1
|
Chen Y, Chen Y, Zhang Y, Sun Z, Li Y, Ding J, Zhang G, Du E, Zi X, Tian C, Zhao W, Gui F. Role of Enterococcus mundtii in gut of the tomato leaf miner (Tuta absoluta) to detoxification of Chlorantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106060. [PMID: 39277378 DOI: 10.1016/j.pestbp.2024.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
Chlorantraniliprole (CAP) is applied worldwide for the control of caterpillars (Lepidoptera). However, with the overuse of CAP, the resistance problem in pest control is becoming increasingly serious. Recent studies have indicated a central role of the gut symbiont in insect pest resistance to pesticides and these may apply to the tomato leaf miner Tuta absoluta, is one of the most destructive insects worldwide. Here, we successfully isolated seven strains of tolerant CAP bacterium from the CAP-resistant T. absoluta gut, of which Enterococcus mundtii E14 showed the highest CAP tolerance, with a minimum inhibitory concentration (MIC) of 1.6 g/L and CAP degradation rate of 42.4%. Through transcriptomics and metabolism analysis, we studied the detoxification process of CAP by the E. mundtii E14, and found that CAP can be degraded by E. mundtii E14 into non-toxic compounds, such as 3,4-dihydroxy-2-(5-hydroxy-3,7-dimethylocta-2,6-dien-1-yl) benzoic acid and 2-pyridylacetic acid. Additionally, 2-pyridylacetic acid was detected both intracellular and extracellular in E. mundtii E14 treated with CAP. Meanwhile, we identified 52 up-regulated genes, including those associated with CAP degradation, such as RS11670 and RS19130. Transcriptome results annotated using KEGG indicated significant enrichment in up-regulated genes related to the glyoxylate cycle, nitrogen metabolism, and biosynthesis of secondary metabolites. Additionally, we observed that reinfection with E. mundtii E14 may effectively enhance resistance of T. absoluta to CAP. The LC50 values of the antibiotic treatment population of T. absoluta reinfection with E. mundtii E14 is 0.6122 mg/L, which was 18.27 folds higher than before reinfection. These findings offer new insights into T. absoluta resistance to CAP and contribute to a better understanding of the relationship between insecticide resistance and gut symbionts of T. absoluta, which may play a pivotal role in pest management.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Jiasheng Ding
- Plant Protection and Quarantine Station, Dehong Prefecture, Mangshi 678400, Yunnan Province, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ewei Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyan Zi
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Chaoxin Tian
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Wenyuan Zhao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Tang H, Zhang X, Yang F, Zhang C, Ngando FJ, Ren L, Guo Y. Effect of Ciprofloxacin on the Composition of Intestinal Microbiota in Sarcophaga peregrina (Diptera: Sarcophagidae). Microorganisms 2023; 11:2867. [PMID: 38138011 PMCID: PMC10745613 DOI: 10.3390/microorganisms11122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
The intestinal bacteria of insects are crucial to the growth and development of the host. It has been found that various physiological processes of insects, such as immune response, metabolism, reproductive ability, and growth and development, involve the gastrointestinal flora. However, many external factors affect the composition of insects' intestinal microorganisms, such as the type of dietary substrate. Sarcophaga peregrina (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) is of great significance in medicine and forensic science. In this study, we investigated the effects of ciprofloxacin on the growth and gut microbiota of S. peregrina. The results demonstrated that the maximum body length of larvae was not affected by ciprofloxacin, while the growth rate of body length quickened as the concentration of the drug increased. The weight of the pupa and adult was reduced significantly due to the effect of ciprofloxacin. After analyzing the gut microbiota composition of S. peregrina in different drug groups, it was indicated that Ignatzschineria, Providencia, Wohlfahrtiimonas, Proteus, Myroides, and Bacteroides play important roles in the growth of S. peregrina. However, they still need to be further studied. In general, ciprofloxacin can affect the gut microbial community structure, which in turn affects the fitness of the host.
Collapse
Affiliation(s)
| | | | | | | | | | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (H.T.); (X.Z.); (F.Y.); (C.Z.); (F.J.N.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (H.T.); (X.Z.); (F.Y.); (C.Z.); (F.J.N.)
| |
Collapse
|
3
|
Nobre T. Olive fruit fly and its obligate symbiont Candidatus Erwinia dacicola: Two new symbiont haplotypes in the Mediterranean basin. PLoS One 2021; 16:e0256284. [PMID: 34495983 PMCID: PMC8425570 DOI: 10.1371/journal.pone.0256284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
The olive fruit fly, specialized to become monophagous during several life stages, remains the most important olive tree pest with high direct production losses, but also affecting the quality, composition, and inherent properties of the olives. Thought to have originated in Africa is nowadays present wherever olive groves are grown. The olive fruit fly evolved to harbor a vertically transmitted and obligate bacterial symbiont -Candidatus Erwinia dacicola- leading thus to a tight evolutionary history between olive tree, fruit fly and obligate, vertical transmitted symbiotic bacterium. Considering this linkage, the genetic diversity (at a 16S fragment) of this obligate symbiont was added in the understanding of the distribution pattern of the holobiont at nine locations throughout four countries in the Mediterranean Basin. This was complemented with mitochondrial (four mtDNA fragments) and nuclear (ten microsatellites) data of the host. We focused on the previously established Iberian cluster for the B. oleae structure and hypothesised that the Tunisian samples would fall into a differentiated cluster. From the host point of view, we were unable to confirm this hypothesis. Looking at the symbiont, however, two new 16S haplotypes were found exclusively in the populations from Tunisia. This finding is discussed in the frame of host-symbiont specificity and transmission mode. To understand olive fruit fly population diversity and dispersion, the dynamics of the symbiont also needs to be taken into consideration, as it enables the fly to, so efficiently and uniquely, exploit the olive fruit resource.
Collapse
Affiliation(s)
- Tânia Nobre
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- * E-mail:
| |
Collapse
|
4
|
Livadaras I, Koidou V, Pitsili E, Moustaka J, Vontas J, Siden-Kiamos I. Stably inherited transfer of the bacterial symbiont Candidatus Erwinia dacicola from wild olive fruit flies Bactrocera oleae to a laboratory strain. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:379-384. [PMID: 33541447 DOI: 10.1017/s0007485321000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The olive fruit fly, Bactrocera oleae, the most serious pest of olives, requires the endosymbiotic bacteria Candidatus Erwinia dacicola in order to complete its development in unripe green olives. Hence a better understanding of the symbiosis of Ca. E. dacicola and its insect host may lead to new strategies for reduction of B. oleae and thus minimize its economic impact on olive production. Studies of this symbiosis are hampered as the bacterium cannot be grown in vitro and the established B. oleae laboratory populations, raised on artificial diets, are devoid of this bacterium. Here, we sought to develop a method to transfer the bacteria from wild samples to laboratory populations. We tested several strategies. Cohabitation of flies from the field with the laboratory line did not result in a stable transfer of bacteria. We provided the bacteria directly to the egg and also in the food of the larvae but neither approach was successful. However, a robust method for transfer of Ca. E. dacicola from wild larvae or adults to uninfected flies by transplantation to females was established. Single female lines were set up and the bacteria were successfully transmitted for at least three generations. These results open up the possibilities to study the interaction between the symbiont and the host under controlled conditions, in view of both understanding the molecular underpinnings of an exciting, unique in nature symbiotic relationship, as well as developing novel, innovative control approaches.
Collapse
Affiliation(s)
- Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
| | - Venetia Koidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
- Department of Biology, University of Crete, Heraklion70013, Greece
| | - Eugenia Pitsili
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
- Department of Biology, University of Crete, Heraklion70013, Greece
| | - Julietta Moustaka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
- Department of Biology, University of Crete, Heraklion70013, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, 11855Athens, Greece
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion70013, Greece
| |
Collapse
|
5
|
De Cock M, Virgilio M, Vandamme P, Bourtzis K, De Meyer M, Willems A. Comparative Microbiomics of Tephritid Frugivorous Pests (Diptera: Tephritidae) From the Field: A Tale of High Variability Across and Within Species. Front Microbiol 2020; 11:1890. [PMID: 32849469 PMCID: PMC7431611 DOI: 10.3389/fmicb.2020.01890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
The family Tephritidae includes some of the most notorious insect pests of agricultural and horticultural crops in tropical and sub-tropical regions. Despite the interest in the study of their gut microbiome, our present knowledge is largely based on the analysis of laboratory strains. In this study, we present a first comparative analysis of the gut microbiome profiles of field populations of ten African and Mediterranean tephritid pests. For each species, third instar larvae were sampled from different locations and host fruits and compared using 16S rRNA amplicon sequencing and a multi-factorial sampling design. We observed considerable variation in gut microbiome diversity and composition both between and within fruit fly species. A “core” microbiome, shared across all targeted species, could only be identified at most at family level (Enterobacteriaceae). At genus level only a few bacterial genera (Klebsiella, Enterobacter, and Bacillus) were present in most, but not all, samples, with high variability in their relative abundance. Higher relative abundances were found for seven bacterial genera in five of the fruit fly species considered. These were Erwinia in Bactrocera oleae, Lactococcus in B. zonata, Providencia in Ceratitis flexuosa, Klebsiella, and Rahnella in C. podocarpi and Acetobacter and Serratia in C. rosa. With the possible exception of C. capitata and B. dorsalis (the two most polyphagous species considered) we could not detect obvious relationships between fruit fly dietary breadth and microbiome diversity or abundance patterns. Similarly, our results did not suggest straightforward differences between the microbiome profiles of species belonging to Ceratitis and the closely related Bactrocera/Zeugodacus. These results provide a first comparative analysis of the gut microbiomes of field populations of multiple economically relevant tephritids and provide base line information for future studies that will further investigate the possible functional role of the observed associations.
Collapse
Affiliation(s)
- Maarten De Cock
- Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the UnitedNations/International Atomic Energy Agency (FAO/IAEA) Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Blow F, Gioti A, Goodhead IB, Kalyva M, Kampouraki A, Vontas J, Darby AC. Functional Genomics of a Symbiotic Community: Shared Traits in the Olive Fruit Fly Gut Microbiota. Genome Biol Evol 2020; 12:3778-3791. [PMID: 31830246 PMCID: PMC6999849 DOI: 10.1093/gbe/evz258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The olive fruit fly Bactrocera oleae is a major pest of olives worldwide and houses a specialized gut microbiota dominated by the obligate symbiont "Candidatus Erwinia dacicola." Candidatus Erwinia dacicola is thought to supplement dietary nitrogen to the host, with only indirect evidence for this hypothesis so far. Here, we sought to investigate the contribution of the symbiosis to insect fitness and explore the ecology of the insect gut. For this purpose, we examined the composition of bacterial communities associated with Cretan olive fruit fly populations, and inspected several genomes and one transcriptome assembly. We identified, and reconstructed the genome of, a novel component of the gut microbiota, Tatumella sp. TA1, which is stably associated with Mediterranean olive fruit fly populations. We also reconstructed a number of pathways related to nitrogen assimilation and interactions with the host. The results show that, despite variation in taxa composition of the gut microbial community, core functions related to the symbiosis are maintained. Functional redundancy between different microbial taxa was observed for genes involved in urea hydrolysis. The latter is encoded in the obligate symbiont genome by a conserved urease operon, likely acquired by horizontal gene transfer, based on phylogenetic evidence. A potential underlying mechanism is the action of mobile elements, especially abundant in the Ca. E. dacicola genome. This finding, along with the identification, in the studied genomes, of extracellular surface structure components that may mediate interactions within the gut community, suggest that ongoing and past genetic exchanges between microbes may have shaped the symbiosis.
Collapse
Affiliation(s)
- Frances Blow
- Institute of Integrative Biology, University of Liverpool, United Kingdom
- Department of Entomology, Cornell University, Ithaca, New York
| | - Anastasia Gioti
- Bioinformatics Facility, Perrotis College, American Farm School, Thessaloniki, Greece
| | - Ian B Goodhead
- Institute of Integrative Biology, University of Liverpool, United Kingdom
- School of Environment and Life Sciences, University of Salford, United Kingdom
| | - Maria Kalyva
- Bioinformatics Facility, Perrotis College, American Farm School, Thessaloniki, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Anastasia Kampouraki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Pesticide Science, Agricultural University of Athens, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Pesticide Science, Agricultural University of Athens, Greece
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
8
|
Nobre T. Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management? Microorganisms 2019; 7:E238. [PMID: 31382604 PMCID: PMC6723466 DOI: 10.3390/microorganisms7080238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The applied importance of symbiosis has been gaining recognition. The relevance of symbiosis has been increasing in agriculture, in developing sustainable practices, including pest management. Insect symbiotic microorganisms' taxonomical and functional diversity is high, and so is the potential of manipulation of these microbial partners in suppressing pest populations. These strategies, which rely on functional organisms inhabiting the insect, are intrinsically less susceptible to external environmental variations and hence likely to overcome some of the challenges posed by climate change. Rates of climate change in the Mediterranean Basin are expected to exceed global trends for most variables, and this warming will also affect olive production and impact the interactions of olives and their main pest, the obligate olive fruit fly (Bactrocera oleae). This work summarizes the current knowledge on olive fly symbiotic bacteria towards the potential development of symbiosis-based strategies for olive fruit fly control. Particular emphasis is given to Candidatus Erwinia dacicola, an obligate, vertically transmitted endosymbiont that allows the insect to cope with the olive-plant produced defensive compound oleuropein, as a most promising target for a symbiosis disruption approach.
Collapse
Affiliation(s)
- Tânia Nobre
- Laboratory of Entomology, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Apartado 94, 7002-554 Évora, Portugal.
| |
Collapse
|
9
|
Draft Genome Sequence of Erwinia dacicola, a Dominant Endosymbiont of Olive Flies. Microbiol Resour Announc 2018; 7:MRA01067-18. [PMID: 30533624 PMCID: PMC6256602 DOI: 10.1128/mra.01067-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022] Open
Abstract
Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living Erwinia species, including the plant pathogen Erwinia amylovora. Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living Erwinia species, including the plant pathogen Erwinia amylovora. The E. dacicola genome encodes the metabolic capability to supplement and detoxify the olive fly’s diet in larval and adult stages.
Collapse
|
10
|
Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 2018; 8:15936. [PMID: 30374192 PMCID: PMC6205999 DOI: 10.1038/s41598-018-33809-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.
Collapse
Affiliation(s)
- Anne M Estes
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA.
| | - David J Hearn
- Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A & M University, College Station, TX, 77843, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Borruso L, Salomone-Stagni M, Polsinelli I, Schmitt AO, Benini S. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes. Arch Microbiol 2017; 199:1335-1344. [PMID: 28695265 PMCID: PMC5663808 DOI: 10.1007/s00203-017-1409-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Marco Salomone-Stagni
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Armin Otto Schmitt
- Department of Nutztierwissenschaften, Breeding Informatics, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
12
|
Gerth M, Hurst GDD. Short reads from honey bee ( Apis sp.) sequencing projects reflect microbial associate diversity. PeerJ 2017; 5:e3529. [PMID: 28717593 PMCID: PMC5510586 DOI: 10.7717/peerj.3529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/11/2017] [Indexed: 02/02/2023] Open
Abstract
High throughput (or ‘next generation’) sequencing has transformed most areas of biological research and is now a standard method that underpins empirical study of organismal biology, and (through comparison of genomes), reveals patterns of evolution. For projects focused on animals, these sequencing methods do not discriminate between the primary target of sequencing (the animal genome) and ‘contaminating’ material, such as associated microbes. A common first step is to filter out these contaminants to allow better assembly of the animal genome or transcriptome. Here, we aimed to assess if these ‘contaminations’ provide information with regard to biologically important microorganisms associated with the individual. To achieve this, we examined whether the short read data from Apis retrieved elements of its well established microbiome. To this end, we screened almost 1,000 short read libraries of honey bee (Apis sp.) DNA sequencing project for the presence of microbial sequences, and find sequences from known honey bee microbial associates in at least 11% of them. Further to this, we screened ∼500 Apis RNA sequencing libraries for evidence of viral infections, which were found to be present in about half of them. We then used the data to reconstruct draft genomes of three Apis associated bacteria, as well as several viral strains de novo. We conclude that ‘contamination’ in short read sequencing libraries can provide useful genomic information on microbial taxa known to be associated with the target organisms, and may even lead to the discovery of novel associations. Finally, we demonstrate that RNAseq samples from experiments commonly carry uneven viral loads across libraries. We note variation in viral presence and load may be a confounding feature of differential gene expression analyses, and as such it should be incorporated as a random factor in analyses.
Collapse
Affiliation(s)
- Michael Gerth
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Draft Genome Sequence of Chryseobacterium Strain CBo1 Isolated from Bactrocera oleae. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00177-17. [PMID: 28473371 PMCID: PMC5477180 DOI: 10.1128/genomea.00177-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria of the genus Chryseobacterium have previously been identified as mutualists of plants and insects. Chryseobacterium strain CBo1 was cultured from the gut of the agricultural pest Bactrocera oleae and its whole genome sequenced. This genomic resource will aid investigations into the transition of microbes between plant and invertebrate hosts.
Collapse
|
14
|
Draft Genome Sequence of Stenotrophomonas maltophilia SBo1 Isolated from Bactrocera oleae. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00905-16. [PMID: 27660769 PMCID: PMC5034120 DOI: 10.1128/genomea.00905-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria of the genus Stenotrophomonas are ubiquitous in the environment and are increasingly associated with insects. Stenotrophomonas maltophilia SBo1 was cultured from the gut of Bactrocera oleae. The draft genome sequence presented here will inform future investigations into the nature of the interaction between insects and their microbiota.
Collapse
|