1
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Garmasheva IL, Oleschenko LT. Screening of bacteriocin-producing dairy Enterococcus strains using low-cost culture media. Front Microbiol 2023; 14:1168835. [PMID: 37333643 PMCID: PMC10272557 DOI: 10.3389/fmicb.2023.1168835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
This study was carried out to select the bacteriocinogenic strains among Enterococcus strains isolated from Ukrainian traditional dairy products using a low-cost media for screening, that containing molasses and steep corn liquor. A total of 475 Enterococcus spp. strains were screened for antagonistic activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes indicator strains. The initial screening revealed that 34 Enterococcus strains during growth in low-cost medium containing corn steep liquor, peptone, yeast extract, and sucrose produced metabolites with inhibition activity against at least of the indicator strains used. Enterocin genes entA, entP, and entB were detected in 5 Enterococcus strains by PCR assay. Genes of enterocins A and P were found in E. faecalis 58 and Enterococcus sp. 226 strains, enterocins B and P - in Enterococcus sp. 423, enterocin A - in E. faecalis 888 and E. durans 248 strains. Bacteriocin-like inhibitory substances (BLIS) produced by these Enterococcus strains were thermostable and sensitive to proteolytic enzymes. To our knowledge, this is the first report on the isolation of enterocin-producing wild Enterococcus strains from traditional Ukrainian dairy products using a low-cost media for screening bacteriocinogenic strains. Strains E. faecalis 58, Enterococcus sp. 423, and Enterococcus sp. 226 are promising candidates for practical use as producers of bacteriocins with inhibitory activity against L. monocytogenes using molasses and steep corn liquor as cheap sources of carbon and nitrogen, that can significantly reduce the cost of industrial bacteriocin production. Further studies will be required to determine the dynamic of bacteriocin production, its structure, and mechanisms of antibacterial action.
Collapse
|
3
|
Khan MA, Hussain Z, Ali S, Qamar Z, Imran M, Hafeez FY. Fabrication of Electrospun Probiotic Functionalized Nanocomposite Scaffolds for Infection Control and Dermal Burn Healing in a Mice Model. ACS Biomater Sci Eng 2019; 5:6109-6116. [PMID: 33405664 DOI: 10.1021/acsbiomaterials.9b01002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of microbiota paves the way to use microbial cells as medicines to treat pathobiomic diseases. This study reported the fabrication of probiotic (Enterococcus mundtii QAUEM2808)-functionalized nanocomposite scaffolds of poly(vinyl alcohol)/poly(vinylpyrrolidone)/glycerol via electrospinning. Scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis resolved the living composite structure and supported the encapsulation of E. mundtii throughout the nanostructured (318 ± 12 nm) fibers of bioscaffold membranes. The shelf life evaluation of 4-week-old samples supported that bioscaffolds showed an enhancement in probiotic survival count by 2.78 ± 0.10 log10 colony-forming units (cfu) versus counterpart biodispersion. The swelling and antagonistic evaluation showed that a bioscaffold is degradable in a simulated wound fluid which is essential for activation of probiotic strains to antagonize infection-causing Gram-positive and Gram-negative pathogens. A second-degree contact burn was made on the dorsum of male BALB/c mice (n = 30). The wounds were left open for 2 days to mimic burn contamination, and the mice were randomized into negative (untreated), positive (silver sulfadiazine cream), vehicle (biodispersion and nanoscaffold), and experimental bioscaffold groups (n = 6/group). These treatments were applied on 2, 6, 10, and 14 days postburn. A comparative wound closure, histopathology, and wound microbial evaluation demonstrated that the bioscaffolds accelerate epithelialization, collagen deposition, and hair follicle formation, inhibit harmful bacteria, and provide interference benefits. In particular, the probiotic active bioscaffold membrane could serve as a novel candidate to control infections and speed up the healing of burn wounds.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- Applied Microbiology and Biotechnology Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, Islamabad Capital Territory 45550, Pakistan
| | - Zahid Hussain
- Applied Microbiology and Biotechnology Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, Islamabad Capital Territory 45550, Pakistan
| | - Sakhawat Ali
- National Veterinary Laboratories (NVL), Park Road, Islamabad, Islamabad Capital Territory 45550, Pakistan
| | - Zahid Qamar
- Nano-Scale Physics Laboratory, Department of Physics, Air University, Sector E-9, Islamabad, Islamabad Capital Territory 44200, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University (QAU), Islamabad, Islamabad Capital Territory 45320, Pakistan
| | - Fauzia Yusuf Hafeez
- Applied Microbiology and Biotechnology Laboratory, Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, Islamabad Capital Territory 45550, Pakistan
| |
Collapse
|
4
|
Nawaz F, Khan MN, Javed A, Ahmed I, Ali N, Ali MI, Bakhtiar SM, Imran M. Genomic and Functional Characterization of Enterococcus mundtii QAUEM2808, Isolated From Artisanal Fermented Milk Product Dahi. Front Microbiol 2019; 10:434. [PMID: 30972030 PMCID: PMC6443856 DOI: 10.3389/fmicb.2019.00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Microbial strains with a unique combination of technological and bioactive properties are preferred for industrial applications. The present study was conducted to evaluate the potential use of Enterococcus mundtii QAUEM2808 (NCBI Accession Number: LSMC00000000) in milk fermentation. This strain was isolated from Dahi, an indigenous fermented milk product of South-East Asia. The in vitro study confirmed the acidification ability as well as the proteolytic, cellulolytic, and amylolytic enzyme activities of this strain. It also produced a substantial amount of the folate in laboratory media and no physiological dysfunctions in laboratory animals was observed in feeding trials. All these properties were confirmed by in silico genome analysis. The Enterococcus mundtii QAUEM2808 genome consisted of a single, circular chromosome comprising 2,957,300-bp, 2,587 genes with GC content of 38.5%. Moreover, 16t RNAs, 1, 3 (16S, 23S) rRNAs, 4 ncRNAs, and 91 pseudo genes were also predicted. The majority of genome encode genes for protein, amino acids, carbohydrate, cell wall DNA and RNA metabolisms including all genes required for conversion of lactose to lactic acid. It also exhibited antimicrobial activity against E. coli ATCC 10536, S. aureus ATCC 6538, P. aeruginosa ATCC 9027, and L. monocytogenes ATCC 13932 and was found to be sensitive to commonly used antibiotics. The in silico analysis revealed the presence of genes for mundaticin and enterocin production, and CRISPER regions, however, the genes for antibiotic resistance were absent. No genes related to the pathogenicity island and prophages were detected by genome mining. Therefore, it could be inferened that Enterococcus mundtii QAUEM2808 has the potential to be used in milk fermentation as adjunct culture.
Collapse
Affiliation(s)
- Farah Nawaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqib Javed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Mariam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Genome Sequence of Enterococcus mundtii EM01, Isolated from Bombyx mori Midgut and Responsible for Flacherie Disease in Silkworms Reared on an Artificial Diet. GENOME ANNOUNCEMENTS 2018; 6:6/3/e01495-17. [PMID: 29348354 PMCID: PMC5773739 DOI: 10.1128/genomea.01495-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The whole genome sequence of Enterococcus mundtii strain EM01 is reported here. The isolate proved to be the cause of flacherie in Bombyx mori. To date, the genomes of 11 other E. mundtii strains have been sequenced. EM01 is the only strain that displayed active pathological effects on its associated animal species.
Collapse
|