1
|
Lacava PT, Bogas AC, Cruz FDPN. Plant Growth Promotion and Biocontrol by Endophytic and Rhizospheric Microorganisms From the Tropics: A Review and Perspectives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.796113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, the tropics harbor a wide variety of crops to feed the global population. Rapid population expansion and the consequent major demand for food and agriculture-based products generate initiatives for tropical forest deforestation, which contributes to land degradation and the loss of macro and micronative biodiversity of ecosystems. Likewise, the entire dependence on fertilizers and pesticides also contributes to negative impacts on environmental and human health. To guarantee current and future food safety, as well as natural resource preservation, systems for sustainable crops in the tropics have attracted substantial attention worldwide. Therefore, the use of beneficial plant-associated microorganisms is a promising sustainable way to solve issues concerning modern agriculture and the environment. Efficient strains of bacteria and fungi are a rich source of natural products that might improve crop yield in numerous biological ways, such as nitrogen fixation, hormone production, mobilization of insoluble nutrients, and mechanisms related to plant biotic and abiotic stress alleviation. Additionally, these microorganisms also exhibit great potential for the biocontrol of phytopathogens and pest insects. This review addresses research regarding endophytic and rhizospheric microorganisms associated with tropical plants as a sustainable alternative to control diseases and enhance food production to minimize ecological damage in tropical ecosystems.
Collapse
|
2
|
Madhaiyan M, Selvakumar G, Alex TH, Cai L, Ji L. Plant Growth Promoting Abilities of Novel Burkholderia-Related Genera and Their Interactions With Some Economically Important Tree Species. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.
Collapse
|
3
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
4
|
Pong CH, Hall RM. An X1α plasmid from a Salmonella enterica serovar Ohio isolate carrying a novel IS26-bounded tet(C) pseudo-compound transposon. Plasmid 2021; 114:102561. [PMID: 33485833 DOI: 10.1016/j.plasmid.2021.102561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022]
Abstract
The sequence of a conjugative plasmid, pSRC22-2, found in a multiply antibiotic resistant Salmonella enterica serovar Ohio isolate SRC22 originally cultured from swine in 1999, was determined. Plasmid pSRC22-2 has a copy number of approximately 40 and transfers tetracycline resistance at very high frequency. It was typed as IncX1 using the three typing schemes proposed for X-type plasmids, which utilize the replication region, iteron region and taxC conjugation gene and pSRC22-2 belongs to the X1α subgroup. The plasmid backbone, derived by removing mobile elements, is shared with pOLA52, which was the first fully sequenced IncX1 plasmid, and five other X1α plasmids. The pSRC22-2 backbone is interrupted by a complete copy of an IS903 isoform, partial copies of IS1 and IS903 on either side of a 5930 bp IS26-bounded pseudo-compound transposon (PCT), and a novel 256 bp miniature inverted repeat transposable element (MITE). The MITE belongs to the Tn3 family and was named MITESen1. The PCT, which carries a tet(C) tetracycline resistance determinant, is bounded by copies of a novel IS26 variant, IS26-v4, and was designated PTn6184. Comparison of PTn6184 with other tet(C)-carrying PCTs revealed that it can be derived from the largest, PTntet(C), via a two-step process that re-orders the central fragment and involves both an IS26-mediated event and homologous recombination. IS26-v4, which encodes a variant transposase, Tnp26 G184D, has appeared in only 46 entries in the GenBank non-redundant database.
Collapse
Affiliation(s)
- Carol H Pong
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| |
Collapse
|
5
|
Madhaiyan M, Saravanan VS, Wirth JS, Alex THH, Kim SJ, Weon HY, Kwon SW, Whitman WB, Ji L. Sphingomonas palmae sp. nov. and Sphingomonas gellani sp. nov., endophytically associated phyllosphere bacteria isolated from economically important crop plants. Antonie van Leeuwenhoek 2020; 113:1617-1632. [PMID: 32949307 DOI: 10.1007/s10482-020-01468-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
In this study, two endophytic bacterial strains designated JS21-1T and S6-262T isolated from leaves of Elaeis guineensis and stem tissues of Jatropha curcas respectively, were subjected for polyphasic taxonomic approach. On R2A medium, colonies of strains JS21-1T and S6-262T are orange and yellow, respectively. Phylogenetic analyses using 16S rRNA gene sequencing and whole-genome sequences placed the strains in distinct clades but within the genus Sphingomonas. The DNA G + C content of JS21-1T and S6-262T were 67.31 and 66.95%, respectively. Furthermore, the average nucleotide identity and digital DNA-DNA hybridization values of strains JS21-1T and S6-262T with phylogenetically related Sphingomonas species were lower than 95% and 70% respectively. The chemotaxonomic studies indicated that the major cellular fatty acids of the strain JS21-1T were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0, and C14:0 2OH; strain S6-262T possessed summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) and summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The major quinone was Q10, and the unique polyamine observed was homospermidine. The polar lipid profile comprised of mixture of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and certain uncharacterised phospholipids and lipids. Based on this polyphasic evidence, strains JS21-1T and S6-262T represent two novel species of the genus Sphingomonas, for which the names Sphingomonas palmae sp. nov. and Sphingomonas gellani sp. nov. are proposed, respectively. The type strain of Sphingomonas palmae sp. nov. is JS21-1T (= DSM 27348T = KACC 17591T) and the type strain of Sphingomonas gellani sp. nov. is S6-262T (= DSM 27346T = KACC 17594T).
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | | | - Joseph S Wirth
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Tan Hian Hwee Alex
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - William B Whitman
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, GA, 30602-2605, USA
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
6
|
Proposal for Unification of the Genus Metakosakonia and the Genus Phytobacter to a Single Genus Phytobacter and Reclassification of Metakosakonia massiliensis as Phytobacter massiliensis comb. nov. Curr Microbiol 2020; 77:1945-1954. [PMID: 32350604 DOI: 10.1007/s00284-020-02004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The genus Metakosakonia, as the closest phylogenetic neighbor of the genus Kosakonia within the family Enterobacteriaceae, when proposed in 2017, consisted of M. massiliensis JC163T and Metakosakonia spp. strains CAV1151 and GT-16. The strain CAV1151 was later classified into a novel species Phytobacter ursingii. Here, we show that the strain GT-16 shares a digital DNA-DNA hybridization (DDH) similarity of 91.0% with P. diazotrophicus DSM 17806 T and thus also belongs to P. diazotrophicus. M. massiliensis and the strains within the genus Phytobacter formed a monophyletic cluster on a phylogenomic tree based on the core proteins of the family Enterobacteriaceae and on a phylogenetic tree based on the 16S rRNA genes. M. massiliensis and the genus Phytobacter share average amino acid identities of 86.80‒87.41% above the threshold (86%) for genus delimitation within the family Enterobacteriaceae. Moreover, they share conserved signature indels in the intracellular growth protein IgaA and the outer membrane assembly protein AsmA. Therefore, we propose to unite the genus Metakosakonia and the genus Phytobacter to a single genus. Because the genus Phytobacter was validly published earlier in 2017 than the genus Metakosakonia in 2017, the genus name Phytobacter has priority over Metakosakonia. We propose to unite the two genera under the name Phytobacter with the type species P. diazotrophicus and reclassify M. massiliensis as P. massiliensis comb. nov. In addition, the analyses of genome relatedness and phylogenomic relationship identified one potential novel species within the genus Phytobacter and three potential novel species within the genus Kosakonia.
Collapse
|
7
|
Madhaiyan M, Saravanan VS, Blom J, Smits THM, Rezzonico F, Kim SJ, Weon HY, Kwon SW, Whitman WB, Ji L. Phytobacter palmae sp. nov., a novel endophytic, N2 fixing, plant growth promoting Gammaproteobacterium isolated from oil palm (Elaeis guineensis Jacq.). Int J Syst Evol Microbiol 2020; 70:841-848. [DOI: 10.1099/ijsem.0.003834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Munusamy Madhaiyan
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wadenswil, Switzerland
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wadenswil, Switzerland
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - William B. Whitman
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602-2605, USA
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| |
Collapse
|
8
|
Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. PLANTS 2019; 8:plants8020042. [PMID: 30769814 PMCID: PMC6409739 DOI: 10.3390/plants8020042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022]
Abstract
The aims of this study were to isolate, identify and characterize culturable endophytic bacteria from chickpea (Cicer arietinum L.) roots grown in different soils. In addition, the effects of rhizobial inoculation, soil and stress on the functionality of those culturable endophytic bacterial communities were also investigated. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that the endophytic bacteria isolated in this work belong to the phyla Proteobacteria, Firmicutes and Actinobacteria, with Enterobacter and Pseudomonas being the most frequently observed genera. Production of indoleacetic acid and ammonia were the most widespread plant growth-promoting features, while antifungal activity was relatively rare among the isolates. Despite the fact that the majority of bacterial endophytes were salt- and Mn-tolerant, the isolates obtained from soil with Mn toxicity were generally more Mn-tolerant than those obtained from the same soil amended with dolomitic limestone. Several associations between an isolate's genus and specific plant growth-promoting mechanisms were observed. The data suggest that soil strongly impacts the Mn tolerance of endophytic bacterial communities present in chickpea roots while rhizobial inoculation induces significant changes in terms of isolates' plant growth-promoting abilities. In addition, this study also revealed chickpea-associated endophytic bacteria that could be exploited as sources with potential application in agriculture.
Collapse
|
9
|
Li Y, Li S, Chen M, Peng G, Tan Z, An Q. Complete genome sequence of Kosakonia oryzae type strain Ola 51 T. Stand Genomic Sci 2017; 12:28. [PMID: 28428833 PMCID: PMC5392936 DOI: 10.1186/s40793-017-0240-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Strain Ola 51T (=LMG 24251T = CGMCC 1.7012T) is the type strain of the species Kosakonia oryzae and was isolated from surface-sterilized roots of the wild rice species Oryza latifolia grown in Guangdong, China. Here we summarize the features of the strain Ola 51T and describe its complete genome sequence. The genome contains one circular chromosome of 5,303,342 nucleotides with 54.01% GC content, 4773 protein-coding genes, 16 rRNA genes, 76 tRNA genes, 13 ncRNA genes, 48 pseudo genes, and 1 CRISPR array.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuying Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingyue Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Guixiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qianli An
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Proença DN, Grass G, Morais PV. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 2017; 6:e00415. [PMID: 27785885 PMCID: PMC5387314 DOI: 10.1002/mbo3.415] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/03/2022] Open
Abstract
Pine wilt disease (PWD) is one of the most destructive diseases in trees of the genus Pinus and is responsible for environmental and economic losses around the world. The only known causal agent of the disease is the pinewood nematode (PWN) Bursaphelenchus xylophilus. Despite that, bacteria belonging to several different genera have been found associated with PWN and their roles in the development of PWD have been suggested. Molecular methodologies and the new era of genomics have revealed different perspectives to the problem, recognizing the manifold interactions between different organisms involved in the disease. Here, we reviewed the possible roles of nematode-carried bacteria in PWD, what could be the definition of this group of microorganisms and questioned their origin as possible endophytes, discussing their relation within the endophytic community of pine trees. The diversity of the nematode-carried bacteria and the diversity of pine tree endophytes, reported until now, is revised in detail in this review. What could signify a synergetic effect with PWN harming the plant, or what could equip bacteria with functions to control the presence of nematodes inside the tree, is outlined as two possible roles of the microbial community in the etiology of this disease. An emphasis is put on the potential revealed by the genomic data of isolated organisms in their potential activities as effective tools in PWD management.
Collapse
Affiliation(s)
- Diogo N. Proença
- CEMUCUniversity of CoimbraCoimbraPortugal
- Department of Biology and CESAMUniversity of AveiroAveiroPortugal
| | - Gregor Grass
- Bundeswehr Institute of MicrobiologyMunichGermany
| | - Paula V. Morais
- CEMUCUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
11
|
Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00868-16. [PMID: 27609910 PMCID: PMC5017215 DOI: 10.1128/genomea.00868-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome.
Collapse
|
12
|
Alcaraz LD, Martínez-Sánchez S, Torres I, Ibarra-Laclette E, Herrera-Estrella L. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant. PLoS One 2016; 11:e0148979. [PMID: 26859489 PMCID: PMC4747601 DOI: 10.1371/journal.pone.0148979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 02/01/2023] Open
Abstract
The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant.
Collapse
Affiliation(s)
- Luis David Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Shamayim Martínez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Ignacio Torres
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, 58190, Morelia, Michoacán, México
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C, 91070, Carretera antigua a Coatepec 351, El Haya Xalapa, Veracruz, México
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| |
Collapse
|
13
|
Dutta J, Handique PJ, Thakur D. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars. Front Microbiol 2015; 6:1252. [PMID: 26617590 PMCID: PMC4639606 DOI: 10.3389/fmicb.2015.01252] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 02/04/2023] Open
Abstract
In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the potential of these indigenous plant growth promoting rhizobacteria isolates to use as microbial inoculation or biofertilizer for growth promotion of tea crops.
Collapse
Affiliation(s)
- Jintu Dutta
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | | | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| |
Collapse
|
14
|
Ren G, Zhang H, Lin X, Zhu J, Jia Z. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 2015; 6:855. [PMID: 26379635 PMCID: PMC4553393 DOI: 10.3389/fmicb.2015.00855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7-86.8% and 2.14-42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages.
Collapse
Affiliation(s)
- Gaidi Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Huayong Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| |
Collapse
|
15
|
Draft Genome Sequence of Methylobacterium sp. Strain L2-4, a Leaf-Associated Endophytic N-Fixing Bacterium Isolated from Jatropha curcas L. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01306-14. [PMID: 25502683 PMCID: PMC4263845 DOI: 10.1128/genomea.01306-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylobacterium sp. strain L2-4 is an efficient nitrogen-fixing leaf colonizer of biofuel crop Jatropha curcas. This strain is able to greatly improve the growth and seed yield of Jatropha curcas and is the second reported genome sequence of plant growth-promoting bacteria isolated from Jatropha curcas.
Collapse
|
16
|
Chen M, Zhu B, Lin L, Yang L, Li Y, An Q. Complete genome sequence of Kosakonia sacchari type strain SP1(T.). Stand Genomic Sci 2014; 9:1311-8. [PMID: 25197499 PMCID: PMC4149035 DOI: 10.4056/sigs.5779977] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1(T) (=CGMCC1.12102(T)=LMG 26783(T)) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1(T) and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene.
Collapse
Affiliation(s)
- Mingyue Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Bo Zhu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Lin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Academy of Agricultural Sciences, Nanning, China
| | - Litao Yang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yangrui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World J Microbiol Biotechnol 2014; 30:2371-8. [DOI: 10.1007/s11274-014-1662-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 01/25/2023]
|