1
|
Cordey S, Laubscher F, Hartley MA, Junier T, Keitel K, Docquier M, Guex N, Iseli C, Vieille G, Le Mercier P, Gleizes A, Samaka J, Mlaganile T, Kagoro F, Masimba J, Said Z, Temba H, Elbanna GH, Tapparel C, Zanella MC, Xenarios I, Fellay J, D’Acremont V, Kaiser L. Blood virosphere in febrile Tanzanian children. Emerg Microbes Infect 2021; 10:982-993. [PMID: 33929935 PMCID: PMC8171259 DOI: 10.1080/22221751.2021.1925161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.
Collapse
Affiliation(s)
- Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Laubscher
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary-Anne Hartley
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Thomas Junier
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristina Keitel
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
- Department of Paediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Gael Vieille
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Anne Gleizes
- SwissProt group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | - Frank Kagoro
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - John Masimba
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Zamzam Said
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Gasser H. Elbanna
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Celine Zanella
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, Geneva, Switzerland
- Agora Center, University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie D’Acremont
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Zlateva KT, van Rijn AL, Simmonds P, Coenjaerts FEJ, van Loon AM, Verheij TJM, de Vries JJC, Little P, Butler CC, van Zwet EW, Goossens H, Ieven M, Claas ECJ. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007-2010). Thorax 2020; 75:882-890. [PMID: 32820081 PMCID: PMC7509388 DOI: 10.1136/thoraxjnl-2019-214317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Differences in clinical impact between rhinovirus (RVs) species and types in adults are not well established. The objective of this study was to determine the epidemiology and clinical impact of the different RV species. METHODS We conducted a prospective study of RVs infections in adults with acute cough/lower respiratory tract infection (LRTI) and asymptomatic controls. Subjects were recruited from 16 primary care networks located in 11 European countries between 2007 and 2010. RV detection and genotyping was performed by means of real time and conventional reverse-transcriptase polymerase chain reaction assays, followed by sequence analysis. Clinical data were obtained from medical records and patient symptom diaries. RESULTS RVs were detected in 566 (19%) of 3016 symptomatic adults, 102 (4%) of their 2539 follow-up samples and 67 (4%) of 1677 asymptomatic controls. Genotyping was successful for 538 (95%) symptomatic subjects, 86 (84%) follow-up infections and 62 (93%) controls. RV-A was the prevailing species, associated with an increased risk of LRTI as compared with RV-B (relative risk (RR), 4.5; 95% CI 2.5 to 7.9; p<0.001) and RV-C (RR 2.2; 95% CI 1.2 to 3.9; p=0.010). In symptomatic subjects, RV-A loads were higher than those of RV-B (p=0.015). Symptom scores and duration were similar across species. More RV-A infected patients felt generally unwell in comparison to RV-C (p=0·023). Of the 140 RV types identified, five were new types; asymptomatic infections were associated with multiple types. INTERPRETATION In adults, RV-A is significantly more often detected in cases with acute cough/LRTI than RV-C, while RV-B infection is often found in asymptomatic patients.
Collapse
Affiliation(s)
- Kalina T Zlateva
- Medical Microbiology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Anneloes L van Rijn
- Medical Microbiology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Peter Simmonds
- Infection and Immunity Division, University of Edinburgh, Edinburgh, UK
| | - Frank E J Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anton M van Loon
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theo J M Verheij
- Department of Data Management, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jutte J C de Vries
- Medical Microbiology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Paul Little
- Primary Care and Population Science, University of Southampton, Southampton, UK
| | | | - Erik W van Zwet
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Herman Goossens
- Department of Medical Microbiology, Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Department of Medical Microbiology, Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Eric C J Claas
- Medical Microbiology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
3
|
Watters K, Inankur B, Gardiner JC, Warrick J, Sherer NM, Yin J, Palmenberg AC. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases. J Virol 2017; 91:e02472-16. [PMID: 28179529 PMCID: PMC5375692 DOI: 10.1128/jvi.02472-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes.IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes.
Collapse
Affiliation(s)
- Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bahar Inankur
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaye C Gardiner
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay Warrick
- Wisconsin Institutes for Medical Research and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|