1
|
Zhu W, Xiao L, Hong S, Wang W, Li W, Luo H, Zhang X, Zhang X, Xue Y, Wang D, Niu J, Drlica K, Zhao X. Exogenous Glucose Interferes with Antimicrobial-Mediated ROS Accumulation and Bacterial Death. ACS Infect Dis 2024; 10:1896-1903. [PMID: 38735064 DOI: 10.1021/acsinfecdis.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Lisheng Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Weijie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Weiwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Huan Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Xinyang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, 209 South Hubin Road, Siming District, Xiamen, Fujian Province 361004, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, United States of America
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| |
Collapse
|
2
|
Moreau PL. Regulation of phosphate starvation-specific responses in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972330 DOI: 10.1099/mic.0.001312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Toxic agents added into the medium of rapidly growing Escherichia coli induce specific stress responses through the activation of specialized transcription factors. Each transcription factor and downstream regulon (e.g. SoxR) are linked to a unique stress (e.g. superoxide stress). Cells starved of phosphate induce several specific stress regulons during the transition to stationary phase when the growth rate is steadily declining. Whereas the regulatory cascades leading to the expression of specific stress regulons are well known in rapidly growing cells stressed by toxic products, they are poorly understood in cells starved of phosphate. The intent of this review is to both describe the unique mechanisms of activation of specialized transcription factors and discuss signalling cascades leading to the induction of specific stress regulons in phosphate-starved cells. Finally, I discuss unique defence mechanisms that could be induced in cells starved of ammonium and glucose.
Collapse
Affiliation(s)
- Patrice L Moreau
- Laboratoire Chimie Bactérienne, LCB-UMR 7283, Institut Microbiologie Méditerranée, CNRS/Université Aix-Marseille, Marseille, France
| |
Collapse
|
3
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
4
|
Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in Escherichia coli Mutants through Expression of a Gene Variant ( fsaAA129S) for Fructose 6-Phosphate Aldolase. Int J Mol Sci 2020; 21:ijms21249625. [PMID: 33348713 PMCID: PMC7767278 DOI: 10.3390/ijms21249625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023] Open
Abstract
Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h−1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h−1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.
Collapse
|
5
|
Guo J, Feng S, Cheng X. Activity evaluation of glycolytic promoters from Escherichia coli and application for mevalonate biosynthesis. J Microbiol Methods 2020; 174:105946. [PMID: 32413369 DOI: 10.1016/j.mimet.2020.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Promoters are the most important tools to control and regulate gene expression in synthetic biology and metabolic engineering. The expression of target genes in Escherichia coli is usually controlled by inducible promoters which may cause excessive metabolic load on the host and may be uneconomical due to inducer cost. Therefore, it is important to identify more constitutive promoters that are capable of avoiding these limitations. In this study, using the monomeric red fluorescent protein (mRFP) as the reporter gene, ten promoters from the glycolytic pathway of E. coli were cloned and characterized. We found that glycolytic promoters exhibited the advantages of constitutive promoters and higher strength compared with the commonly used inducible promoter Plac. We further introduced glycolytic promoters into the mevalonate biosynthesis system. The maximum mevalonate titer produced by engineered E. coli under the control of glycolytic promoters was obviously higher than that under the control of Plac, indicating the superiority of glycolytic promoter for the metabolic engineering of E. coli. This set of glycolytic promoters significantly expands the range of engineering tools available for E. coli and can be applied in future metabolic engineering studies.
Collapse
Affiliation(s)
- Jianquan Guo
- First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Shengwen Feng
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Xiaoyu Cheng
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
6
|
Das G, Patra JK, Lee SY, Kim C, Park JG, Baek KH. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry. PLoS One 2017; 12:e0181280. [PMID: 28704842 PMCID: PMC5509444 DOI: 10.1371/journal.pone.0181280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Changgeon Kim
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
7
|
Abstract
For a generation of microbiologists who study pathogenesis in the context of the human microbiome, understanding the diversity of bacterial metabolism is essential. In this chapter, I briefly describe how and why I became, and remain, interested in metabolism. I then will describe and compare some of the strategies used by bacteria to consume sugars as one example of metabolic diversity. I will end with a plea to embrace metabolism in the endeavor to understand pathogenesis.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
8
|
Murarka A, Clomburg JM, Gonzalez R. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate. MICROBIOLOGY-SGM 2010; 156:1860-1872. [PMID: 20167619 DOI: 10.1099/mic.0.036251-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fermentative metabolism of d-glucuronic acid (glucuronate) in Escherichia coli was investigated with emphasis on the dissimilation of pyruvate via pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH). In silico and in vivo metabolic flux analysis (MFA) revealed that PFL and PDH share the dissimilation of pyruvate in wild-type MG1655. Surprisingly, it was found that PDH supports fermentative growth on glucuronate in the absence of PFL. The PDH-deficient strain (Pdh-) exhibited a slower transition into the exponential phase and a decrease in specific rates of growth and glucuronate utilization. Moreover, a significant redistribution of metabolic fluxes was found in PDH- and PFL-deficient strains. Since no role had been proposed for PDH in the fermentative metabolism of E. coli, the metabolic differences between MG1655 and Pdh- were further investigated. An increase in the oxidative pentose phosphate pathway (ox-PPP) flux was observed in response to PDH deficiency. A comparison of the ox-PPP and PDH pathways led to the hypothesis that the role of PDH is the supply of reducing equivalents. The finding that a PDH deficiency lowers the NADH : NAD(+) ratio supported the proposed role of PDH. Moreover, the NADH : NAD(+) ratio in a strain deficient in both PDH and the ox-PPP (Pdh-Zwf-) was even lower than that observed for Pdh-. Strain Pdh-Zwf- also exhibited a slower transition into the exponential phase and a lower growth rate than Pdh-. Finally, a transhydrogenase-deficient strain grew more slowly than wild-type but did not show the slower transition into the exponential phase characteristic of Pdh- mutants. It is proposed that PDH fulfils two metabolic functions. First, by creating the appropriate internal redox state (i.e. appropriate NADH : NAD(+) ratio), PDH ensures the functioning of the glucuronate utilization pathway. Secondly, the NADH generated by PDH can be converted to NADPH by the action of transhydrogenases, thus serving as biosynthetic reducing power in the synthesis of building blocks and macromolecules.
Collapse
Affiliation(s)
- Abhishek Murarka
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
9
|
Bouchart F, Delangle A, Lemoine J, Bohin JP, Lacroix JM. Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. MICROBIOLOGY-SGM 2007; 153:760-767. [PMID: 17322196 DOI: 10.1099/mic.0.2006/000372-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of the envelope of Gram-negative bacteria. They are required for full virulence of bacterial phytopathogens such as Pseudomonas syringae, Xanthomonas campestris and Erwinia chrysanthemi. E. chrysanthemi is a pectinolytic gamma-proteobacterium that causes soft rot disease on a wide range of plant species. In addition to the loss of virulence, opg mutants exhibit a pleiotropic phenotype that affects motility, bile-salt resistance, exoenzyme secretion, exopolysaccharide synthesis and membrane lipid composition. This is believed to be the first proteomic analysis of an OPG-defective mutant of E. chrysanthemi and it revealed that, in addition to the effects described, catabolic enzyme synthesis was enhanced and there was a greater abundance of some proteins catalysing the folding and degradation of proteins needed for various stress responses. Thus, in the opg mutant strain, loss of virulence was the result of a combination of envelope structure changes and cellular metabolism modifications.
Collapse
Affiliation(s)
- Franck Bouchart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Aurélie Delangle
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Jérôme Lemoine
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Pierre Bohin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|