1
|
Giolai M, Verweij W, Martin S, Pearson N, Nicholson P, Leggett RM, Clark MD. Measuring air metagenomic diversity in an agricultural ecosystem. Curr Biol 2024; 34:3778-3791.e4. [PMID: 39096906 DOI: 10.1016/j.cub.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024]
Abstract
All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.
Collapse
Affiliation(s)
- Michael Giolai
- Natural History Museum, London SW7 5BD, UK; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Walter Verweij
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Enza Zaden, Enkhuizen 1602 DB, the Netherlands
| | - Samuel Martin
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Neil Pearson
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Paul Nicholson
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
2
|
Hoheneder F, Steidele CE, Messerer M, Mayer KFX, Köhler N, Wurmser C, Heß M, Gigl M, Dawid C, Stam R, Hückelhoven R. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6820-6835. [PMID: 37668551 DOI: 10.1093/jxb/erad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.
Collapse
Affiliation(s)
- Felix Hoheneder
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Christina E Steidele
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nikolai Köhler
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising-Weihenstephan, Germany
| | - Christine Wurmser
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3/I, 85354 Freising-Weihenstephan, Germany
| | - Michael Heß
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- Institute of Phytopathology, Christian Albrecht University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
3
|
Sefer Ö, Özsoy E, Yörük E, Özkale E. Determining the biocontrol capacities of Trichoderma spp. originating from Turkey on Fusarium culmorum by transcriptional and antagonistic analyses. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1278525. [PMID: 38025898 PMCID: PMC10679392 DOI: 10.3389/ffunb.2023.1278525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
In this study aiming to investigate potential fungal biocontrol agents for Fusarium culmorum, several isolates of Trichoderma spp. were evaluated for their antagonistic effects by means of transcriptional analyses. At first, 21 monosporic Trichoderma spp. isolates were obtained from natural wood debris and wood area soils in Manisa, Turkey. Trichoderma spp. Isolates were identified as belonging to four different species (T. atroviride, T. harzianum, T. koningii, and T. brevicompactum) by tef1-α sequencing. Then, the linear growth rate (LGR) of each species was calculated and determined to be in a range between 13.22 ± 0.71 mm/day (T. atroviride TR2) and 25.06 ± 1.45 mm/day (T. harzianum K30). Inter-simple sequence repeat (ISSR) genotyping validated the tef1-α sequencing results by presenting two sub-clusters in the dendrogram. We determined the genetically most similar (TR1 & TR2; 97.77%) and dissimilar (K9 & K17; 40.40%) individuals belonging to the same and different species, respectively. Dual sandwich culture tests (which are useful for antagonism studies) revealed that T. harzianum K21 (the least suppressive) and T. brevicompactum K26 (the most suppressive) isolates suppressed F. culmorum with growth rates of 3% and 46%, respectively. Expressions of genes previously associated with mycoparasitism-plant protection-secondary metabolism (nag1, tgf-1, and tmk-1) were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in both those isolates. While there were no significant differences (p>0.05) in expression that were present in the K21 isolate, those three genes were upregulated with fold change values of 2.69 ± 0.26 (p<0.001), 2.23 ± 0.16 (p<0.001), and 5.38 ± 2.01 (p<0.05) in K26, meaning that the presence of significant alteration in the physiological processes of the fungus. Also, its mycoparasitism potential was tested on Triticum aestivum L. cv Basribey in planta, which was infected with the F. culmorum FcUK99 strain. Results of the trials, including specific plant growth parameters (weight or length of plantlets), confirmed the mycoparasitic potential of the isolate. It can be concluded that (i) nag1, tgf-1, and tmk-1 genes could be approved as reliable markers for evaluation of BCA capacities of Trichoderma spp. and (ii) the T. brevicompactum K26 strain can be suggested as a promising candidate for combating in F. culmorum diseases following the necessary procedures to ensure it is non-hazardous and safe.
Collapse
Affiliation(s)
- Özlem Sefer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Graduate School of Science and Engineering, Programme of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Türkiye
| | - Esma Özsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Institute of Graduate Studies in Sciences, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Türkiye
| | - Emre Yörük
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Evrim Özkale
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
4
|
He T, Li X, Iacovelli R, Hackl T, Haslinger K. Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor. J Fungi (Basel) 2023; 9:704. [PMID: 37504693 PMCID: PMC10381429 DOI: 10.3390/jof9070704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40.
Collapse
Affiliation(s)
- Ting He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiao Li
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Riccardo Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Fijarczyk A, Bernier L, Sakalidis ML, Medina-Mora CM, Porth I. Independent Evolution Has Led to Distinct Genomic Signatures in Dutch Elm Disease-Causing Fungi and Other Vascular Wilts-Causing Fungal Pathogens. J Fungi (Basel) 2022; 9:2. [PMID: 36675823 PMCID: PMC9864908 DOI: 10.3390/jof9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular wilts are important diseases caused by plant pathogenic fungi that result in the rapid death of their plant hosts. This is due to a systemic defense mechanism whereby the plant induces the compartmentalization of the infected vascular system in order to reduce the propagation of the fungus. The ascomycete class Sordariomycetes contains several species that cause vascular wilts in diverse plant hosts, and they can be classified into four taxonomic orders. The genetic mechanisms of pathogenesis have already been investigated in Fusarium and Verticillium species, but they have not yet been compared with other well-known wilt-causing species, especially fungi causing oak wilt or Dutch elm disease (DED). Here we analyzed 20 whole genome assemblies of wilt-causing fungi together with 56 other species using phylogenetic approaches to trace expansions and contractions of orthologous gene families and gene classes related to pathogenicity. We found that the wilt-causing pathogens evolved seven times, experiencing the largest fold changes in different classes of genes almost every time. However, some similarities exist across groups of wilt pathogens, particularly in Microascales and Ophiostomatales, and these include the common gains and losses of genes that make up secondary metabolite clusters (SMC). DED pathogens do not experience large-scale gene expansions, with most of the gene classes, except for some SMC families, reducing in number. We also found that gene family expansions in the most recent common ancestors of wilt pathogen groups are enriched for carbohydrate metabolic processes. Our study shows that wilt-causing species evolve primarily through distinct changes in their repertoires of pathogenicity-related genes and that there is the potential importance of carbohydrate metabolism genes for regulating osmosis in those pathogens that penetrate the plant vascular system.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Carmen M Medina-Mora
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Ilga Porth
- Institut de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Étude de la Forêt (CEF), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
7
|
Genome-wide association study for deoxynivalenol production and aggressiveness in wheat and rye head blight by resequencing 92 isolates of Fusarium culmorum. BMC Genomics 2021; 22:630. [PMID: 34461830 PMCID: PMC8404269 DOI: 10.1186/s12864-021-07931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/11/2021] [Indexed: 01/15/2023] Open
Abstract
Background Fusarium culmorum is an important pathogen causing head blight of cereals in Europe. This disease is of worldwide importance leading to reduced yield, grain quality, and contamination by mycotoxins. These mycotoxins are harmful for livestock and humans; therefore, many countries have strict regulatory limits for raw materials and processed food. Extensive genetic diversity is described among field populations of F. culmorum isolates for aggressiveness and production of the trichothecene mycotoxin deoxynivalenol (DON). However, the causes for this quantitative variation are not clear, yet. We analyzed 92 isolates sampled from different field populations in Germany, Russia, and Syria together with an international collection for aggressiveness and DON production in replicated field experiments at two locations in two years with two hosts, wheat and rye. The 30x coverage whole-genome resequencing of all isolates resulted in the identification of 130,389 high quality single nucleotide polymorphisms (SNPs) that were used for the first genome-wide association study in this phytopathogenic fungus. Results In wheat, 20 and 27 SNPs were detected for aggressiveness and DON content, respectively, of which 10 overlapped. Additionally, two different SNPs were significantly associated with aggressiveness in rye that were among those SNPs being associated with DON production in wheat. Most of the SNPs explained only a small proportion of genotypic variance (pG), however, four SNPs were associated with major quantitative trait loci (QTLs) with pG ranging from 12 to 48%. The QTL with the highest pG was involved in DON production and associated with a SNP most probably located within the Tri4 gene. Conclusions The diversity of 92 isolates of F. culmorum were captured using a heuristic approach. Key phenotypic traits, SNPs, and candidate genes underlying aggressiveness and DON production were identified. Clearly, many QTLs are responsible for aggressiveness and DON content in wheat, both traits following a quantitative inheritance. Several SNPs involved in DON metabolism, among them the Tri4 gene of the trichothecene pathway, were inferred as important source of variation in fungal aggressiveness. Using this information underlying the phenotypic variation will be of paramount importance in evaluating strategies for successful resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07931-5.
Collapse
|
8
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
9
|
Rabaaoui A, Dall’Asta C, Righetti L, Susca A, Logrieco AF, Namsi A, Gdoura R, Werbrouck SPO, Moretti A, Masiello M. Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms ( Phoenix dactylifera) in Tunisia. Toxins (Basel) 2021; 13:toxins13070463. [PMID: 34209422 PMCID: PMC8310299 DOI: 10.3390/toxins13070463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.
Collapse
Affiliation(s)
- Amal Rabaaoui
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.R.); (S.P.O.W.)
- Laboratory of Toxicology-Microbiology and Environmental Health, Department of Biology, University Sfax, Sfax 3000, Tunisia;
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Area delle Scienze 27/A, 43124 Parma, Italy; (C.D.); (L.R.)
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Area delle Scienze 27/A, 43124 Parma, Italy; (C.D.); (L.R.)
| | - Antonia Susca
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| | - Antonio Francesco Logrieco
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| | - Ahmed Namsi
- Laboratoire de Phytopathologie, Centre Régional de Recherches en Agriculture Oasienne, Degache 2260, Tunisia;
| | - Radhouane Gdoura
- Laboratory of Toxicology-Microbiology and Environmental Health, Department of Biology, University Sfax, Sfax 3000, Tunisia;
| | - Stefaan P. O. Werbrouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.R.); (S.P.O.W.)
| | - Antonio Moretti
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
- Correspondence:
| | - Mario Masiello
- National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126 Bari, Italy; (A.S.); (A.F.L.); (M.M.)
| |
Collapse
|
10
|
O’Donnell K, McCormick SP, Busman M, Proctor RH, Ward TJ, Doehring G, Geiser DM, Alberts JF, Rheeder JP. Marasas et al. 1984 “Toxigenic Fusarium Species: Identity and Mycotoxicology” revisited. Mycologia 2018; 110:1058-1080. [DOI: 10.1080/00275514.2018.1519773] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Todd J. Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - Gail Doehring
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604-3999
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Johanna F. Alberts
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology (IBMB), Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - John P. Rheeder
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology (IBMB), Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
11
|
Hellin P, King R, Urban M, Hammond-Kosack KE, Legrève A. The adaptation of Fusarium culmorum to DMI Fungicides Is Mediated by Major Transcriptome Modifications in Response to Azole Fungicide, Including the Overexpression of a PDR Transporter (FcABC1). Front Microbiol 2018; 9:1385. [PMID: 29997598 PMCID: PMC6028722 DOI: 10.3389/fmicb.2018.01385] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Fusarium culmorum is a fungal pathogen causing economically important diseases on a variety of crops. Fungicides can be applied to control this species with triazoles being the most efficient molecules. F. culmorum strains resistant to these molecules have been reported, but the underlying resistance mechanisms remain unknown. In this study, a tebuconazole-adapted F. culmorum strain was developed with a level of fitness similar to its parental strain. The adapted strain showed cross-resistance to all demethylation inhibitors (DMIs), but not to other classes of fungicides tested. RNA-Seq analysis revealed high transcriptomic differences between the resistant strain and its parental strain after tebuconazole treatment. Among these changes, FcABC1 (FCUL_06717), a pleiotropic drug resistance transporter, had a 30-fold higher expression level upon tebuconazole treatment in the adapted strains as compared to the wild-type strain. The implication of this transporter in triazole resistance was subsequently confirmed in field strains harboring distinct levels of sensitivity to triazoles. FcABC1 is present in other species/genera, including F. graminearum in which it is known to be necessary for azole resistance. No difference in FcABC1 sequences, including the surrounding regions, were found when comparing the resistant strain to the wild-type strain. Fusarium culmorum is therefore capable to adapt to triazole pressure by overexpressing a drug resistance transporter when submitted to triazoles and the same mechanism is anticipated to occur in other species.
Collapse
Affiliation(s)
- Pierre Hellin
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Robert King
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Kim E. Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Bilska K, Kulik T, Ostrowska-Kołodziejczak A, Buśko M, Pasquali M, Beyer M, Baturo-Cieśniewska A, Juda M, Załuski D, Treder K, Denekas J, Perkowski J. Development of a Highly Sensitive FcMito qPCR Assay for the Quantification of the Toxigenic Fungal Plant Pathogen Fusarium culmorum. Toxins (Basel) 2018; 10:E211. [PMID: 29883395 PMCID: PMC5983267 DOI: 10.3390/toxins10050211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of F. culmorum was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 F. culmorum strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different F. culmorum strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2⁻106.0%, R²-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify F. culmorum DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for F. culmorum.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Tomasz Kulik
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | | | - Maciej Buśko
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, via Celoria 2, 20133 Milano, Italy.
| | - Marco Beyer
- Department Environmental Research and Innovation, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Anna Baturo-Cieśniewska
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Marcin Juda
- Faculty of Agriculture and Biotechnology, Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego St. 20, 85-225 Bydgoszcz, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Kinga Treder
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Joerg Denekas
- Agravis Technik Heide-Altmark GmbH, Hansestrasse 30, 29525 Uelzen, Germany.
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| |
Collapse
|
13
|
Spanu F, Scherm B, Camboni I, Balmas V, Pani G, Oufensou S, Macciotta N, Pasquali M, Migheli Q. FcRav2, a gene with a ROGDI domain involved in Fusarium head blight and crown rot on durum wheat caused by Fusarium culmorum. MOLECULAR PLANT PATHOLOGY 2018; 19:677-688. [PMID: 28322011 PMCID: PMC6638036 DOI: 10.1111/mpp.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Fusarium culmorum is a soil-borne fungal pathogen which causes foot and root rot and Fusarium head blight on small-grain cereals, in particular wheat and barley. It causes significant yield and quality losses and results in the contamination of kernels with type B trichothecene mycotoxins. Our knowledge of the pathogenicity factors of this fungus is still limited. A transposon tagging approach based on the mimp1/impala double-component system has allowed us to select a mutant altered in multiple metabolic and morphological processes, trichothecene production and virulence. The flanking regions of mimp1 were used to seek homologies in the F. culmorum genome, and revealed that mimp1 had reinserted within the last exon of a gene encoding a hypothetical protein of 318 amino acids which contains a ROGDI-like leucine zipper domain, supposedly playing a protein-protein interaction or regulatory role. By functional complementation and bioinformatic analysis, we characterized the gene as the yeast Rav2 homologue, confirming the high level of divergence in multicellular fungi. Deletion of FcRav2 or its orthologous gene in F. graminearum highlighted its ability to influence a number of functions, including virulence, trichothecene type B biosynthesis, resistance to azoles and resistance to osmotic and oxidative stress. Our results indicate that the FcRav2 protein (and possibly the RAVE complex as a whole) may become a suitable target for new antifungal drug development or the plant-mediated resistance response in filamentous fungi of agricultural interest.
Collapse
Affiliation(s)
- Francesca Spanu
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Barbara Scherm
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Irene Camboni
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Virgilio Balmas
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Giovanna Pani
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Safa Oufensou
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
- Faculté des Sciences de BizerteZarzouna TN‐7000Tunisia
| | - Nicolo’ Macciotta
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
| | - Matias Pasquali
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'AmbienteUniversità di MilanoMilanoI‐20133Italy
| | - Quirico Migheli
- Dipartimento di AgrariaUniversità degli Studi di SassariSassariI‐07100Italy
- Unità di Ricerca Istituto Nazionale di Biostrutture e BiosistemiSassariI‐07100Italy
| |
Collapse
|
14
|
Castiblanco V, Castillo HE, Miedaner T. Candidate Genes for Aggressiveness in a Natural Fusarium culmorum Population Greatly Differ between Wheat and Rye Head Blight. J Fungi (Basel) 2018; 4:E14. [PMID: 29371506 PMCID: PMC5872317 DOI: 10.3390/jof4010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Fusarium culmorum is one of the species causing Fusarium head blight (FHB) in cereals in Europe. We aimed to investigate the association between the nucleotide diversity of ten F. culmorum candidate genes and field ratings of aggressiveness in winter rye. A total of 100 F. culmorum isolates collected from natural infections were phenotyped for FHB at two locations and two years. Variance components for aggressiveness showed significant isolate and isolate-by-environment variance, as expected for quantitative host-pathogen interactions. Further analysis of the isolate-by-environment interaction revealed the dominant role of the isolate-by-year over isolate-by-location interaction. One single-nucleotide polymorphism (SNP) in the cutinase (CUT) gene was found to be significantly (p < 0.001) associated with aggressiveness and explained 16.05% of the genotypic variance of this trait in rye. The SNP was located 60 base pairs before the start codon, which suggests a role in transcriptional regulation. Compared to a previous study in winter wheat with the same nucleotide sequences, a larger variation of pathogen aggressiveness on rye was found and a different candidate gene was associated with pathogen aggressiveness. This is the first report on the association of field aggressiveness and a host-specific candidate gene codifying for a protein that belongs to the secretome in F. culmorum.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Hilda Elena Castillo
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
15
|
Laraba I, Boureghda H, Abdallah N, Bouaicha O, Obanor F, Moretti A, Geiser DM, Kim HS, McCormick SP, Proctor RH, Kelly AC, Ward TJ, O'Donnell K. Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genet Biol 2017; 103:34-41. [DOI: 10.1016/j.fgb.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
16
|
Castiblanco V, Marulanda JJ, Würschum T, Miedaner T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet 2017; 18:49. [PMID: 28525967 PMCID: PMC5438566 DOI: 10.1186/s12863-017-0511-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F. culmorum under field conditions. Results For both traits, genotypic variance among isolates was high and significant while the isolate-by-environment interaction was also significant, amounting to approximately half of the genotypic variance. Among the studied candidate genes, the mitogen-activated protein kinase (MAPK) HOG1 was found to be significantly associated with aggressiveness and deoxynivalenol (DON) production, explaining 10.29 and 6.05% of the genotypic variance, respectively. Conclusions To the best of our knowledge, this is the first report of a protein kinase regulator explaining differences in field aggressiveness and mycotoxin production among individuals from natural populations of a plant pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Jose J Marulanda
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 79593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
17
|
Abstract
Fusarium graminearum floral infections are a major risk to the global supply of safe cereal grains. We report updates to the PH-1 reference genome and significant improvements to the annotation. Changes include introduction of legacy annotation identifiers, new gene models, secretome and effectorP predictions, and inclusion of extensive untranslated region (UTR) annotations.
Collapse
|