1
|
Dar MA, Xie R, Zabed HM, Pawar KD, Dhole NP, Sun J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. INSECT SCIENCE 2024. [PMID: 38990171 DOI: 10.1111/1744-7917.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.
Collapse
Affiliation(s)
- Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Neeraja P Dhole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Chung JH, Yeon J, Seong HJ, An SH, Kim DY, Yoon Y, Weon HY, Kim JJ, Ahn JH. Distinct Bacterial and Fungal Communities Colonizing Waste Plastic Films Buried for More Than 20 Years in Four Landfill Sites in Korea. J Microbiol Biotechnol 2022; 32:1561-1572. [PMID: 36453077 PMCID: PMC9843814 DOI: 10.4014/jmb.2206.06021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.
Collapse
Affiliation(s)
- Joon-hui Chung
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jehyeong Yeon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | | | - Si-Hyun An
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Da-Yeon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Younggun Yoon
- College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong Jun Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Republic of Korea,Corresponding author Phone: +82-63-238-3045 Fax: +82-63-850-3835 E-mail:
| |
Collapse
|
4
|
Peng C, Zhang X, Zhang X, Liu C, Chen Z, Sun H, Wang L. Bacterial Community under the Influence of Microplastics in Indoor Environment and the Health Hazards Associated with Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:422-432. [PMID: 34723495 DOI: 10.1021/acs.est.1c04520] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selectively colonized microbial communities and enriched antibiotic resistance genes (ARGs) in (micro)plastics in aquatic and soil environments make the plastisphere a great health concern. Although microplastics (MPs) are distributed in indoor environments in high abundance, information on the effect of MPs on a microbial community in an indoor environment is lacking. Here, we detected polymers (containing MPs and natural polymers), bacterial communities, and 18 kinds of ARGs in collected indoor dust samples. A significant correlation by Procrustes analysis between bacterial community composition and the abundance of MPs was observed, and correlation tests and redundancy analysis identified specific associations between MP polymers and bacterial taxa, such as polyamide and Actinobacteria. In addition, the abundance of MPs showed a positive correlation with the relative abundance of the ARGs (to 16S RNA), while natural polymers, such as cellulosics, showed positive correlations with the absolute abundance of ARGs and 16S rRNA. Simulated experiments verified that significantly higher bacterial biomasses and ARGs were observed on the surface of cotton, hair, and wool than on MPs, while a higher relative abundance of ARGs was detected on MPs. However, a significantly higher amount of ARG was found on MPs of poly(lactic acid), the biodegradable plastics with the highest yield. In addition to the plastisphere in water and soil environments, MPs in an indoor environment may also affect the bacterial community and specifically enrich ARGs. Moreover, degradable MPs and nondegradable MPs may result in different health hazards due to their distinct effects on bacterial community.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaofei Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeyou Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Chattopadhyay I. Role of microbiome and biofilm in environmental plastic degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Bhatt P, Pathak VM, Bagheri AR, Bilal M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 200:111762. [PMID: 34310963 DOI: 10.1016/j.envres.2021.111762] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Microplastic is a fragmented plastic part that emerges as a potential marine and terrestrial contaminant. The microplastic wastes in marine and soil environments cause severe problems in living systems. Microplastic wastes have been linked to various health problems, including reproductive harm and obesity, plus issues such as organ problems and developmental delays in children. Recycling plastic/microplastics from the environment is very low, so remediating these polymers after their utilization is of paramount concern. The microplastic causes severe toxic effects and contaminates the environment. Microplastic affects marine life, microorganism in soil, soil enzymes, plants system, and physicochemical properties. Ecotoxicology of the microplastic raised many questions about its use and development from the environment. Various physicochemical and microbial technologies have been developed for their remediation from the environment. The microplastic effects are linked with its concentration, size, and shape in contaminated environments. Microplastic is able to sorb the inorganic and organic contaminants and affect their fate into the contaminated sites. Microbial technology is considered safer for the remediation of the microplastics via its unique metabolic machinery. Bioplastic is regarded as safer and eco-friendly as compared to plastics. The review article explored an in-depth understanding of the microplastic, its fate, toxicity to the environment, and robust remediation strategies.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingman Modern Agriculture, Guangzhou, 510642, China.
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India; Department of Botany and Microbiology, Gurukul Kangri (Deemed to University), Haridwar, Uttarakhand, 249404, India
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
7
|
Rosas-Díaz J, Escobar-Zepeda A, Adaya L, Rojas-Vargas J, Cuervo-Amaya DH, Sánchez-Reyes A, Pardo-López L. Paenarthrobacter sp. GOM3 Is a Novel Marine Species With Monoaromatic Degradation Relevance. Front Microbiol 2021; 12:713702. [PMID: 34413843 PMCID: PMC8369764 DOI: 10.3389/fmicb.2021.713702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Paenarthrobacter sp. GOM3, which is a strain that represents a new species-specific context within the genus Paenarthrobacter, is clearly a branched member independent of any group described thus far. This strain was recovered from marine sediments in the Gulf of Mexico, and despite being isolated from a consortium capable of growing with phenanthrene as a sole carbon source, this strain could not grow successfully in the presence of this substrate alone. We hypothesized that the GOM3 strain could participate in the assimilation of intermediate metabolites for the degradation of aromatic compounds. To date, there are no experimental reports of Paenarthrobacter species that degrade polycyclic aromatic hydrocarbons (PAHs) or their intermediate metabolites. In this work, we report genomic and experimental evidence of metabolic benzoate, gentisate, and protocatechuate degradation by Paenarthrobacter sp. GOM3. Gentisate was the preferred substrate with the highest volumetric consumption rate, and genomic analysis revealed that this strain possesses multiple gene copies for the specific transport of gentisate. Furthermore, upon analyzing the GOM3 genome, we found five different dioxygenases involved in the activation of aromatic compounds, suggesting its potential for complete remediation of PAH-contaminated sites in combination with strains capable of assimilating the upper PAH degradation pathway. Additionally, this strain was characterized experimentally for its pathogenic potential and in silico for its antimicrobial resistance. An overview of the potential ecological role of this strain in the context of other members of this taxonomic clade is also reported.
Collapse
Affiliation(s)
- Jaime Rosas-Díaz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autoónoma de México, Cuernavaca, Mexico
| | - Alejandra Escobar-Zepeda
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Libertad Adaya
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autoónoma de México, Cuernavaca, Mexico
| | - Jorge Rojas-Vargas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autoónoma de México, Cuernavaca, Mexico
| | - Diego Humberto Cuervo-Amaya
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autoónoma de México, Cuernavaca, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt – Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autoónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Danso D, Chow J, Streit WR. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl Environ Microbiol 2019; 85:e01095-19. [PMID: 31324632 PMCID: PMC6752018 DOI: 10.1128/aem.01095-19] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plastics are widely used in the global economy, and each year, at least 350 to 400 million tons are being produced. Due to poor recycling and low circular use, millions of tons accumulate annually in terrestrial or marine environments. Today it has become clear that plastic causes adverse effects in all ecosystems and that microplastics are of particular concern to our health. Therefore, recent microbial research has addressed the question of if and to what extent microorganisms can degrade plastics in the environment. This review summarizes current knowledge on microbial plastic degradation. Enzymes available act mainly on the high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane (PUR). Unfortunately, the best PUR- and PET-active enzymes and microorganisms known still have moderate turnover rates. While many reports describing microbial communities degrading chemical additives have been published, no enzymes acting on the high-molecular-weight polymers polystyrene, polyamide, polyvinylchloride, polypropylene, ether-based polyurethane, and polyethylene are known. Together, these polymers comprise more than 80% of annual plastic production. Thus, further research is needed to significantly increase the diversity of enzymes and microorganisms acting on these polymers. This can be achieved by tapping into the global metagenomes of noncultivated microorganisms and dark matter proteins. Only then can novel biocatalysts and organisms be delivered that allow rapid degradation, recycling, or value-added use of the vast majority of most human-made polymers.
Collapse
Affiliation(s)
- Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Appl Microbiol Biotechnol 2017; 102:801-814. [DOI: 10.1007/s00253-017-8657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|