1
|
Brink DP, Mierke F, Norbeck J, Siewers V, Andlid T. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation. Microb Cell Fact 2023; 22:160. [PMID: 37598166 PMCID: PMC10440040 DOI: 10.1186/s12934-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.
Collapse
Affiliation(s)
- Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Friederike Mierke
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
The MAP-Kinase HOG1 Controls Cold Adaptation in Rhodosporidium kratochvilovae by Promoting Biosynthesis of Polyunsaturated Fatty Acids and Glycerol. Curr Microbiol 2022; 79:253. [PMID: 35834133 DOI: 10.1007/s00284-022-02957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The aim of this study was to investigate the role of RKHog1 in the cold adaptation of Rhodosporidium kratochvilovae strain YM25235 and elucidate the correlation of biosynthesis of polyunsaturated fatty acids (PUFAs) and glycerol with its cold adaptation. The YM25235 strain was subjected to salt, osmotic, and cold stress tolerance analyses. mRNA levels of RKhog1, Δ12/15-fatty acid desaturase gene (RKD12), RKMsn4, HisK2301, and RKGPD1 in YM25235 were detected by reverse transcription quantitative real-time PCR. The contents of PUFAs, such as linoleic acid (LA) and linolenic acid (ALA) was measured using a gas chromatography-mass spectrometer, followed by determination of the growth rate of YM25235 and its glycerol content at low temperature. The RKHog1 overexpression, knockout, and remediation strains were constructed. Stress resistance analysis showed that overexpression of RKHog1 gene increased the biosynthesis of glycerol and enhanced the tolerance of YM25235 to cold, salt, and osmotic stresses, respectively. Inversely, the knockout of RKHog1 gene decreased the biosynthesis of glycerol and inhibited the tolerance of YM25235 to different stresses. Fatty acid analysis showed that the overexpression of RKHog1 gene in YM25235 significantly increased the content of LA and ALA, but RKHog1 gene knockout YM25235 strain had decreased content of LA and ALA. In addition, the mRNA expression level of RKD12, RKMsn4, RKHisK2301, and RKGPD1 showed an increase at 15 °C after RKHog1 gene overexpression but were unchanged at 30 °C. RKHog1 could regulate the growth adaptability and PUFA content of YM25235 at low temperature and this could be helpful for the cold adaptation of YM25235.
Collapse
|
3
|
Bo S, Ni X, Guo J, Liu Z, Wang X, Sheng Y, Zhang G, Yang J. Carotenoid Biosynthesis: Genome-Wide Profiling, Pathway Identification in Rhodotorula glutinis X-20, and High-Level Production. Front Nutr 2022; 9:918240. [PMID: 35782944 PMCID: PMC9247606 DOI: 10.3389/fnut.2022.918240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Rhodotorula glutinis, as a member of the family Sporidiobolaceae, is of great value in the field of biotechnology. However, the evolutionary relationship of R. glutinis X-20 with Rhodosporidiobolus, Sporobolomyces, and Rhodotorula are not well understood, and its metabolic pathways such as carotenoid biosynthesis are not well resolved. Here, genome sequencing and comparative genome techniques were employed to improve the understanding of R. glutinis X-20. Phytoene desaturase (crtI) and 15-cis-phytoene synthase/lycopene beta-cyclase (crtYB), key enzymes in carotenoid pathway from R. glutinis X-20 were more efficiently expressed in S. cerevisiae INVSc1 than in S. cerevisiae CEN.PK2-1C. High yielding engineered strains were obtained by using synthetic biology technology constructing carotenoid pathway in S. cerevisiae and optimizing the precursor supply after fed-batch fermentation with palmitic acid supplementation. Genome sequencing analysis and metabolite identification has enhanced the understanding of evolutionary relationships and metabolic pathways in R. glutinis X-20, while heterologous construction of carotenoid pathway has facilitated its industrial application.
Collapse
|
4
|
Martín-Hernández GC, Müller B, Chmielarz M, Brandt C, Hölzer M, Viehweger A, Passoth V. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14. Genomics 2021; 113:4022-4027. [PMID: 34648882 DOI: 10.1016/j.ygeno.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Rhodotorula toruloides is an oleaginous yeast with high biotechnological potential. In order to understand the molecular physiology of lipid synthesis in R. toruloides and to advance metabolic engineering, a high-resolution genome is required. We constructed a genome draft of R. toruloides CBS 14, using a hybrid assembly approach, consisting of short and long reads generated by Illumina and Nanopore sequencing, respectively. The genome draft consists of 23 contigs and 3 scaffolds, with a N50 length of 1,529,952 bp, thus largely representing chromosomal organization. The total size of the genome is 20,534,857 bp and the overall GC content is 61.83%. Transcriptomic data from different growth conditions was used to aid species-specific gene annotation. We annotated 9464 genes and identified 11,691 transcripts. Furthermore, we demonstrated the presence of a potential plasmid, an extrachromosomal circular structure of about 11 kb with a copy number about three times as high as the other chromosomes.
Collapse
Affiliation(s)
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Brandt
- nanozoo GmbH, Leipzig, Germany; Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Martin Hölzer
- nanozoo GmbH, Leipzig, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Adrian Viehweger
- nanozoo GmbH, Leipzig, Germany; Department of Medical Microbiology, University Hospital Leipzig, Germany
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
5
|
The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts 2021. [DOI: 10.3390/catal11040476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The β-fructofuranosidase from the yeast Rhodotorula dairenensis (RdINV) produces a mixture of potential prebiotic fructooligosaccharides (FOS) of the levan-, inulin- and neo-FOS series by transfructosylation of sucrose. In this work, the gene responsible for this activity was characterized and its functionality proved in Pichia pastoris. The amino acid sequence of the new protein contained most of the characteristic elements of β-fructofuranosidases included in the family 32 of the glycosyl hydrolases (GH32). The heterologous yeast produced a protein of about 170 kDa, where N-linked and O-linked carbohydrates constituted about 15% and 38% of the total protein mass, respectively. Biochemical and kinetic properties of the heterologous protein were similar to the native enzyme, including its ability to produce prebiotic sugars. The maximum concentration of FOS obtained was 82.2 g/L, of which 6-kestose represented about 59% (w/w) of the total products synthesized. The potential of RdINV to fructosylate 19 hydroxylated compounds was also explored, of which eight sugars and four alditols were modified. The flexibility to recognize diverse fructosyl acceptors makes this protein valuable to produce novel glycosyl-compounds with potential applications in food and pharmaceutical industries.
Collapse
|
6
|
Liu Y, Koh CMJ, Yap SA, Cai L, Ji L. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:73. [PMID: 33741038 PMCID: PMC7977280 DOI: 10.1186/s13068-021-01924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/06/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. RESULTS We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). CONCLUSION Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.
Collapse
Affiliation(s)
- Yanbin Liu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lin Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
7
|
Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism. BMC Genomics 2020; 21:834. [PMID: 33243144 PMCID: PMC7690147 DOI: 10.1186/s12864-020-07244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Background Rhodotorula glutinis is recognized as a biotechnologically important oleaginous red yeast, which synthesizes numerous meritorious compounds with wide industrial usages. One of the most notable properties of R. glutinis is the formation of intracellular lipid droplets full of carotenoids. However, the basic genomic features that underlie the biosynthesis of these valuable compounds in R. glutinis have not been fully documented. To reveal the biotechnological potential of R. glutinis, the genomics and lipidomics analysis was performed through the Next-Generation Sequencing and HPLC-MS-based metabolomics technologies. Results Here, we firstly assemble the genome of R. glutinis ZHK into 21.8 Mb, containing 30 scaffolds and 6774 predicted genes with a N50 length of 14, 66,672 bp and GC content of 67.8%. Genome completeness assessment (BUSCO alignment: 95.3%) indicated the genome assembly with a high-quality features. According to the functional annotation of the genome, we predicted several key genes involved in lipids and carotenoids metabolism as well as certain industrial enzymes biosynthesis. Comparative genomics results suggested that most of orthologous genes have underwent the strong purifying selection within the five Rhodotorula species, especially genes responsible for carotenoids biosynthesis. Furthermore, a total of 982 lipids were identified using the lipidomics approaches, mainly including triacylglycerols, diacylglyceryltrimethylhomo-ser and phosphatidylethanolamine. Conclusion Using whole genome shotgun sequencing, we comprehensively analyzed the genome of R. glutinis and predicted several key genes involved in lipids and carotenoids metabolism. By performing comparative genomic analysis, we show that most of the ortholog genes have undergone strong purifying selection within the five Rhodotorula species. Furthermore, we identified 982 lipid species using lipidomic approaches. These results provided valuable resources to further advance biotechnological applications of R .glutinis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07244-z.
Collapse
|
8
|
Li CJ, Zhao D, Li BX, Zhang N, Yan JY, Zou HT. Whole genome sequencing and comparative genomic analysis of oleaginous red yeast Sporobolomyces pararoseus NGR identifies candidate genes for biotechnological potential and ballistospores-shooting. BMC Genomics 2020; 21:181. [PMID: 32093624 PMCID: PMC7041287 DOI: 10.1186/s12864-020-6593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sporobolomyces pararoseus is regarded as an oleaginous red yeast, which synthesizes numerous valuable compounds with wide industrial usages. This species hold biotechnological interests in biodiesel, food and cosmetics industries. Moreover, the ballistospores-shooting promotes the colonizing of S. pararoseus in most terrestrial and marine ecosystems. However, very little is known about the basic genomic features of S. pararoseus. To assess the biotechnological potential and ballistospores-shooting mechanism of S. pararoseus on genome-scale, the whole genome sequencing was performed by next-generation sequencing technology. RESULTS Here, we used Illumina Hiseq platform to firstly assemble S. pararoseus genome into 20.9 Mb containing 54 scaffolds and 5963 predicted genes with a N50 length of 2,038,020 bp and GC content of 47.59%. Genome completeness (BUSCO alignment: 95.4%) and RNA-seq analysis (expressed genes: 98.68%) indicated the high-quality features of the current genome. Through the annotation information of the genome, we screened many key genes involved in carotenoids, lipids, carbohydrate metabolism and signal transduction pathways. A phylogenetic assessment suggested that the evolutionary trajectory of the order Sporidiobolales species was evolved from genus Sporobolomyces to Rhodotorula through the mediator Rhodosporidiobolus. Compared to the lacking ballistospores Rhodotorula toruloides and Saccharomyces cerevisiae, we found genes enriched for spore germination and sugar metabolism. These genes might be responsible for the ballistospores-shooting in S. pararoseus NGR. CONCLUSION These results greatly advance our understanding of S. pararoseus NGR in biotechnological potential and ballistospores-shooting, which help further research of genetic manipulation, metabolic engineering as well as its evolutionary direction.
Collapse
Affiliation(s)
- Chun-Ji Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Die Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bing-Xue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Ning Zhang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jian-Yu Yan
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hong-Tao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| |
Collapse
|
9
|
Kong W, Yang S, Agboyibor C, Chen D, Zhang A, Niu S. Light irradiation can regulate the growth characteristics and metabolites compositions of Rhodotorula mucilaginosa. Journal of Food Science and Technology 2019; 56:5509-5517. [PMID: 31749499 DOI: 10.1007/s13197-019-04023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
Light is an important factor that can induce the growth of varieties of organisms including fungi and their secondary metabolites. The evolutions of biomass, carotenoids, lipid production, compositions and contents of fatty acid and amino acid in Rhodotorula mucilaginosa were investigated under different light irradiation conditions. The results indicated that irradiation with 1700 lx could promote the growth and glucose assimilation of R. mucilaginosa, compared to the dark control, while the trial with 3500 lx had certain inhibiting effects. The carotenoids concentrations and percentages of unsaturated fatty acid (USFA, C16:1 and C18:1) increased with the improvement of irradiation intensity. Conversely, the proportions of saturated fatty acids (C16:0, C18:0 and C20:0) were decreased. The relative contents of amino acid and total protein were reduced under illumination compared to dark control. Conclusively, irradiation could change the cell growth and metabolites of the pigmented fungus, which implied that there may be a photoinduced mode exists in R. mucilaginosa similar to that of Neurospora crassa, and it also could be applied to regulate the biosynthesis and production of valuable components such as carotenoids and USFA.
Collapse
Affiliation(s)
- Weibao Kong
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070 China
| | - Shuling Yang
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China
| | - Clement Agboyibor
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China
| | - Dong Chen
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China
| | - Aimei Zhang
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China
| | - Shiquan Niu
- 1College of Life Sciences, Northwest Normal University, Lanzhou, 730070 China
| |
Collapse
|
10
|
Wang Y, Li S, Liu M, Wang J, Fei Z, Wang F, Jiang Z, Huang W, Sun H. Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells. Free Radic Biol Med 2019; 134:64-75. [PMID: 30599259 DOI: 10.1016/j.freeradbiomed.2018.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022]
Abstract
It is known that mitochondria are associated with the ageing process, and the eukaryotic sir2 family of genes significantly affects cellular lifespan. The mammalian sir2 family affects mitochondrial function by regulating targets in different pathways, including oxidative stress, oxidative phosphorylation, and mitochondrial biosynthesis. This study reports that Rt-sirtuin2 and Rt-sirtuin4 genes transfections significantly impacted the lifespan of Rhodosporidium toruloides, and they can significantly improve cellular responses to H2O2 treatment, which induces cell senescence, and restore mitochondrial function. The Rt-sirtuin2 and Rt-sirtuin4 genes increase the expression of the mitochondria-associated proteins Mfn1, Mfn2, and Drp1 and the autophagy-associated proteins LC3-II, LC3-I, Beclin-1 and Parkin and reconstitute mitochondrial networks. Overall, the phenotypic reversal of senescent cells is achieved by regulating mitochondrial viability and mitochondrial autophagy. In vivo experiments with animals also confirmed the improvement of various ageing indexes by the Rt-sirtuin2 and Rt-sirtuin4 genes. Strategies for remodelling mitochondria and improving mitochondrial quality and function can reverse the state of human cells from an ageing phenotype to an active metabolic phenotype. The R. toruloides Sir2 genes can be used to prevent and treat diseases of ageing or mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yuzhe Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengbin Fei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenyou Jiang
- Departments of Microbiology and Immunology, Medical College, Jinan University, Guangzhou 510632, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Singh G, Sinha S, Bandyopadhyay KK, Lawrence M, Prasad R, Paul D. Triauxic growth of an oleaginous red yeast Rhodosporidium toruloides on waste 'extract' for enhanced and concomitant lipid and β-carotene production. Microb Cell Fact 2018; 17:182. [PMID: 30454058 PMCID: PMC6240951 DOI: 10.1186/s12934-018-1026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/11/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Vegetable 'mandi' (road-side vegetable market) waste was converted to a suitable fermentation medium for cultivation of oleaginous yeast Rhodosporidium toruloides by steaming under pressure. This cultivation medium derived from waste was found to be a comparatively better source of nutrients than standard culture media because it provided more than one type of usable carbon source(s) to yeast. RESULTS HPLC results showed that the extract contained glucose, xylose and glycerol along with other carbon sources, allowing triauxic growth pattern with preferably usage of glucose, xylose and glycerol resulting in enhanced growth, lipid and carotenoid production. Presence of saturated and unsaturated fatty acid methyl esters (FAMEs) (C14-20) in the lipid profile showed that the lipid may be transesterified for biodiesel production. CONCLUSION Upscaling these experiments to fermenter scale for the production of lipids and biodiesel and other industrially useful products would lead to waste management along with the production of value added commodities. The technique is thus environment friendly and gives good return upon investment.
Collapse
Affiliation(s)
- Gunjan Singh
- Amity Institute of Biotechnology, Amity University, Sec 125, Noida, Uttar Pradesh, 201313, India
| | - Sweta Sinha
- Amity Institute of Biotechnology, Amity University, Sec 125, Noida, Uttar Pradesh, 201313, India
| | - K K Bandyopadhyay
- Amity Institute of Biotechnology, Amity University, Sec 125, Noida, Uttar Pradesh, 201313, India
| | - Mark Lawrence
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | | | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Sec 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
12
|
Fatty Acids Effect on Lipase and Biosurfactant Induction in Rhodotorula Glutinis CMGB-RG5. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/alife-2018-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Fatty acids represent important substrates for obtaining microbial lipases and biosurfactants. The yeast strain CMGBRG5 was identified as Rhodotorula glutinis using the BIOLOG MicroLog System. The opacity screening tests showed that R. glutinis CMGB-RG5 was able to produce lipases in presence of 1% Tween 80 after three days of incubation. Lipase induction was estimated as cell growth in presence of Tween 80, Tween 20, olive oil and tributyrin. After 48 hours, best results were obtained in presence of butyric acid, respectively, oleic acid: 2.2 × 107 cells/ml on tributyrin and 1.0 × 107 cells/ml on olive oil. Biosurfactant production was evaluated as emulsification index (E24%). After one week, high E24 values were obtained on fried sunflower oil (53%) and olive oil (35%). Crude and concentrated biosurfactants were tested against nine Candida strains. Best antimicrobial activity was observed for [20X] biosurfactants against C. tropicalis, C. guilliermondii and C. krusei. In conclusion, R. glutinis CGB-RG5 shows high potential for using fatty acids from various sources as unique carbon substrates for synthesis of biocompounds with high economic and biotechnological value.
Collapse
|
13
|
Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J. Torulene and torularhodin: "new" fungal carotenoids for industry? Microb Cell Fact 2018; 17:49. [PMID: 29587755 PMCID: PMC5870927 DOI: 10.1186/s12934-018-0893-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/17/2018] [Indexed: 03/11/2023] Open
Abstract
Torulene and torularhodin represent the group of carotenoids and are synthesized by yeasts and fungi. The most important producers of these two compounds include yeasts of Rhodotorula and Sporobolomyces genera. The first reports confirming the presence of torulene and torularhodin in the cells of microorganisms date to the 1930s and 1940s; however, only in the past few years, the number of works describing the properties of these compounds increased. These compounds have strong anti-oxidative and anti-microbial properties, and thus may be successfully used as food, feedstock, and cosmetics additives. In addition, tests performed on rats and mice showed that both torulene and torularhodin have anti-cancerous properties. In order to commercialize the production of these two carotenoids, it is necessary to obtain highly efficient yeast strains, for example, via mutagenization and optimization of cultivation conditions. Further studies on the activity of torulene and torularhodin on the human body are also needed.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
14
|
Tkavc R, Matrosova VY, Grichenko OE, Gostinčar C, Volpe RP, Klimenkova P, Gaidamakova EK, Zhou CE, Stewart BJ, Lyman MG, Malfatti SA, Rubinfeld B, Courtot M, Singh J, Dalgard CL, Hamilton T, Frey KG, Gunde-Cimerman N, Dugan L, Daly MJ. Prospects for Fungal Bioremediation of Acidic Radioactive Waste Sites: Characterization and Genome Sequence of Rhodotorula taiwanensis MD1149. Front Microbiol 2018; 8:2528. [PMID: 29375494 PMCID: PMC5766836 DOI: 10.3389/fmicb.2017.02528] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 02/03/2023] Open
Abstract
Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans. However, the use of Deinococcus spp. and other bacteria is limited by their sensitivity to low pH. We report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites.
Collapse
Affiliation(s)
- Rok Tkavc
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vera Y Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Olga E Grichenko
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert P Volpe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Polina Klimenkova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Elena K Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Carol E Zhou
- Lawrence Livermore National Laboratory, Computing Applications and Research Department, Livermore, CA, United States
| | - Benjamin J Stewart
- Biosciences and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mathew G Lyman
- Biosciences and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Stephanie A Malfatti
- Biosciences and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Bonnee Rubinfeld
- Biosciences and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Melanie Courtot
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jatinder Singh
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Bethesda, MD, United States
| | - Theron Hamilton
- Biological Defense Research Directorate, Naval Medical Research Center, Fredrick, MD, United States
| | - Kenneth G Frey
- Biological Defense Research Directorate, Naval Medical Research Center, Fredrick, MD, United States
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lawrence Dugan
- Biosciences and Biotechnology Division, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
15
|
Landolfo S, Ianiri G, Camiolo S, Porceddu A, Mulas G, Chessa R, Zara G, Mannazzu I. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology (Reading) 2018; 164:78-87. [DOI: 10.1099/mic.0.000588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sara Landolfo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Via Francesco de Sanctis, 86100 Campobasso, Italy
- Present address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Salvatore Camiolo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Andrea Porceddu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuliana Mulas
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Rossella Chessa
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
16
|
Tsakraklides V, Kamineni A, Consiglio AL, MacEwen K, Friedlander J, Blitzblau HG, Hamilton MA, Crabtree DV, Su A, Afshar J, Sullivan JE, LaTouf WG, South CR, Greenhagen EH, Shaw AJ, Brevnova EE. High-oleate yeast oil without polyunsaturated fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:131. [PMID: 29760773 PMCID: PMC5941336 DOI: 10.1186/s13068-018-1131-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. RESULTS We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. CONCLUSIONS High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.
Collapse
Affiliation(s)
| | | | | | - Kyle MacEwen
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | | | | | | | | | - Austin Su
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | | | | | | | | | - Emily H. Greenhagen
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
- Present Address: Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, MA 02210 USA
| | - A. Joe Shaw
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
| | - Elena E. Brevnova
- Novogy, Inc, 85 Bolton Street, Cambridge, MA 02140 USA
- Present Address: Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, MA 02210 USA
| |
Collapse
|
17
|
High lipids accumulation in Rhodosporidium toruloides by applying single and multiple nutrients limitation in a simple chemically defined medium. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1282-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Yeasts found in vineyards and wineries. Yeast 2016; 34:111-128. [DOI: 10.1002/yea.3219] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/07/2022] Open
|
19
|
Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species. Microb Cell Fact 2016; 15:200. [PMID: 27887615 PMCID: PMC5124236 DOI: 10.1186/s12934-016-0600-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 01/07/2023] Open
Abstract
Background Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. Results The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4–11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50–160 and 20–90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6–3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5–3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Conclusion Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are excellent promoters for metabolic engineering in the oleaginous and carotenogenic yeast, R. toruloides. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0600-x) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Draft Genome Sequences of Rhodosporidium toruloides Strains ATCC 10788 and ATCC 10657 with Compatible Mating Types. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00098-16. [PMID: 26966203 PMCID: PMC4786659 DOI: 10.1128/genomea.00098-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rhodosporidium toruloides ATCC 10788 (haploid, A1 mating type) and ATCC 10657 (haploid, A2 mating type) were derived from the same diploid parent strain Rhodotorula glutinis ATCC 90781 and are important strains for metabolic engineering. Draft genome sequences of both strains are reported here. The current assembly of strain ATCC 10788 comprises 61 scaffolds with a total size of 20.75 Mbp and a GC content of 62.01%, while that of strain ATCC 10657 comprises 137 scaffolds with a total size of 21.49 Mbp and a GC content of 61.81%. Genome annotation predicts 7,730 and 7,800 protein encoding genes for strain ATCC 10788 and strain ATCC 10657, respectively.
Collapse
|
21
|
Cloning and evaluation of different constitutive promoters in the oleaginous yeastRhodosporidium toruloides. Yeast 2016; 33:99-106. [DOI: 10.1002/yea.3145] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
|
22
|
Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 2015; 113:1056-66. [PMID: 26479039 DOI: 10.1002/bit.25864] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 ± 1.1 g/L lipid from 70 g/L glucose and 9.5 ± 1.3 g/L lipid from 70 g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jeffrey M Skerker
- Department of Bioengineering, University of California, Berkeley, California
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Charles D Rutter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew J Maurer
- Department of Bioengineering, University of California, Berkeley, California
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, California.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
23
|
Liu Y, Koh CMJ, Ngoh ST, Ji L. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species. Microb Cell Fact 2015; 14:170. [PMID: 26502730 PMCID: PMC4624585 DOI: 10.1186/s12934-015-0357-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 12/05/2022] Open
Abstract
Background Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. Results We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a d-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named PDAO1-in1m1, showed very similar luciferase activity to the wild-type promoter upon induction with d-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. Conclusion The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0357-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbin Liu
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Si Te Ngoh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
24
|
He J, Yang Z, Hu B, Ji X, Wei Y, Lin L, Zhang Q. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. Yeast 2015; 32:683-90. [PMID: 26284451 DOI: 10.1002/yea.3095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature.
Collapse
Affiliation(s)
- Jing He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China.,Genetic Diagnosis Centre, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Zhaojie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Binbin Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| |
Collapse
|
25
|
Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 2015; 31:1665-73. [PMID: 26335057 DOI: 10.1007/s11274-015-1927-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023]
Abstract
Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as 'red yeasts', and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and "-omic" tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, Sassari, Italy.
| | - Sara Landolfo
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, Sassari, Italy
| | - Teresa Lopes da Silva
- Unidade de Bioenergia, Laboratorio Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, Lisbon, Portugal
| | - Pietro Buzzini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Collezione dei Lieviti Industriali (DBVPG), Università di Perugia, Borgo XX Giugno 74, Perugia, Italy
| |
Collapse
|
26
|
Bommareddy RR, Sabra W, Maheshwari G, Zeng AP. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Fact 2015; 14:36. [PMID: 25888986 PMCID: PMC4377193 DOI: 10.1186/s12934-015-0217-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Microbial lipids (triacylglycerols, TAG) have received large attention for a sustainable production of oleochemicals and biofuels. Rhodosporidium toruloides can accumulate lipids up to 70% of its cell mass under certain conditions. However, our understanding of lipid production in this yeast is still much limited, especially for growth with mixed substrates at the level of metabolic network. In this work, the potentials of several important carbon sources for TAG production in R.toruloides are first comparatively studied in silico by means of elementary mode analysis followed by experimental validation. Results A simplified metabolic network of R.toruloides was reconstructed based on a combination of genome and proteome annotations. Optimal metabolic space was studied using elementary mode analysis for growth on glycerol, glucose, xylose and arabinose or in mixtures. The in silico model predictions of growth and lipid production are in agreement with experimental results. Both the in silico and experimental studies revealed that glycerol is an attractive substrate for lipid synthesis in R. toruloides either alone or in blend with sugars. A lipid yield as high as 0.53 (C-mol TAG/C-mol) has been experimentally obtained for growth on glycerol, compared to a theoretical maximum of 0.63 (C-mol TAG/C-mol). The lipid yield on glucose is much lower (0.29 (experimental) vs. 0.58 (predicted) C-mol TAG/C-mol). The blend of glucose with glycerol decreased the lipid yield on substrate but can significantly increase the overall volumetric productivity. Experimental studies revealed catabolite repression of glycerol by the presence of glucose for the first time. Significant influence of oxygen concentration on the yield and composition of lipids were observed which have not been quantitatively studied before. Conclusions This study provides for the first time a simplified metabolic model of R.toruloides and its detailed in silico analysis for growth on different carbon sources for their potential of TAG synthesis. Experimental studies revealed the phenomenon of catabolite repression of glycerol by glucose and the importance of oxygen supply on the yield and composition of lipids. More systematic studies are needed to understand the mechanisms which should help to further optimize the lipid production in this strain of industrial interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0217-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajesh Reddy Bommareddy
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Garima Maheshwari
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
27
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|