fungi which might be of clinical relevance. Here, we present first evidence for the interaction between Klebsiella pneumoniae and several Aspergillus species including A. fumigatus, A. terreus, A. niger and A. flavus which cohabit in the lungs and the intestines. Microbiological and molecular methods were employed to investigate the interaction in vitro, and the results indicate that Klebsiella pneumoniae is able to prevent Aspergillus spp. spore germination and hyphal development. The inhibitory effect is reversible, as demonstrated by growth recovery of Aspergillus spp. upon inhibition or elimination of the bacteria, and is apparently dependent on the physical interaction with metabolically active bacteria. Molecular analysis of Klebsiella-Aspergillus interaction has shown upregulation of Aspergillus cell wall-related genes and downregulation of hyphae-related genes, suggesting that Klebsiella induces cell wall stress response mechanisms and suppresses filamentous growth. Characterization of polymicrobial interactions may provide the basis for improved clinical management of mixed infections by setting the stage for appropriate diagnostics and ultimately for optimized treatment strategies.
Collapse
|
45
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
46
|
Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 2018; 42:627-638. [PMID: 29788231 DOI: 10.1093/femsre/fuy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density-dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical 'languages' used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation and the potential applications of these mechanisms in biotechnology and pathogenesis.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tajalli Keshavarz
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
47
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
48
|
Berger D, Rakhamimova A, Pollack A, Loewy Z. Oral Biofilms: Development, Control, and Analysis. High Throughput 2018; 7:ht7030024. [PMID: 30200379 PMCID: PMC6163956 DOI: 10.3390/ht7030024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
The oral cavity harbors hundreds of microbial species that are present either as planktonic cells or incorporated into biofilms. The majority of the oral microbes are commensal organisms. Those that are pathogenic microbes can result in oral infections, and at times can initiate systemic diseases. Biofilms that contain pathogens are challenging to control. Many conventional antimicrobials have proven to be ineffective. Recent advances in science and technology are providing new approaches for pathogen control and containment and methods to characterize biofilms. This perspective provides (1) a general understanding of biofilm development; (2) a description of emerging chemical and biological methods to control oral biofilms; and (3) an overview of high-throughput analytical approaches to analyze biofilms.
Collapse
Affiliation(s)
- Daniela Berger
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA.
| | - Aviva Rakhamimova
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA.
| | - Andrew Pollack
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA.
| | - Zvi Loewy
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA.
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
49
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. MICROBIOLOGY-SGM 2018; 164:1327-1344. [PMID: 30136920 DOI: 10.1099/mic.0.000709] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Global Salmonella infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of Salmonella, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and in vitro investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against Salmonella and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in Salmonella infections. This review discusses Salmonella infections and treatment using antibiotics and probiotics.
Collapse
Affiliation(s)
- Abraham Majak Gut
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- 2Institute for Sustainable Industries and Livable Cities, College of Engineering and Science, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
50
|
González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr Rev Food Sci Food Saf 2018; 17:1261-1276. [DOI: 10.1111/1541-4337.12378] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fabián González-Rivas
- Faculty of Health Sciences at Manresa; Univ. of Vic Central Univ. of Catalonia; Manresa Spain
| | - Carolina Ripolles-Avila
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Fabio Fontecha-Umaña
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Abel Guillermo Ríos-Castillo
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - José Juan Rodríguez-Jerez
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| |
Collapse
|