1
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
Affiliation(s)
- Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Al-Tameemi HM, Al-Hraishawi H, Al-Hejjaj MY, Abdulah NS, Alrafas HR, Dawood YA. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. J Genet Eng Biotechnol 2023; 21:163. [PMID: 38060084 DOI: 10.1186/s43141-023-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Staphylococcus xylosus is a coagulase-negative, gram-positive coccus that is found in the environment and as a commensal organism on the skin and mucosal surfaces of animals. Despite the fact that S. xylosus is considered a nonpathogenic bacterium, several studies have linked S. xylosus to opportunistic infections in both animals and humans. During an investigation of mastitis-causing agents in the governorate of Basrah, Iraq, we identified an antibiotic-resistant strain of S. xylosus NM36 from a milk sample from a cow with chronic mastitis. In addition to robust biofilm formation, multiple antibiotic resistance phenotypes were found. To further understand the genetic background for these phenotypes, the full genome of S. xylosus NM36 was analyzed. RESULTS The genome consisted of a single circular 2,668,086 base pairs chromosome containing 32.8% G + C. There were 2454 protein-coding sequences, 4 ribosomal RNA (rRNA) genes, and 50 transfer RNA (tRNA) genes in the genome. In addition, genetic variation was studied by searching sequence data against a representative reference genome. Consequently, single-nucleotide polymorphism analysis was conducted and showed that there were 46,610 single-nucleotide polymorphisms (SNPs), 523 insertions, and 551 deletions. In order to overcome antibiotics, S. xylosus NM36 had been armed with several antibiotic resistance genes from several groups and families. The genome annotation service in PathoSystems Resource Integration Center (PATRIC) and Rapid Annotation using Subsystem Technology (RAST) annotation servers showed that there are multiple antimicrobial resistance elements, including antibiotic inactivation enzymes (BlaZ family, FosB), antibiotic resistance gene clusters (TcaB, TcaB2, TcaR), proteins involved in methicillin resistance (LytH, FmtA, FemC, HmrB, HmrA), TetR family transcriptional regulators, and efflux pumps conferring antibiotic resistance (NorA). In addition, we investigated and categorized the biofilm and quorum-sensing elements of the NM36 strain and found that it has multiple subsets of biofilm regulators, confirming its pathogenic nature. CONCLUSIONS These findings necessitate a reevaluation of microbial and clinical interventions when dealing with coagulase-negative staphylococci, particularly in the context of studies pertaining to public health. This is the first time, to our knowledge, that the entire genome of S. xylosus has been sequenced in Iraq.
Collapse
Affiliation(s)
- Hassan M Al-Tameemi
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq.
| | - Husam Al-Hraishawi
- Physiology Department, College of Medicine, Misan University, Amarah, Misan, Iraq
| | - Murtakab Y Al-Hejjaj
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | | | - Haider R Alrafas
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | - Yessar A Dawood
- Pharmacognosy and Medicinal Plants Department, College of Pharmacy, Basrah University, Basrah, Iraq
| |
Collapse
|
3
|
Culturable Bacterial Community on Leaves of Assam Tea ( Camellia sinensis var. assamica) in Thailand and Human Probiotic Potential of Isolated Bacillus spp. Microorganisms 2020; 8:microorganisms8101585. [PMID: 33066699 PMCID: PMC7602384 DOI: 10.3390/microorganisms8101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Assam tea plants (Camellia sinensis var. assamica) or Miang are found in plantations and forests of Northern Thailand. Leaf fermentation has been performed for centuries, but little information is available about their associated microbial community. One hundred and fifty-seven bacterial isolates were isolated from 62 Assam tea leaf samples collected from 6 provinces of Northern Thailand and classified within the phyla of Firmicutes, Actinobacteria, and Proteobacteria. Phayao and Phrae provinces exhibited the highest and the lowest bacterial diversities, respectively. The bacterial community structural pattern demonstrated significant differences between the west and the east sides. Since some Bacillus spp. have been reported to be involved in fermented Miang, Bacillus spp. isolated in this study were chosen for further elucidation. Bacillus siamensis ML122-2 exhibited a growth inhibitory effect against Staphylococcus aureus ATCC 25923 and MRSA DMST 20625, and the highest survival ability in simulated gastric and intestinal fluids (32.3 and 99.7%, respectively), autoaggregation (93.2%), cell surface hydrophobicity (50.0%), and bacterial adherence with Vero cells (75.8% of the control Lactiplantibacillusplantarum FM03-1). This B. siamensis ML122-2 is a promising probiotic to be used in the food industry and seems to have potential antibacterial properties relevant for the treatment of antibiotic-resistant infections.
Collapse
|
4
|
Heo S, Lee JS, Lee JH, Jeong DW. Comparative Genomic Analysis of Food-Originated Coagulase-Negative Staphylococcus: Analysis of Conserved Core Genes and Diversity of the Pan-Genome. J Microbiol Biotechnol 2020; 30:341-351. [PMID: 31847510 PMCID: PMC9728283 DOI: 10.4014/jmb.1910.10049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To shed light on the genetic differences among food-originated coagulase-negative Staphylococcus (CNS), we performed pan-genome analysis of five species: Staphylococcus carnosus (two strains), Staphylococcus equorum (two strains), Staphylococcus succinus (three strains), Staphylococcus xylosus (two strains), and Staphylococcus saprophyticus (one strain). The pan-genome size increases with each new strain and currently holds about 4,500 genes from 10 genomes. Specific genes were shown to be strain dependent but not species dependent. Most specific genes were of unknown function or encoded restriction-modification enzymes, transposases, or prophages. Our results indicate that unique genes have been acquired or lost by convergent evolution within individual strains.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Jung-Sug Lee
- Department of Food and Nutrition, Kookmin University, Seoul 0707, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea,Corresponding author Phone: +82-2-940-4463 Fax: +82-2-940-4610 E-mail :
| |
Collapse
|
5
|
Schiffer C, Hilgarth M, Ehrmann M, Vogel RF. Bap and Cell Surface Hydrophobicity Are Important Factors in Staphylococcus xylosus Biofilm Formation. Front Microbiol 2019; 10:1387. [PMID: 31293539 PMCID: PMC6603148 DOI: 10.3389/fmicb.2019.01387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus (S.) xylosus is a coagulase-negative Staphylococcus species naturally present in food of animal origin with a previously described potential for biofilm formation. In this study we characterized biofilm formation of five selected strains isolated from raw fermented dry sausages, upon different growth conditions. Four strains exhibited a biofilm positive phenotype with strain-dependent intensities. Biofilm formation of S. xylosus was influenced by the addition of glucose, sodium chloride and lactate to the growth medium, respectively. It was further dependent on strain-specific cell surface properties. Three strains exhibited hydrophobic and two hydrophilic cell surface properties. The biofilm positive hydrophilic strain TMW 2.1523 adhered significantly better to hydrophilic than to hydrophobic supports, whereas the differences in adherence to hydrophobic versus hydrophilic supports were not as distinct for the hydrophobic strains TMW 2.1023, TMW 2.1323, and TMW 2.1521. Comparative genomics enabled prediction of functional biofilm-related genes and link these to phenotypic variations. While a wide range of biofilm associated factors/genes previously described for S. aureus and S. epidermidis were absent in the genomes of the five strains analyzed, they all possess the gene encoding biofilm associated protein Bap. The only biofilm negative strain TMW 2.1602 showed a mutation in the bap sequence. This study demonstrates that Bap and surface hydrophobicity are important factors in S. xylosus biofilm formation with potential impact on the assertiveness of a starter strain against autochthonous staphylococci by competitive exclusion during raw sausage fermentation.
Collapse
Affiliation(s)
- Carolin Schiffer
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
6
|
Papagiannitsis CC, Malli E, Tsilipounidaki K, Sarrou S, Medvecky M, Hrabak J, Fthenakis GC, Petinaki E. First Description in Greece of mphC-Positive Staphylococci Causing Subclinical Mastitis in Ewes. Microb Drug Resist 2018; 24:1050-1053. [PMID: 29489448 DOI: 10.1089/mdr.2017.0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of the present study was to describe the first mphC-positive staphylococci, including two Staphylococcus lentus (Sle-087lar and Sle-091lar) and one Staphylococcus xylosus (Sxy-228lar), isolated from samples of animal origin, in Greece. Isolates Sle-087lar and Sxy-228lar were resistant to erythromycin, whereas Sle-091lar was resistant to erythromycin and lincomycin. All three isolates were susceptible to the remaining antibiotics. PCR screening showed that isolate Sle-091lar carried also ermB. For Sxy-228lar, whole-genome sequencing (WGS) and de novo assembly obtained an mphC-positive contig of 57.3-kb exhibiting high similarity with the genome of mphC-negative S. xylosus S170. However, mphC of Sxy-228lar was 91% similar to that found in plasmid pJW2311 from S. xylosus JW2311. Additionally, WGS data showed that Sle-087lar and Sle-091lar harbored mphC-carrying sequences being highly similar to the recently announced genome of the mphC-carrying S. lentus isolate 050AP from Tanzania. However, differences were observed in the mphC environment, suggesting the independent acquisition of the gene by each isolate. Sle-091lar also harbored transposon Tn917, which carries ermB resistance gene, integrated into S. lentus chromosome. These findings indicated that acquisition of resistance genes can lead to the emergence of multiresistant staphylococci, causing animal infections with economic burden.
Collapse
Affiliation(s)
- Costas C Papagiannitsis
- 1 Department of Microbiology, University Hospital of Larissa , Larissa, Greece .,2 Faculty of Medicine in Plzen, Biomedical Center, Charles University , Plzen, Czech Republic
| | - Ergina Malli
- 1 Department of Microbiology, University Hospital of Larissa , Larissa, Greece
| | | | - Stela Sarrou
- 1 Department of Microbiology, University Hospital of Larissa , Larissa, Greece
| | - Matej Medvecky
- 3 Veterinary Research Institute , Brno, Czech Republic .,4 Faculty of Science, National Center for Biomolecular Research, Masaryk University , Brno, Czech Republic
| | - Jaroslav Hrabak
- 2 Faculty of Medicine in Plzen, Biomedical Center, Charles University , Plzen, Czech Republic
| | - George C Fthenakis
- 5 Department of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly , Karditsa, Greece
| | - Efi Petinaki
- 1 Department of Microbiology, University Hospital of Larissa , Larissa, Greece
| |
Collapse
|
7
|
Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products. Microorganisms 2017; 5:microorganisms5030052. [PMID: 28850086 PMCID: PMC5620643 DOI: 10.3390/microorganisms5030052] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing. Analysis of the S. xylosus genome together with expression in situ in a meat model revealed that this bacterium is well adapted to meat substrates, being able to use diverse substrates as sources of carbon and energy and different sources of nitrogen. It is well-equipped with genes involved in osmotic, oxidative/nitrosative, and acidic stress responses. It is responsible for the development of the typical colour of cured meat products via its nitrate reductase activity. It contributes to sensorial properties, mainly by the the catabolism of pyruvate and amino acids resulting in odorous compounds and by the limiting of the oxidation of fatty acids, thereby avoiding rancidity.
Collapse
|