1
|
Weber JN, Minner-Meinen R, Kaufholdt D. The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana. Molecules 2023; 29:40. [PMID: 38202623 PMCID: PMC10780190 DOI: 10.3390/molecules29010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated.
Collapse
Affiliation(s)
| | | | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106 Braunschweig, Germany
| |
Collapse
|
2
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
3
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. A step into the rare biosphere: genomic features of the new genus Terrihalobacillus and the new species Aquibacillus salsiterrae from hypersaline soils. Front Microbiol 2023; 14:1192059. [PMID: 37228371 PMCID: PMC10203224 DOI: 10.3389/fmicb.2023.1192059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypersaline soils are a source of prokaryotic diversity that has been overlooked until very recently. The phylum Bacillota, which includes the genus Aquibacillus, is one of the 26 phyla that inhabit the heavy metal contaminated soils of the Odiel Saltmarshers Natural Area (Southwest Spain), according to previous research. In this study, we isolated a total of 32 strains closely related to the genus Aquibacillus by the traditional dilution-plating technique. Phylogenetic studies clustered them into two groups, and comparative genomic analyses revealed that one of them represents a new species within the genus Aquibacillus, whereas the other cluster constitutes a novel genus of the family Bacillaceae. We propose the designations Aquibacillus salsiterrae sp. nov. and Terrihalobacillus insolitus gen. nov., sp. nov., respectively, for these two new taxa. Genome mining analysis revealed dissimilitude in the metabolic traits of the isolates and their closest related genera, remarkably the distinctive presence of the well-conserved pathway for the biosynthesis of molybdenum cofactor in the species of the genera Aquibacillus and Terrihalobacillus, along with genes that encode molybdoenzymes and molybdate transporters, scarcely found in metagenomic dataset from this area. In-silico studies of the osmoregulatory strategy revealed a salt-out mechanism in the new species, which harbor the genes for biosynthesis and transport of the compatible solutes ectoine and glycine betaine. Comparative genomics showed genes related to heavy metal resistance, which seem required due to the contamination in the sampling area. The low values in the genome recruitment analysis indicate that the new species of the two genera, Terrihalobacillus and Aquibacillus, belong to the rare biosphere of representative hypersaline environments.
Collapse
|
4
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
5
|
Mendel RR. The History of the Molybdenum Cofactor-A Personal View. Molecules 2022; 27:4934. [PMID: 35956883 PMCID: PMC9370521 DOI: 10.3390/molecules27154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Physiological Importance of Molybdate Transporter Family 1 in Feeding the Molybdenum Cofactor Biosynthesis Pathway in Arabidopsis thaliana. Molecules 2022; 27:molecules27103158. [PMID: 35630635 PMCID: PMC9147641 DOI: 10.3390/molecules27103158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein–protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.
Collapse
|
7
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
8
|
Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc Natl Acad Sci U S A 2021; 118:2109008118. [PMID: 34686601 DOI: 10.1073/pnas.2109008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.
Collapse
|
9
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
10
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
11
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
12
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
13
|
Transition metals and host-microbe interactions in the inflamed intestine. Biometals 2019; 32:369-384. [PMID: 30788645 DOI: 10.1007/s10534-019-00182-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Host-associated microbial communities provide critical functions for their hosts. Transition metals are essential for both the mammalian host and the majority of commensal bacteria. As such, access to transition metals is an important component of host-microbe interactions in the gastrointestinal tract. In mammals, transition metal ions are often sequestered by metal binding proteins to limit microbial access under homeostatic conditions. In response to invading pathogens, the mammalian host further decreases availability of these micronutrients by regulating their trafficking or releasing high-affinity metal chelating proteins, a process termed nutritional immunity. Bacterial pathogens have evolved several mechanisms to subvert nutritional immunity. Here, we provide an overview on how metal ion availability shapes host-microbe interactions in the gut with a particular focus on intestinal inflammatory diseases.
Collapse
|
14
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
15
|
Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLoS Pathog 2017; 13:e1006752. [PMID: 29176894 PMCID: PMC5720804 DOI: 10.1371/journal.ppat.1006752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen. Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), can persist for years and even decades in the lungs of its human host. Here we report that a unique M. tuberculosis gene cluster involved in the synthesis of the molybdenum cofactor, a cofactor for several oxidoreductases including the nitrate reductase, allows this major pathogen to respire nitrate and to persist in a dormant state under hypoxia, a stress condition encountered in lung TB lesions. Strikingly the M. tuberculosis ancestor, which most likely was an environmental harmless bacterium, acquired this gene cluster, together with its hypoxia-responsive transcriptional regulator, horizontally from neighboring bacteria. Our results uncover a key step in M. tuberculosis evolution towards pathogenicity.
Collapse
|
16
|
Borrero-de Acuña JM, Timmis KN, Jahn M, Jahn D. Protein complex formation during denitrification by Pseudomonas aeruginosa. Microb Biotechnol 2017; 10:1523-1534. [PMID: 28857512 PMCID: PMC5658584 DOI: 10.1111/1751-7915.12851] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
The most efficient means of generating cellular energy is through aerobic respiration. Under anaerobic conditions, several prokaryotes can replace oxygen by nitrate as final electron acceptor. During denitrification, nitrate is reduced via nitrite, NO and N2O to molecular nitrogen (N2) by four membrane‐localized reductases with the simultaneous formation of an ion gradient for ATP synthesis. These four multisubunit enzyme complexes are coupled in four electron transport chains to electron donating primary dehydrogenases and intermediate electron transfer proteins. Many components require membrane transport and insertion, complex assembly and cofactor incorporation. All these processes are mediated by fine‐tuned stable and transient protein–protein interactions. Recently, an interactomic approach was used to determine the exact protein–protein interactions involved in the assembly of the denitrification apparatus of Pseudomonas aeruginosa. Both subunits of the NO reductase NorBC, combined with the flavoprotein NosR, serve as a membrane‐localized assembly platform for the attachment of the nitrate reductase NarGHI, the periplasmic nitrite reductase NirS via its maturation factor NirF and the N2O reductase NosZ through NosR. A nitrate transporter (NarK2), the corresponding regulatory system NarXL, various nitrite (NirEJMNQ) and N2O reductase (NosFL) maturation proteins are also part of the complex. Primary dehydrogenases, ATP synthase, most enzymes of the TCA cycle, and the SEC protein export system, as well as a number of other proteins, were found to interact with the denitrification complex. Finally, a protein complex composed of the flagella protein FliC, nitrite reductase NirS and the chaperone DnaK required for flagella formation was found in the periplasm of P. aeruginosa. This work demonstrated that the interactomic approach allows for the identification and characterization of stable and transient protein–protein complexes and interactions involved in the assembly and function of multi‐enzyme complexes.
Collapse
Affiliation(s)
| | - Kenneth N Timmis
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, Braunschweig, Germany
| |
Collapse
|
17
|
Arias-Cartin R, Ceccaldi P, Schoepp-Cothenet B, Frick K, Blanc JM, Guigliarelli B, Walburger A, Grimaldi S, Friedrich T, Receveur-Brechot V, Magalon A. Redox cofactors insertion in prokaryotic molybdoenzymes occurs via a conserved folding mechanism. Sci Rep 2016; 6:37743. [PMID: 27886223 PMCID: PMC5123574 DOI: 10.1038/srep37743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
Abstract
A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family.
Collapse
Affiliation(s)
| | - Pierre Ceccaldi
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France.,Aix-Marseille Univ, CNRS, IMM, BIP UMR7281, Marseille, France
| | | | - Klaudia Frick
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | - Anne Walburger
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| | | | | | | | - Axel Magalon
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| |
Collapse
|
18
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
19
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|