1
|
Complete Genomic Sequence of Bacillus coagulans Strain JBI-YZ6.3: a Natural Spore-Forming Isolate from Food-Grade Tapioca Starch. Microbiol Resour Announc 2023; 12:e0100322. [PMID: 36472452 PMCID: PMC9872694 DOI: 10.1128/mra.01003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacillus coagulans strain JBI-YZ6.3 is a safe probiotic bacterium isolated from food-grade tapioca starch. The complete genome of B. coagulans JBI-YZ6.3 comprises one circular chromosome of 3.5 Mb and contains no toxigenic and antibiotic resistance genes, providing molecular information to support the strain's safety and usage as a probiotic.
Collapse
|
2
|
Prevention of gastrointestinal diseases in piglets at weaning using probiotics Bacillus coagylans and Bacillus megaterium. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The aim of the study is to determine the preventive effect of the use of probiotics Bacillus coagulans and Bacillus megaterium in case of gastrointestinal diseases in piglets and as a potential strategy to reduce the misuse of antibiotics in monogastric animals by adding probiotics to the diet of pregnant sows and piglets in the period before and after weaning.
Materials and methods. Three research groups were formed to study the preventive effect of probiotics of the genus Bacillus coagulans and Bacillus megaterium. The piglets of the first experimental group received probiotics at the rate of 0.4 kg per 1 ton of feed in the periods before and after weaning, and that is, the moment of the entire study, the second experimental group received probiotics in the period after weaning, before that they received milk from the sow. The third group was the control group, which received only milk from the sow, and fodder during the weaning period. The effectiveness of the prevention result was determined by the absence/presence of clinical signs of morbidity and % survival of animals during the study period.
The results. It was established that the preservation of livestock in the 1st experimental group was 90 %, and in the 2nd group – 70 %, and control – 50 %.
Conclusions. Research results show that probiotics of the genus Bacillus coagulans and Bacillus megaterium, the components of which provide a wide spectrum of antimicrobial activity, are a reliable preventive measure for gastrointestinal diseases in piglets.
Collapse
|
3
|
Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA. Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front Microbiol 2022; 13:993451. [PMID: 36225361 PMCID: PMC9549136 DOI: 10.3389/fmicb.2022.993451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The use of Bacillus licheniformis as a probiotic has increased significantly in recent years. Published reports demonstrate that it provides multiple benefits for health. Although there are already studies in humans and is marketed, it is mostly used in the veterinary industry still. However, its benefits could be extrapolated to humans in future. This review addresses the application of B. licheniformis, its sporulation, mechanisms of action, and its role in the resolution, treatment, and prevention of different conditions and diseases. It focuses on scientific advances from 2016 to mid-2022 and emphasizes the most common diseases in the general population. Most of the 70% of published studies about the health benefits of B. licheniformis have been published from 2016 until now. The intake of B. licheniformis has been related to the effects of modulation of the intestinal microbiota, antimicrobial activity, growth promotion, anti-inflammatory and immunostimulatory effects, promotion of the regulation of the lipid profile, increase of neurotransmitters, and stress reduction, among others. These results provide novel possible applications of this and other probiotics in general. Although many benefits can be reported on a microorganism, the combination with others could provide a better effect. Further studies like this need to be done to understand the specific advantages of each probiotic and its strains and therefore achieve a better selection of them for a specific disease or disorder.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
| | - Bernardo Reyes-Ballesteros
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Estado de México, Ciudad López Mateos, MX, Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
- *Correspondence: Rocio Alejandra Chavez-Santoscoy,
| |
Collapse
|
4
|
Taxonomic Evaluation of the Heyndrickxia (Basonym Bacillus) sporothermodurans Group ( H. sporothermodurans, H. vini, H. oleronia) Based on Whole Genome Sequences. Microorganisms 2021; 9:microorganisms9020246. [PMID: 33530338 PMCID: PMC7911792 DOI: 10.3390/microorganisms9020246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic heterogeneity of Heyndrickxia sporothermodurans (formerly Bacillussporothermodurans) was evaluated using whole genome sequencing. The genomes of 29 previously identified Heyndrickxiasporothermodurans and two Heyndrickxia vini strains isolated from ultra-high-temperature (UHT)-treated milk were sequenced by short-read (Illumina) sequencing. After sequence analysis, the two H. vini strains could be reclassified as H. sporothermodurans. In addition, the genomes of the H.sporothermodurans type strain (DSM 10599T) and the closest phylogenetic neighbors Heyndrickxiaoleronia (DSM 9356T) and Heyndrickxia vini (JCM 19841T) were also sequenced using both long (MinION) and short-read (Illumina) sequencing. By hybrid sequence assembly, the genome of the H. sporothermodurans type strain was enlarged by 15% relative to the short-read assembly. This noticeable increase was probably due to numerous mobile elements in the genome that are presumptively related to spore heat tolerance. Phylogenetic studies based on 16S rDNA gene sequence, core genome, single-nucleotide polymorphisms and ANI/dDDH, showed that H. vini is highly related to H. sporothermodurans. When examining the genome sequences of all H.sporothermodurans strains from this study, together with 4 H. sporothermodurans genomes available in the GenBank database, the majority of the 36 strains examined occurred in a clonal lineage with less than 100 SNPs. These data substantiate previous reports on the existence and spread of a genetically highly homogenous and heat resistant spore clone, i.e., the HRS-clone.
Collapse
|
5
|
Pereira JQ, Ritter AC, Cibulski S, Brandelli A. Functional genome annotation depicts probiotic properties of Bacillus velezensis FTC01. Gene 2019; 713:143971. [DOI: 10.1016/j.gene.2019.143971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
|
6
|
Genome Sequences of Bacillus sporothermodurans Strains Isolated from Ultra-High-Temperature Milk. Microbiol Resour Announc 2019; 8:8/22/e00145-19. [PMID: 31147427 PMCID: PMC6544184 DOI: 10.1128/mra.00145-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we report the draft genome sequences of 3 Bacillus sporothermodurans strains isolated from ultra-high-temperature milk products in South Africa and Brazil and the type strain MB 581 (DSM 10599). The genomes will provide valuable information on the molecular dynamics of heat resistance in B. Here, we report the draft genome sequences of 3 Bacillus sporothermodurans strains isolated from ultra-high-temperature milk products in South Africa and Brazil and the type strain MB 581 (DSM 10599). The genomes will provide valuable information on the molecular dynamics of heat resistance in B. sporothermodurans.
Collapse
|
7
|
Higgins D, Pal C, Sulaiman IM, Jia C, Zerwekh T, Dowd SE, Banerjee P. Application of high-throughput pyrosequencing in the analysis of microbiota of food commodities procured from small and large retail outlets in a U.S. metropolitan area - A pilot study. Food Res Int 2017; 105:29-40. [PMID: 29433218 DOI: 10.1016/j.foodres.2017.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/08/2023]
Abstract
With the advent of high-throughput sequencing technologies, it is possible to comprehensively analyze the microbial community of foods without culturing them in the laboratory. The estimation of all microbes inhabiting a food commodity (food microbiota) therefore may shed light on the microbial quality and safety of foods. In this study, we utilized high-throughput pyrosequencing of 16S rRNA genes as well as traditional microbiological methods to evaluate the bacterial diversity and the predicted metabolic pathways associated with the bacterial communities of selected foods (romaine lettuce, cabbage, deli meat, and chicken legs, total 200 samples) procured from small and large retail outlets located in Memphis-Shelby County, Tennessee, USA. For high-throughput sequencing, microbial genomic DNA was directly extracted from the food products and subjected to genetic sequencing. Aerobic plate count of all food samples was also performed. Foods from small stores (such as corner stores) were found to contain higher bacterial counts as compared to large stores (such as supermarkets). High-throughput pyrosequencing in tandem with bioinformatics analyses revealed a comprehensive picture of the bacterial ecology of foods at different taxonomic levels. Firmicutes and Proteobacteria were the most abundant phyla across all products. At the genus level, Enterobacter and Pantoea in vegetables, and Bacillus and Aeromonas in animal products were found to be the most abundant. The bacterial predicted metabolic pathways such as inosine-5'-phosphate biosynthesis I, methylglyoxal (MG) degradation pathways, urea cycle, dTDP-l-rhamnose biosynthesis I, and mevalonate pathway I differed in foods procured from small stores as compared to large groceries or supermarkets. The results from this study revealed that the bacterial ecology (both in terms of numbers and types of bacteria) of food commodities might differ based on the vending outlet type (large vs. small) of retail stores. The overall estimation bacterial communities in foods by high-throughput sequencing method may be useful to identify potential taxa responsible for food spoilage. Moreover, the data from pyrosequencing of 16S rRNA genes can also be applied to infer major metabolic pathways in bacteria inhabiting different foods. This may reflect the role of these pathways in food-bacteria interaction and adaptation.
Collapse
Affiliation(s)
- Daleniece Higgins
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Chandan Pal
- Department of Infectious Diseases, Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Irshad M Sulaiman
- Southeast Regional Laboratory, U.S. Food and Drug Administration, Atlanta, GA, USA
| | - Chunrong Jia
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | | | - Scot E Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, USA
| | - Pratik Banerjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| |
Collapse
|
8
|
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol 2017; 8:1490. [PMID: 28848511 PMCID: PMC5554123 DOI: 10.3389/fmicb.2017.01490] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.
Collapse
Affiliation(s)
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Rohini D Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
9
|
Berendsen EM, Koning RA, Boekhorst J, de Jong A, Kuipers OP, Wells-Bennik MHJ. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn 1546 Transposon. Front Microbiol 2016; 7:1912. [PMID: 27994575 PMCID: PMC5133452 DOI: 10.3389/fmicb.2016.01912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain.
Collapse
Affiliation(s)
- Erwin M Berendsen
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Rosella A Koning
- Top Institute Food and NutritionWageningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Jos Boekhorst
- Top Institute Food and NutritionWageningen, Netherlands; NIZO Food ResearchEde, Netherlands
| | - Anne de Jong
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Top Institute Food and NutritionWageningen, Netherlands; Laboratory of Molecular Genetics, University of GroningenGroningen, Netherlands
| | | |
Collapse
|
10
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, Yuan L, Pei Z, He G. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol 2016; 238:193-201. [DOI: 10.1016/j.ijfoodmicro.2016.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/26/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022]
|