1
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
2
|
Hamidian M, Lazenby J, To J, Hartstein R, Soares J, McNamara S, Whitchurch CB. Complete Genome Sequence of Stenotrophomonas maltophilia Strain CF13, Recovered from Sputum from an Australian Cystic Fibrosis Patient. Microbiol Resour Announc 2020; 9:e00628-20. [PMID: 32763931 PMCID: PMC7409848 DOI: 10.1128/mra.00628-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/11/2020] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia isolate CF13 is a multidrug-resistant isolate that was recovered in Sydney, Australia, in 2011, from a sputum sample from an individual with cystic fibrosis. The genome sequence of CF13 was completed using long- and short-read technologies.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - James Lazenby
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Joyce To
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Rebecca Hartstein
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jana Soares
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Samantha McNamara
- The ithree institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
3
|
Iyer R, Damania A, Iken B. Genome data of Stenotrophomonas maltophilia DF07 collected from polluted river sediment reveals an opportunistic pathogen and a potential antibiotic reservoir. Data Brief 2019; 25:104137. [PMID: 31304216 PMCID: PMC6600701 DOI: 10.1016/j.dib.2019.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/02/2022] Open
Abstract
Stenotrophomonas maltophilia DF07 is a gram negative bacterium isolated from polluted San Jacinto River sediment near Moncrief Park in Channelview, Texas. The genome of strain DF07 (chromosome and plasmid) was compiled at the scaffold level and can be accessed through the National Center for Biotechnology Information database under accession NZ_NJGC00000000. The DF07 genome consists of a total of 4,801,842 bp encoding for approximately 4,351 functional proteins. Approximately 86 proteins are associated with broad-spectrum antibiotic resistance, 11 are associated with bacteriocin production, and a total of 17 proteins encode for an assortment of Mycobacterium-like virulence and invasion operons. S. maltophilia DF07 is genetically similar to the nosocomial S. maltophilia strain AU12-09, but also harbors an unusually large plasmid that encodes for over 150 proteins of unknown function. Taken together, this strain is potentially an important antibiotic reservoir and its origin within a recreational park merits further study of the area.
Collapse
Affiliation(s)
- Rupa Iyer
- Center for Life Sciences Technology, Engineering Technology, University of Houston, Houston, USA
- Corresponding author.
| | - Ashish Damania
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine, Houston, USA
| | - Brian Iken
- Center for Life Sciences Technology, Engineering Technology, University of Houston, Houston, USA
| |
Collapse
|
4
|
Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a Software Package to Select Optimal Orthologous Clusters for Phylogenomics and Inferring Pan-Genome Phylogenies, Used for a Critical Geno-Taxonomic Revision of the Genus Stenotrophomonas. Front Microbiol 2018; 9:771. [PMID: 29765358 PMCID: PMC5938378 DOI: 10.3389/fmicb.2018.00771] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
The massive accumulation of genome-sequences in public databases promoted the proliferation of genome-level phylogenetic analyses in many areas of biological research. However, due to diverse evolutionary and genetic processes, many loci have undesirable properties for phylogenetic reconstruction. These, if undetected, can result in erroneous or biased estimates, particularly when estimating species trees from concatenated datasets. To deal with these problems, we developed GET_PHYLOMARKERS, a pipeline designed to identify high-quality markers to estimate robust genome phylogenies from the orthologous clusters, or the pan-genome matrix (PGM), computed by GET_HOMOLOGUES. In the first context, a set of sequential filters are applied to exclude recombinant alignments and those producing anomalous or poorly resolved trees. Multiple sequence alignments and maximum likelihood (ML) phylogenies are computed in parallel on multi-core computers. A ML species tree is estimated from the concatenated set of top-ranking alignments at the DNA or protein levels, using either FastTree or IQ-TREE (IQT). The latter is used by default due to its superior performance revealed in an extensive benchmark analysis. In addition, parsimony and ML phylogenies can be estimated from the PGM. We demonstrate the practical utility of the software by analyzing 170 Stenotrophomonas genome sequences available in RefSeq and 10 new complete genomes of Mexican environmental S. maltophilia complex (Smc) isolates reported herein. A combination of core-genome and PGM analyses was used to revise the molecular systematics of the genus. An unsupervised learning approach that uses a goodness of clustering statistic identified 20 groups within the Smc at a core-genome average nucleotide identity (cgANIb) of 95.9% that are perfectly consistent with strongly supported clades on the core- and pan-genome trees. In addition, we identified 16 misclassified RefSeq genome sequences, 14 of them labeled as S. maltophilia, demonstrating the broad utility of the software for phylogenomics and geno-taxonomic studies. The code, a detailed manual and tutorials are freely available for Linux/UNIX servers under the GNU GPLv3 license at https://github.com/vinuesa/get_phylomarkers. A docker image bundling GET_PHYLOMARKERS with GET_HOMOLOGUES is available at https://hub.docker.com/r/csicunam/get_homologues/, which can be easily run on any platform.
Collapse
Affiliation(s)
- Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luz E Ochoa-Sánchez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas, Zaragoza, Spain.,Fundación Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Zaragoza, Spain
| |
Collapse
|
5
|
Mukherjee P, Roy P. Genomic Potential of Stenotrophomonas maltophilia in Bioremediation with an Assessment of Its Multifaceted Role in Our Environment. Front Microbiol 2016; 7:967. [PMID: 27446008 PMCID: PMC4916776 DOI: 10.3389/fmicb.2016.00967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 06/03/2016] [Indexed: 11/13/2022] Open
Abstract
The gram negative bacterium Stenotrophomonas is rapidly evolving as a nosocomial pathogen in immuno-compromised patients. Treatment of Stenotrophomonas maltophilia infections is problematic because of their increasing resistance to multiple antibiotics. This article aims to review the multi-disciplinary role of Stenotrophomonas in our environment with special focus on their metabolic and genetic potential in relation to bioremediation and phytoremediation. Current and emerging treatments and diagnosis for patients infected with S. maltophilia are discussed besides their capability of production of novel bioactive compounds. The plant growth promoting characteristics of this bacterium has been considered with special reference to secondary metabolite production. Nano-particle synthesis by Stenotrophomonas has also been reviewed in addition to their applications as effective biocontrol agents in plant and animal pathogenesis.
Collapse
Affiliation(s)
- Piyali Mukherjee
- Laboratory of Molecular Biology, Department of Biotechnology, Burdwan UniversityBurdwan, India
| | - Pranab Roy
- Department of Biotechnology, Haldia Institute of TechnologyHaldia, India
| |
Collapse
|
6
|
Youenou B, Favre-Bonté S, Bodilis J, Brothier E, Dubost A, Muller D, Nazaret S. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol Evol 2015; 7:2484-505. [PMID: 26276674 PMCID: PMC4607518 DOI: 10.1093/gbe/evv161] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer.
Collapse
Affiliation(s)
- Benjamin Youenou
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sabine Favre-Bonté
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Josselin Bodilis
- EA4312 Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Mont-Saint-Aignan, France
| | - Elisabeth Brothier
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Daniel Muller
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sylvie Nazaret
- Université de Lyon, France; Research Group on Environmental Multi-Resistance and Efflux Pump, CNRS, Ecole Nationale Vétérinaire de Lyon, and Université Lyon 1, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
7
|
Identification and characterization of a serious multidrug resistant Stenotrophomonas maltophilia strain in China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:580240. [PMID: 25654114 PMCID: PMC4310304 DOI: 10.1155/2015/580240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
An S. maltophilia strain named WJ66 was isolated from a patient; WJ66 showed resistance to more antibiotics than the other S. maltophilia strains. This bacteraemia is resistant to sulphonamides, or fluoroquinolones, while the representative strain of S. maltophilia, K279a, is sensitive to both. To explore drug resistance determinants of this strain, the draft genome sequence of WJ66 was determined and compared to other S. maltophilia sequences. Genome sequencing and genome-wide evolutionary analysis revealed that WJ66 was highly homologous with the strain K279a, but strain WJ66 contained additional antibiotic resistance genes. Further analysis confirmed that strain WJ66 contained an amino acid substitution (Q83L) in fluoroquinolone target GyrA and carried a class 1 integron, with an aadA2 gene in the resistance gene cassette. Homology analysis from the pathogen-host interaction database showed that strain WJ66 lacks raxST and raxA, which is consistent with K279a. Comparative genomic analyses revealed that subtle nucleotide differences contribute to various significant phenotypes in close genetic relationship strains.
Collapse
|
8
|
Al-Anazi KA, Al-Jasser AM. Infections Caused by Stenotrophomonas maltophilia in Recipients of Hematopoietic Stem Cell Transplantation. Front Oncol 2014; 4:232. [PMID: 25202682 PMCID: PMC4142553 DOI: 10.3389/fonc.2014.00232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a globally emerging Gram-negative bacillus that is widely spread in environment and hospital equipment. Recently, the incidence of infections caused by this organism has increased, particularly in patients with hematological malignancy and in recipients of hematopoietic stem cell transplantation (HSCT) having neutropenia, mucositis, diarrhea, central venous catheters or graft versus host disease and receiving intensive cytotoxic chemotherapy, immunosuppressive therapy, or broad-spectrum antibiotics. The spectrum of infections in HSCT recipients includes pneumonia, urinary tract and surgical site infection, peritonitis, bacteremia, septic shock, and infection of indwelling medical devices. The organism exhibits intrinsic resistance to many classes of antibiotics including carbapenems, aminoglycosides, most of the third-generation cephalosporins, and other β-lactams. Despite the increasingly reported drug resistance, trimethoprim-sulfamethoxazole is still the drug of choice. However, the organism is still susceptible to ticarcillin-clavulanic acid, tigecycline, fluoroquinolones, polymyxin-B, and rifampicin. Genetic factors play a significant role not only in evolution of drug resistance but also in virulence of the organism. The outcome of patients having S. maltophilia infections can be improved by: using various combinations of novel therapeutic agents and aerosolized aminoglycosides or colistin, prompt administration of in vitro active antibiotics, removal of possible sources of infection such as infected indwelling intravascular catheters, and application of strict infection control measures.
Collapse
Affiliation(s)
- Khalid Ahmed Al-Anazi
- Section of Adult Hematology and Oncology, Department of Medicine, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
9
|
Mahdi O, Eklund B, Fisher N. Laboratory culture and maintenance of Stenotrophomonas maltophilia. ACTA ACUST UNITED AC 2014; 32:Unit 6F.1.. [PMID: 24510848 DOI: 10.1002/9780471729259.mc06f01s32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stenotrophomonas maltophilia is a ubiquitous soil bacterium that is increasingly recognized as an emerging nosocomial pathogen. This unit includes protocols for the in vitro growth and maintenance of S. maltophilia.
Collapse
Affiliation(s)
- Osama Mahdi
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota
| | | | | |
Collapse
|