1
|
Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms. THE ISME JOURNAL 2023; 17:803-812. [PMID: 36871068 DOI: 10.1038/s41396-023-01388-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Extracellular polymeric substances (EPS) are core biofilm components, yet how they mediate interactions within and contribute to the structuring of biofilms is largely unknown, particularly for non-culturable microbial communities that predominate in environmental habitats. To address this knowledge gap, we explored the role of EPS in an anaerobic ammonium oxidation (anammox) biofilm. An extracellular glycoprotein, BROSI_A1236, from an anammox bacterium, formed envelopes around the anammox cells, supporting its identification as a surface (S-) layer protein. However, the S-layer protein also appeared at the edge of the biofilm, in close proximity to the polysaccharide-coated filamentous Chloroflexi bacteria but distal to the anammox bacterial cells. The Chloroflexi bacteria assembled into a cross-linked network at the edge of the granules and surrounding anammox cell clusters, with the S-layer protein occupying the space around the Chloroflexi. The anammox S-layer protein was also abundant at junctions between Chloroflexi cells. Thus, the S-layer protein is likely transported through the matrix as an EPS and also acts as an adhesive to facilitate the assembly of filamentous Chloroflexi into a three-dimensional biofilm lattice. The spatial distribution of the S-layer protein within the mixed species biofilm suggests that it is a "public-good" EPS, which facilitates the assembly of other bacteria into a framework for the benefit of the biofilm community, and enables key syntrophic relationships, including anammox.
Collapse
|
2
|
Phase Transitions by an Abundant Protein in the Anammox Extracellular Matrix Mediate Cell-to-Cell Aggregation and Biofilm Formation. mBio 2020; 11:mBio.02052-20. [PMID: 32900808 PMCID: PMC7482068 DOI: 10.1128/mbio.02052-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
By employing biophysical and liquid-liquid phase separation concepts, this study revealed how a highly abundant extracellular protein enhances the key environmental and industrial bioprocess of anaerobic ammonium oxidation (anammox). Extracellular proteins of environmental biofilms are understudied and poorly annotated in public databases. Understanding the function of extracellular proteins is also increasingly important for improving bioprocesses and resource recovery. Here, protein functions were assessed based on theoretical predictions of intrinsically disordered domains, known to promote adhesion and liquid-liquid phase separation, and available surface layer protein properties. A model is thus proposed to explain how the protein promotes aggregation and biofilm formation by extracellular matrix remodeling and phase transitions. This work provides a strong foundation for functional investigations of extracellular proteins involved in biofilm development. This study describes the first direct functional assignment of a highly abundant extracellular protein from a key environmental and biotechnological biofilm performing an anaerobic ammonium oxidation (anammox) process. Expression levels of Brosi_A1236, belonging to a class of proteins previously suggested to be cell surface associated, were in the top one percentile of all genes in the “Candidatus Brocadia sinica”-enriched biofilm. The Brosi_A1236 structure was computationally predicted to consist of immunoglobulin-like anti-parallel β-strands, and circular dichroism conducted on the isolated surface protein indicated that β-strands are the dominant higher-order structure. The isolated protein was stained positively by the β-sheet-specific stain thioflavin T, along with cell surface- and matrix-associated regions of the biofilm. The surface protein has a large unstructured content, including two highly disordered domains at its C terminus. The disordered domains bound to the substratum and thereby facilitated the adhesion of negatively charged latex microspheres, which were used as a proxy for cells. The disordered domains and isolated whole surface protein also underwent liquid-liquid phase separation to form liquid droplets in suspension. Liquid droplets of disordered protein wet the surfaces of microspheres and bacterial cells and facilitated their coalescence. Furthermore, the surface layer protein formed gels as well as ordered crystalline structures. These observations suggest that biophysical remodeling through phase transitions promotes aggregation and biofilm formation.
Collapse
|
3
|
Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. Appl Microbiol Biotechnol 2020; 104:3643-3654. [PMID: 32095864 DOI: 10.1007/s00253-020-10465-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Anaerobic ammonium oxidation (anammox)-performing bacteria self-assemble into compact biofilms by expressing extracellular polymeric substances (EPS). Anammox EPS are poorly characterized, largely due to their low solubility in typical aqueous solvents. Pronase digestion achieved 19.5 ± 0.9 and 41.4 ± 1.4% (w/w) more solubilization of laboratory enriched Candidatus Brocadia sinica anammox granules than DNase and amylase, respectively. Nuclear magnetic resonance profiling of the granules confirmed proteins as dominant biopolymer within the EPS. Ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and N,N-dimethylacetamide (EMIM-Ac/DMAc) mixture was applied to extract the major structural proteins. Further treatment by anion exchange chromatography isolated homologous serine (S)- and threonine (T)-rich proteins BROSI_A1236 and UZ01_01563, which were major components of the extracted proteins, and sequentially highly similar to putative anammox extracellular proteins KUSTD1514 and WP_070066018.1 of Ca. Kuenenia stuttgartiensis and Ca. Brocadia sapporoensis, respectively. Six monosaccharides (i.e., arabinose, xylose, rhamnose, fucose, galactose, and mannose) were enriched for BROSI_A1236 against all other major proteins. The sugars, however, contributed < 0.5% (w/w) of total granular biomass and were likely co-enriched as glycoprotein appendages. This study demonstrates that BROSI_A1236 is a major extracellular component of Ca. B. sinica anammox biofilms that is likely a common anammox extracellular polymer, and can be isolated from the matrix following ionic liquid extraction.
Collapse
|
4
|
Wang Y, Niu Q, Zhang X, Liu L, Wang Y, Chen Y, Negi M, Figeys D, Li YY, Zhang T. Exploring the effects of operational mode and microbial interactions on bacterial community assembly in a one-stage partial-nitritation anammox reactor using integrated multi-omics. MICROBIOME 2019; 7:122. [PMID: 31462278 PMCID: PMC6714388 DOI: 10.1186/s40168-019-0730-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The metabolic capacities of anammox bacteria and associated microbial community interactions in partial-nitritation anammox (PNA) reactors have received considerable attention for their crucial roles in energy-efficient nitrogen removal from wastewater. However, a comprehensive understanding of how abiotic and biotic factors shape bacterial community assembly in PNA reactors is not well reported. RESULTS Here, we used integrated multi-omics (i.e., high-throughput 16S rRNA gene, metagenomic, metatranscriptomic, and metaproteomic sequencing) to reveal how abiotic and biotic factors shape the bacterial community assembly in a lab-scale one-stage PNA reactor treating synthetic wastewater. Analysis results of amplicon sequences (16S rRNA gene) from a time-series revealed distinct relative abundance patterns of the key autotrophic bacteria, i.e., anammox bacteria and ammonia-oxidizing bacteria (AOB), and the associated heterotrophic populations in the seed sludge and the sludge at the new stable state after deterioration. Using shotgun metagenomic sequences of anammox sludge, we recovered 58 metagenome-assembled genomes (MAGs), including 3 MAGs of anammox bacteria and 3 MAGs of AOB. The integrated metagenomic, metatranscriptomic, and metaproteomic data revealed that nitrogen metabolism is the most active process in the studied PNA reactor. The abundant heterotrophs contribute to the reduction of nitrate to nitrite/ammonium for autotrophic bacteria (anammox bacteria and AOB). Genomic and transcriptomic data revealed that the preference for electron donors of the dominant heterotrophs in different bacterial assemblages (seed and new stable state) varied along with the shift in anammox bacteria that have different metabolic features in terms of EPS composition. Notably, the most abundant heterotrophic bacteria in the reactor were more auxotrophic than the less abundant heterotrophs, regarding the syntheses of amino acids and vitamins. In addition, one of the abundant bacteria observed in the bacterial community exhibited highly transcribed secretion systems (type VI). CONCLUSIONS These findings provide the first insight that the bacterial communities in the PNA reactor are defined by not only abiotic factors (operating mode) but also metabolic interactions, such as nitrogen metabolism, exchange of electron donors, and auxotrophies.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China–America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, 266237 Shandong Province People’s Republic of China
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Mishty Negi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| |
Collapse
|