1
|
Fayad N, Barssoum R, Marsaud N, Nasseredine R, Abdelmalek N, Rouis S, Teste MA, Pailler V, Gautier V, Belmonte E, Aceves Lara CA, Cescut J, Fillaudeau L, Kallassy Awad M. Complete genome sequences of two Bacillus thuringiensis serovar kurstaki strains isolated from Lebanon and Tunisia, highly toxic against lepidopteran larvae. Microbiol Resour Announc 2023; 12:e0006023. [PMID: 37551990 PMCID: PMC10508133 DOI: 10.1128/mra.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
Bacillus thuringiensis-based products are key in the biopesticides market. Bacillus thuringiensis kurstaki strains Lip and BLB1 were isolated from Lebanese and Tunisian soils, respectively. These strains are highly toxic against lepidopteran larvae, Ephestia kuehniella. Here, we report Lip and BLB1 complete genomes, including their plasmid and toxin contents.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Rita Barssoum
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Toulouse Biotechnology Institute, Toulouse, France
| | - Nathalie Marsaud
- Toulouse Biotechnology Institute, Toulouse, France
- GenoToul GeT-BioPUCE, Toulouse, France
| | - Rayan Nasseredine
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | | | - Souad Rouis
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | | | | | | | | | | | | | | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| |
Collapse
|
2
|
Blackburn MB, Sparks ME, Mishra R, Bonning BC. Genomic sequencing of fourteen bacillus thuringiensis isolates: insights into geographic variation and phylogenetic implications. BMC Res Notes 2023; 16:134. [PMID: 37403123 PMCID: PMC10318680 DOI: 10.1186/s13104-023-06411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE This work was performed in support of a separate study investigating the activity of pesticidal proteins produced by Bacillus thuringiensis against the Asian citrus psyllid, Diaphorina citri. The fourteen Bacillus isolates chosen were selected from a large, geographically diverse collection that was characterized only by biochemical phenotype and morphology of the parasporal crystal, hence, for each isolate it was desired to determine the specific pesticidal proteins produced, assign each to a Bacillus cereus multilocus sequence type (ST), and predict their placement within the classical Bt serotyping system. In addition, phylogenetic distances between the isolates and Bacillus thuringiensis serovar type strains were determined by calculating digital DNA-DNA hybridization (dDDH) values among the isolates. RESULTS Based on the assembled sequence data, the isolates were found to be likely representatives of the Bt serovars kurstaki (ST 8), pakistani (ST 550), toumanoffi (ST 240), israelensis (ST 16), thuringiensis (ST 10), entomocidus (ST 239), and finitimus (ST 171). In cases where multiple isolates occurred within a predicted serovar, pesticidal protein profiles were found to be identical, despite the geographic diversity of the isolates. As expected, the dDDH values calculated for pairwise comparisons of the isolates and their apparent corresponding Bt serovar type strains were quite high (> 98%), however dDDH comparisons of the isolates with other serovar type strains were often surprisingly low (< 70%) and suggest unrecognized taxa within Bt and the Bacillus cereus sensu lato.
Collapse
Affiliation(s)
- Michael B. Blackburn
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Henry A Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Michael E. Sparks
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Henry A Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
3
|
Alves GB, de Oliveira EE, Jumbo LOV, dos Santos GR, dos Santos MM, Ootani MA, Ribeiro BM, Aguiar RWDS. Genomic–proteomic analysis of a novel Bacillus thuringiensis strain: toxicity against two lepidopteran pests, abundance of Cry1Ac5 toxin, and presence of InhA1 virulence factor. Arch Microbiol 2023; 205:143. [PMID: 36967401 DOI: 10.1007/s00203-023-03479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023]
Abstract
Bacillus thuringiensis (Bt) is a biological alternative to the indiscriminate use of chemical insecticides in agriculture. Due to resistance development on insect pests to Bt crops, isolating novel Bt strains is a strategy for screening new pesticidal proteins or strains containing toxin profile variety that can delay resistance. Besides, the combined genomic and proteomic approaches allow identifying pesticidal proteins and virulence factors accurately. Here, the genome of a novel Bt strain (Bt TOL651) was sequenced, and the proteins from the spore-crystal mixture were identified by proteomic analysis. Toxicity bioassays with the spore-crystal mixture against larvae of Diatraea saccharalis and Anticarsia gemmatalis, key pests of sugarcane and soybean, respectively, were performed. The toxicity of Bt TOL651 varies with the insect; A. gemmatalis (LC50 = 1.45 ng cm-2) is more susceptible than D. saccharalis (LC50 = 73.77 ng cm-2). Phylogenetic analysis of the gyrB gene indicates that TOL651 is related to Bt kenyae strains. The genomic analysis revealed the presence of cry1Aa18, cry1Ac5, cry1Ia44, and cry2Aa9 pesticidal genes. Virulence factor genes such as phospholipases (plcA, piplc), metalloproteases (inhA), hemolysins (cytK, hlyIII, hblA, hblC, hblD), and enterotoxins (nheA, nheB, nheC) were also identified. The combined use of the genomic and proteomic data indicated the expression of Cry1Aa18, Cry1Ac5, and Cry2Aa9 proteins, with Cry1Ac5 being the most abundant. InhA1 also was expressed and may contribute to Bt TOL651 pathogenicity. These results provide Bt TOL651 as a new tool for the biocontrol of lepidopteran pests.
Collapse
|
4
|
Piligrimova EG, Kazantseva OA, Kazantsev AN, Nikulin NA, Skorynina AV, Koposova ON, Shadrin AM. Putative plasmid prophages of Bacillus cereus sensu lato may hold the key to undiscovered phage diversity. Sci Rep 2021; 11:7611. [PMID: 33828147 PMCID: PMC8026635 DOI: 10.1038/s41598-021-87111-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteriophages are bacterial viruses and the most abundant biological entities on Earth. Temperate bacteriophages can form prophages stably maintained in the host population: they either integrate into the host genome or replicate as plasmids in the host cytoplasm. As shown, tailed temperate bacteriophages may form circular plasmid prophages in many bacterial species of the taxa Firmicutes, Gammaproteobacteria and Spirochaetes. The actual number of such prophages is thought to be underestimated for two main reasons: first, in bacterial whole genome-sequencing assemblies, they are difficult to distinguish from actual plasmids; second, there is an absence of experimental studies which are vital to confirm their existence. In Firmicutes, such prophages appear to be especially numerous. In the present study, we identified 23 genomes from species of the Bacillus cereus group that were deposited in GenBank as plasmids and may belong to plasmid prophages with little or no homology to known viruses. We consider these putative prophages worth experimental assays since it will broaden our knowledge of phage diversity and suggest that more attention be paid to such molecules in all bacterial sequencing projects as this will help in identifying previously unknown phages.
Collapse
Affiliation(s)
- Emma G Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| | - Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey N Kazantsev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Pushchino Radio Astronomy Observatory, Pushchino, 142290, Russia
| | - Nikita A Nikulin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Anna V Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Olga N Koposova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| |
Collapse
|
5
|
Nordmann B, Schilling T, Hoppert M, Hertel R. Complete genome sequence of the virus isolate vB_BthM-Goe5 infecting Bacillus thuringiensis. Arch Virol 2019; 164:1485-1488. [PMID: 30848388 DOI: 10.1007/s00705-019-04187-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/25/2019] [Indexed: 01/30/2023]
Abstract
Bacillus thuringiensis (Bt) is non-pathogenic for humans and serves as a biological control agent in agriculture. Understanding its phages will help to prevent industrial production loss of Bt products and will lead to a better understanding of phages in general. The complete genome of the new B. thuringiensis phage isolate vB_BthM-Goe5 (Goe5) was sequenced, revealing a linear 157,804-bp-long dsDNA chromosome flanked by 2579-bp-long terminal repeats. It contains two tRNAs and 272 protein coding regions, 69 of which could be assigned with an annotation. Morphological investigation, using transmission electron microscopy, revealed Myoviridae morphology. The formation of a double baseplate upon tail sheath contraction indicates a link to the group of SPO1-related phages. Comparative genomics with all Bacillus-related viral genomes available in the NCBI genome database during this investigation indicated that Goe5 was a unique isolate, with Bacillus phage Bastille as its closest relative.
Collapse
Affiliation(s)
- Birthe Nordmann
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Tobias Schilling
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Robert Hertel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Modrie P, Legrève A, Mahillon J, Bragard C. Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens. Front Microbiol 2018; 9:143. [PMID: 29487574 PMCID: PMC5816801 DOI: 10.3389/fmicb.2018.00143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
The world potato is facing major economic losses due to disease pressure and environmental concerns regarding pesticides use. This work aims at addressing these two issues by isolating indigenous bacteria that can be integrated into pest management strategies. More than 2,800 strains of Bacillus-like and Pseudomonas-like were isolated from several soils and substrates associated with potato agro-systems in Belgium. Screenings for antagonistic activities against the potato pathogens Alternaria solani, Fusarium solani (BCCM-MUCL 5492), Pectobacterium carotovorum (ATCC 15713), Phytophthora infestans (CRA-W10022) and Rhizoctonia solani (BCCM-MUCL 51929) were performed, allowing the selection of 52 Bacillus spp. and eight Pseudomonas spp. displaying growth inhibition of at least 50% under in vitro conditions, particularly against P. infestans. All 60 bacterial isolates were identified based on 16S rRNA gene sequencing and further characterized for the production of potential bio-active secondary metabolites. The antagonistic activities displayed by the selected strains indicated that versatile metabolites can be produced by the strains. For instance, the detection of genes involved bacilysin biosynthesis was correlated with the strong antagonism of Bacillus pumilus strains toward P. infestans, whereas the production of both bio-surfactants and siderophores might explain the high antagonistic activities against late blight. Greenhouse assays with potato plants were performed with the most effective strains (seven Bacillus spp. and four Pseudomonas spp.) in order to evaluate their in vivo antagonistic effect against P. infestans. Based on these results, four strains (Bacillus amyloliquefaciens 17A-B3, Bacillus subtilis 30B-B6, Pseudomonas brenneri 43R-P1 and Pseudomonas protegens 44R-P8) were retained for further evaluation of their protection index against P. infestans in a pilot field trial. Interestingly, B. subtilis 30B-B6 was shown to significantly decrease late blight severity throughout the crop season. Overall, this study showed that antagonistic indigenous soil bacteria can offer an alternative to the indiscriminate use of pesticide in potato agro-systems.
Collapse
Affiliation(s)
- Simon Caulier
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gil Colau
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Maxime Liépin
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas Desoignies
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pauline Modrie
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis. Sci Rep 2015; 5:14129. [PMID: 26411888 PMCID: PMC4585936 DOI: 10.1038/srep14129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors.
Collapse
|