1
|
Sumiyoshi A, Kitao K, Miyazawa T. Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam. J Vet Med Sci 2021; 84:157-165. [PMID: 34880191 PMCID: PMC8810315 DOI: 10.1292/jvms.21-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from
domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific
characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard
cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from
pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from
domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs
from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats.
Collapse
Affiliation(s)
- Aoi Sumiyoshi
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
2
|
Fried WA, Soltero-Rivera M, Ramesh A, Lommer MJ, Arzi B, DeRisi JL, Horst JA. Use of unbiased metagenomic and transcriptomic analyses to investigate the association between feline calicivirus and feline chronic gingivostomatitis in domestic cats. Am J Vet Res 2021; 82:381-394. [PMID: 33904799 DOI: 10.2460/ajvr.82.5.381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify associations between microbes and host genes in cats with feline chronic gingivostomatitis (FCGS), a debilitating inflammatory oral mucosal disease with no known cause, compared with healthy cats and cats with periodontitis (control cats). ANIMALS 19 control cats and 23 cats with FCGS. PROCEDURES At least 1 caudal oral mucosal swab specimen was obtained from each cat. Each specimen underwent unbiased metatranscriptomic next-generation RNA sequencing (mNGS). Filtered mNGS reads were aligned to all known genetic sequences from all organisms and to the cat transcriptome. The relative abundances of microbial and host gene read alignments were compared between FCGS-affected cats and control cats and between FCGS-affected cats that did and did not clinically respond to primary treatment. Assembled feline calicivirus (FCV) genomes were compared with reverse transcription PCR (RT-PCR) primers commonly used to identify FCV. RESULTS The only microbe strongly associated with FCGS was FCV, which was detected in 21 of 23 FCGS-affected cats but no control cats. Problematic base pair mismatches were identified between the assembled FCV genomes and RT-PCR primers. Puma feline foamy virus was detected in 9 of 13 FCGS-affected cats that were refractory to treatment and 5 healthy cats but was not detected in FCGS-affected cats that responded to tooth extractions. The most differentially expressed genes in FCGS-affected cats were those associated with antiviral activity. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that FCGS pathogenesis has a viral component. Many FCV strains may yield false-negative results on RT-PCR-based assays. Coinfection of FCGS-affected cats with FCV and puma feline foamy virus may adversely affect response to treatment.
Collapse
|
3
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
4
|
Dannemiller NG, Kechejian S, Kraberger S, Logan K, Alldredge M, Crooks KR, VandeWoude S, Carver S. Diagnostic Uncertainty and the Epidemiology of Feline Foamy Virus in Pumas (Puma concolor). Sci Rep 2020; 10:1587. [PMID: 32005906 PMCID: PMC6994588 DOI: 10.1038/s41598-020-58350-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feline foamy virus (FFV) is a contact-dependent retrovirus forming chronic, largely apathogenic, infections in domestic and wild felid populations worldwide. Given there is no current ‘gold standard’ diagnostic test for FFV, efforts to elucidate the ecology and epidemiology of the virus may be complicated by unknown sensitivity and specificity of diagnostic tests. Using Bayesian Latent Class Analysis, we estimated the sensitivity and specificity of the only two FFV diagnostic tests available—ELISA and qPCR—as well as the prevalence of FFV in a large cohort of pumas from Colorado. We evaluated the diagnostic agreement of ELISA and qPCR, and whether differences in their diagnostic accuracy impacted risk factor analyses for FFV infection. Our results suggest ELISA and qPCR did not have strong diagnostic agreement, despite FFV causing a persistent infection. While both tests had similar sensitivity, ELISA had higher specificity. ELISA, but not qPCR, identified age to be a significant risk factor, whereas neither qPCR nor ELISA identified sex to be a risk factor. This suggests FFV transmission in pumas may primarily be via non-antagonistic, social interactions between adult conspecifics. Our study highlights that combined use of qPCR and ELISA for FFV may enhance estimates of the true prevalence of FFV and epidemiological inferences.
Collapse
Affiliation(s)
- Nicholas G Dannemiller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Simona Kraberger
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kenneth Logan
- Colorado Parks and Wildlife, Montrose, Colorado, USA
| | | | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Kraberger S, Fountain-Jones NM, Gagne RB, Malmberg J, Dannemiller NG, Logan K, Alldredge M, Varsani A, Crooks KR, Craft M, Carver S, VandeWoude S. Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evol 2020; 6:vez058. [PMID: 31942245 PMCID: PMC6955097 DOI: 10.1093/ve/vez058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nicholas G Dannemiller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken Logan
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526, USA
| | - Mat Alldredge
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Meggan Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Kraberger S, Serieys L, Fountain-Jones N, Packer C, Riley S, Varsani A. Novel smacoviruses identified in the faeces of two wild felids: North American bobcat and African lion. Arch Virol 2019; 164:2395-2399. [PMID: 31240485 PMCID: PMC7086625 DOI: 10.1007/s00705-019-04329-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 11/14/2022]
Abstract
Smacoviruses are small circular single-stranded DNA viruses that appear to be prevalent in faeces of a range of animals and have also been found in a few insect species. In this study, we report the first viral genomes from faeces of free-roaming wild felids on two continents. Two smacoviruses were recovered from the faeces of two North American bobcats (Lynx rufus), and one was recovered from an African lion (Panthera leo). All three genomes are genetically different, sharing 59-69% genome-wide sequence identity to other smacoviruses. These are the first full smacovirus genome sequences associated with a large top-end feline predator, and their presence in these samples suggests that feline faeces are a natural niche for the organisms that these viruses infect.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA.
| | - Laurel Serieys
- Department of Biological Sciences, Institute for Communities and Wildlife in Africa, University of Cape Town, Rondebosch, Private Bag X3, Cape Town, 7701, South Africa.,Environmental Studies, University of California, Santa Cruz, Campus Mail Stop, 1153 High Street, Santa Cruz, CA, USA.,Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, 91360, USA
| | - Nicolas Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Craig Packer
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55408, USA
| | - Seth Riley
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, 91360, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA. .,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA. .,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
7
|
Kechejian SR, Dannemiller N, Kraberger S, Ledesma-Feliciano C, Malmberg J, Roelke Parker M, Cunningham M, McBride R, Riley SPD, Vickers WT, Logan K, Alldredge M, Crooks K, Löchelt M, Carver S, VandeWoude S. Feline Foamy Virus is Highly Prevalent in Free-Ranging Puma concolor from Colorado, Florida and Southern California. Viruses 2019; 11:E359. [PMID: 31010173 PMCID: PMC6521117 DOI: 10.3390/v11040359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Feline foamy virus (FFV) is a retrovirus that has been detected in multiple feline species, including domestic cats (Felis catus) and pumas (Puma concolor). FFV results in persistent infection but is generally thought to be apathogenic. Sero-prevalence in domestic cat populations has been documented in several countries, but the extent of viral infections in nondomestic felids has not been reported. In this study, we screened sera from 348 individual pumas from Colorado, Southern California and Florida for FFV exposure by assessing sero-reactivity using an FFV anti-Gag ELISA. We documented a sero-prevalence of 78.6% across all sampled subpopulations, representing 69.1% in Southern California, 77.3% in Colorado, and 83.5% in Florida. Age was a significant risk factor for FFV infection when analyzing the combined populations. This high prevalence in geographically distinct populations reveals widespread exposure of puma to FFV and suggests efficient shedding and transmission in wild populations.
Collapse
Affiliation(s)
- Sarah R Kechejian
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Nick Dannemiller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Simona Kraberger
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
| | - Carmen Ledesma-Feliciano
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, Aurora, CO 80045, USA.
| | - Jennifer Malmberg
- Wyoming State Vet Lab, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82072, USA.
| | - Melody Roelke Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA.
| | - Mark Cunningham
- Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, FL 32601, USA.
| | - Roy McBride
- Rancher's Supply Inc., Alpine, TX 79830, USA.
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA 90265, USA.
| | - Winston T Vickers
- Karen C. Drayer Wildlife Health Center, University of California, Davis, CA 95616, USA.
| | - Ken Logan
- Wildlife Researcher Colorado Parks and Wildlife, 2300 S. Townsend Avenue, Montrose, CO 80203, USA.
| | - Mat Alldredge
- Colorado Division of Wildlife Office, Mammals Research, 317 W. Prospect Rd, For Collins, CO 80526, USA.
| | - Kevin Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University 115 Wagar, Fort Collins, CO 80523, USA.
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7005, Australia.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
8
|
Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, Kuzmak J, Lindemann D, Linial ML, Löchelt M, Materniak-Kornas M, Soares MA, Switzer WM. Spumaretroviruses: Updated taxonomy and nomenclature. Virology 2018; 516:158-164. [PMID: 29407373 PMCID: PMC11318574 DOI: 10.1016/j.virol.2017.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 01/28/2023]
Abstract
Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.
Collapse
Affiliation(s)
- Arifa S Khan
- Laboratory of Retroviruses, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | - Florence Buseyne
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Antoine Gessain
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jacek Kuzmak
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martin Löchelt
- Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | | | - Marcelo A Soares
- Instituto Nacional de Câncer and Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Mühle M, Bleiholder A, Löchelt M, Denner J. Epitope Mapping of the Antibody Response Against the Envelope Proteins of the Feline Foamy Virus. Viral Immunol 2017; 30:388-395. [PMID: 28355125 DOI: 10.1089/vim.2016.0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Foamy viruses (FV) are retroviruses that infect several species without pathological signs, but induce substantial antibody responses in the infected host. In the case of feline FV (FFV), antibodies against Gag, Bet, and Env have been used to indicate infection; however, it is unclear whether the response to specific epitopes correlates with immunity. Here, we investigated the epitope specificity of antibodies targeting the Env protein using peptide microarrays. Sera from naturally and experimentally FFV-infected cats and pumas and from rats immunized with FFV Env expression plasmids were analyzed. An immunodominant epitope was identified in the Env leader protein (Elp), and a strong reactivity to two epitope clusters in the transmembrane (TM) subunit of Env was observed. Moreover, a short stretch of residues in the C-terminal part of the surface (SU) protein was found to be significantly associated with FFV serotype FUV-mediated neutralization. Taken together, our results add a new level of detail on the B cell epitope repertoire induced during FFV infection. Furthermore, our results provide a basis for current attempts to modify FV vectors to express and present vaccine epitopes for the directed induction of humoral immunity.
Collapse
Affiliation(s)
| | - Anne Bleiholder
- 2 German Cancer Research Center , Research Program Infection, Inflammation and Cancer, Heidelberg, Germany
| | - Martin Löchelt
- 2 German Cancer Research Center , Research Program Infection, Inflammation and Cancer, Heidelberg, Germany
| | | |
Collapse
|
10
|
Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013; 5:2169-209. [PMID: 24064793 PMCID: PMC3798896 DOI: 10.3390/v5092169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology.
Collapse
Affiliation(s)
- Timo Kehl
- German Cancer Research Center, INF242, Heidelberg 69120, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-42-4935; Fax: +49-6221-42-4932
| | - Juan Tan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; E-Mail:
| | - Magdalena Materniak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantow Ave. 57, Pulawy 24-100, Poland; E-Mail:
| |
Collapse
|