1
|
van de Kerkhof GT, Schertel L, Catòn L, Parton TG, Müller KH, Greer HF, Ingham CJ, Vignolini S. Polysaccharide metabolism regulates structural colour in bacterial colonies. J R Soc Interface 2022; 19:20220181. [PMID: 35611622 PMCID: PMC9131120 DOI: 10.1098/rsif.2022.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The brightest colours in nature often originate from the interaction of light with materials structured at the nanoscale. Different organisms produce such coloration with a wide variety of materials and architectures. In the case of bacterial colonies, structural colours stem for the periodic organization of the cells within the colony, and while considerable efforts have been spent on elucidating the mechanisms responsible for such coloration, the biochemical processes determining the development of this effect have not been explored. Here, we study the influence of nutrients on the organization of cells from the structurally coloured bacteria Flavobacterium strain IR1. By analysing the optical properties of the colonies grown with and without specific polysaccharides, we found that the highly ordered organization of the cells can be altered by the presence of fucoidans. Additionally, by comparing the organization of the wild-type strain with mutants grown in different nutrient conditions, we deduced that this regulation of cell ordering is linked to a specific region of the IR1 chromosome. This region encodes a mechanism for the uptake and metabolism of polysaccharides, including a polysaccharide utilization locus (PUL operon) that appears specific to fucoidan, providing new insight into the biochemical pathways regulating structural colour in bacteria.
Collapse
Affiliation(s)
- Gea T. van de Kerkhof
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Lukas Schertel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Catòn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Thomas G. Parton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Heather F. Greer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Colin J. Ingham
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
2
|
Chapelais-Baron M, Goubet I, Péteri R, Pereira MDF, Mignot T, Jabveneau A, Rosenfeld E. Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. MICROBIOLOGY-SGM 2018; 164:308-321. [PMID: 29458680 DOI: 10.1099/mic.0.000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
Collapse
Affiliation(s)
- Maylis Chapelais-Baron
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Isabelle Goubet
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, La Rochelle, France
| | - Maria de Fatima Pereira
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France.,Université de Caen Normandie, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE Boulevard Becquerel, F-14032 Caen, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Apolline Jabveneau
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|