1
|
de Azevedo BL, Queiroz VF, de Aquino ILM, Machado TB, de Assis FL, Reis E, Araújo Júnior JP, Ullmann LS, Colson P, Greub G, Aylward F, Rodrigues RAL, Abrahão JS. The genomic and phylogenetic analysis of Marseillevirus cajuinensis raises questions about the evolution of Marseilleviridae lineages and their taxonomical organization. J Virol 2024; 98:e0051324. [PMID: 38752754 PMCID: PMC11237802 DOI: 10.1128/jvi.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.
Collapse
Affiliation(s)
- Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Talita Bastos Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Lopes de Assis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Erik Reis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - João Pessoa Araújo Júnior
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria and Giant Viruses, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Frank Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Aoki K, Fukaya S, Takahashi H, Kobayashi M, Sasaki K, Takemura M. Marseilleviridae Lineage B Diversity and Bunch Formation Inhibited by Galactose. Microbes Environ 2021; 36. [PMID: 33612562 PMCID: PMC7966940 DOI: 10.1264/jsme2.me20139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Marseilleviridae is a family of large double-stranded DNA viruses that is currently divided into five subgroups, lineages A–E. Hokutovirus and kashiwazakivirus, both of which belong to lineage B, have been reported to induce host acanthamoeba cells to form aggregations called “bunches”. This putatively results in increased opportunities to infect acanthamoeba cells, in contrast to lineage A, which has been reported to not form “bunches”. In the present study, we isolated 14 virus strains of the family Marseilleviridae from several Japanese water samples, 11 of which were identified as lineage B viruses. All 11 lineage B strains caused infected amoeba cells to form bunches. We then investigated the involvement of monosaccharides in bunch formation by amoeba cells infected with hokutovirus. Galactose inhibited bunch formation, thereby allowing amoeba cells to delay the process, whereas mannose and glucose did not. A kinetic image analysis of hokutovirus-infected amoeba cells confirmed the inhibition of bunch formation by galactose. The number of hokutovirus-infected amoeba cells increased more rapidly than that of tokyovirus-infected cells, which belongs to lineage A. This result suggests that bunch formation by infected amoeba cells is advantageous for lineage B viruses.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Sho Fukaya
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Haruna Takahashi
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Mio Kobayashi
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Kenta Sasaki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science
| | - Masaharu Takemura
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science.,Laboratory of Biology, Faculty of Science Division I, Tokyo University of Science
| |
Collapse
|
3
|
Sahmi-Bounsiar D, Rolland C, Aherfi S, Boudjemaa H, Levasseur A, La Scola B, Colson P. Marseilleviruses: An Update in 2021. Front Microbiol 2021; 12:648731. [PMID: 34149639 PMCID: PMC8208085 DOI: 10.3389/fmicb.2021.648731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
The family Marseilleviridae was the second family of giant viruses that was described in 2013, after the family Mimiviridae. Marseillevirus marseillevirus, isolated in 2007 by coculture on Acanthamoeba polyphaga, is the prototype member of this family. Afterward, the worldwide distribution of marseilleviruses was revealed through their isolation from samples of various types and sources. Thus, 62 were isolated from environmental water, one from soil, one from a dipteran, one from mussels, and two from asymptomatic humans, which led to the description of 67 marseillevirus isolates, including 21 by the IHU Méditerranée Infection in France. Recently, five marseillevirus genomes were assembled from deep sea sediment in Norway. Isolated marseilleviruses have ≈250 nm long icosahedral capsids and 348–404 kilobase long mosaic genomes that encode 386–545 predicted proteins. Comparative genomic analyses indicate that the family Marseilleviridae includes five lineages and possesses a pangenome composed of 3,082 clusters of genes. The detection of marseilleviruses in both symptomatic and asymptomatic humans in stool, blood, and lymph nodes, and an up-to-30-day persistence of marseillevirus in rats and mice, raise questions concerning their possible clinical significance that are still under investigation.
Collapse
Affiliation(s)
- Dehia Sahmi-Bounsiar
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Hadjer Boudjemaa
- IHU Méditerranée Infection, Marseille, France.,Department of Biology, Faculty of Natural Science and Life, Hassiba Benbouali University of Chlef, Chlef, Algeria
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Blanca L, Christo-Foroux E, Rigou S, Legendre M. Comparative Analysis of the Circular and Highly Asymmetrical Marseilleviridae Genomes. Viruses 2020; 12:E1270. [PMID: 33171839 PMCID: PMC7695187 DOI: 10.3390/v12111270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Marseilleviridae members are large dsDNA viruses with icosahedral particles 250 nm in diameter infecting Acanthamoeba. Their 340 to 390 kb genomes encode 450 to 550 protein-coding genes. Since the discovery of marseillevirus (the prototype of the family) in 2009, several strains were isolated from various locations, among which 13 are now fully sequenced. This allows the organization of their genomes to be deciphered through comparative genomics. Here, we first experimentally demonstrate that the Marseilleviridae genomes are circular. We then acknowledge a strong bias in sequence conservation, revealing two distinct genomic regions. One gathers most Marseilleviridae paralogs and has undergone genomic rearrangements, while the other, enriched in core genes, exhibits the opposite pattern. Most of the genes whose protein products compose the viral particles are located in the conserved region. They are also strongly biased toward a late gene expression pattern. We finally discuss the potential advantages of Marseilleviridae having a circular genome, and the possible link between the biased distribution of their genes and the transcription as well as DNA replication mechanisms that remain to be characterized.
Collapse
Affiliation(s)
| | | | | | - Matthieu Legendre
- CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Aix Marseille Univ., 13288 Marseille, France; (L.B.); (E.C.-F.); (S.R.)
| |
Collapse
|
5
|
Abstract
DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses' fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses' methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.
Collapse
|
6
|
Macera L, Spezia PG, Focosi D, Mazzetti P, Antonelli G, Pistello M, Maggi F. Lack of Marseillevirus DNA in immunocompetent and immunocompromised Italian patients. J Med Virol 2019; 92:187-190. [PMID: 31498443 DOI: 10.1002/jmv.25592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
Marseilleviridae is a family of viruses which have only been propagated in acanthamoeba. Marseillevirus sequences have been recently detected in different human matrices by viral metagenomics. Single-center studies worldwide have estimated a low prevalence of marseillevirus both in symptomatic patients and in healthy donors but, to date, no informations are available on the prevalence of this giant virus in Italy. By a polymerase chain reaction targeting the ORF152 viral sequence, we tested sera from 197 immunosuppressed patients and 285 healthy donors, and 63 and 30 respiratory and cerebrospinal fluid samples, respectively, of patients with various clinical conditions and referring the Virology Division for diagnostic purposes. We observed no evidence of Marseillevirus DNA in all 575 samples tested. Marseillevirus probably does not cause infection in human.
Collapse
Affiliation(s)
- Lisa Macera
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Paola Mazzetti
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
7
|
Aoki K, Hagiwara R, Akashi M, Sasaki K, Murata K, Ogata H, Takemura M. Fifteen Marseilleviruses Newly Isolated From Three Water Samples in Japan Reveal Local Diversity of Marseilleviridae. Front Microbiol 2019; 10:1152. [PMID: 31178850 PMCID: PMC6543897 DOI: 10.3389/fmicb.2019.01152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
The family Marseilleviridae, defined as a group of icosahedral double-stranded DNA viruses with particle size of approximately 250 nm and genome size of 350-380 kbp, belongs to the nucleo-cytoplasmic family of large DNA viruses. The family Marseilleviridae is currently classified into lineages A-E. In this study, we isolated 12 or 15 new members of the family Marseilleviridae from three sampling locations in Japan. Molecular phylogenetic analysis of the MCP genes showed that the new viruses could be further classified into three groups, hokutoviruses, kashiwazakiviruses, and kyotoviruses. Hokutoviruses were closely related to lineage B, kyotoviruses were related to lineage A, and kashiwazakiviruses were also classified into lineage B but a new putative subgroup of lineage B, revealing the diversity of this lineage. Interestingly, more than two viruses with slightly different MCP genes were isolated from a single water sample from a single location, i.e., two hokutoviruses and one kashiwazakivirus were isolated from a small reservoir, five kashiwazakiviruses from the mouth of a river, and five kyotoviruses from fresh water of a river, suggesting that several milliliters of water samples contain several types of giant viruses. Amoeba cells infected with hokutoviruses or kashiwazakiviruses exhibited a "bunch" formation consisting of normal and infected cells similarly to a tupanvirus, whereas cells infected with kyotoviruses or tokyovirus did not. These results suggest the previously unrecognized local diversity of the family Marseilleviridae in aquatic environments.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan
| | - Reika Hagiwara
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Motohiro Akashi
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kenta Sasaki
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Japan
| | - Masaharu Takemura
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Tokyo, Japan.,Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
8
|
Rolland C, Andreani J, Louazani AC, Aherfi S, Francis R, Rodrigues R, Silva LS, Sahmi D, Mougari S, Chelkha N, Bekliz M, Silva L, Assis F, Dornas F, Khalil JYB, Pagnier I, Desnues C, Levasseur A, Colson P, Abrahão J, La Scola B. Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses 2019; 11:E312. [PMID: 30935049 PMCID: PMC6520786 DOI: 10.3390/v11040312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.
Collapse
Affiliation(s)
- Clara Rolland
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Amina Cherif Louazani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Sarah Aherfi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rania Francis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rodrigo Rodrigues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Ludmila Santos Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Dehia Sahmi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Said Mougari
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Nisrine Chelkha
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Meriem Bekliz
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Lorena Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Felipe Assis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Fábio Dornas
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | | | - Isabelle Pagnier
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Christelle Desnues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Anthony Levasseur
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Philippe Colson
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Jônatas Abrahão
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
9
|
Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology 2018; 516:239-245. [PMID: 29407382 DOI: 10.1016/j.virol.2018.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.
Collapse
|
10
|
Aherfi S, Nappez C, Lepidi H, Bedotto M, Barassi L, Jardot P, Colson P, La Scola B, Raoult D, Bregeon F. Experimental Inoculation in Rats and Mice by the Giant Marseillevirus Leads to Long-Term Detection of Virus. Front Microbiol 2018; 9:463. [PMID: 29619012 PMCID: PMC5871663 DOI: 10.3389/fmicb.2018.00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The presence of the giant virus of amoeba Marseillevirus has been identified at many different sites on the human body, including in the bloodstream of asymptomatic subjects, in the lymph nodes of a child with adenitis, in one adult with Hodgkin's disease, and in the pharynx of an adult. A high seroprevalence of the Marseillevirus has been recorded in the general population. Whether Marseillevirus can disseminate and persist within a mammal after entry remains unproven. We aimed to assess the ability of the virus to disseminate and persist into healthy organisms, especially in the lymphoid organs. Parenteral inoculations were performed by intraperitoneal injection (in rats and mice) or intravenous injection (in rats). Airway inoculation was performed by aerosolization (in mice). Dissemination and persistence were assessed by using PCR and amebal co-culture. Serologies were performed by immunofluorescent assay. Pathological examination was conducted after standard and immunohistochemistry staining. After intraperitoneal inoculation in mice and rats, Marseillevirus was detected in the bloodstream during the first 24 h. Persistence was noted until the end of the experiment, i.e., at 14 days in rats. After intravenous inoculation in rats, the virus was first detected in the blood until 48 h and then in deep organs with infectious virus detected until 14 and 21 days in the liver and the spleen, respectively. Its DNA was detected for up to 30 days in the liver and the spleen. After aerosolization in mice, infectious Marseillevirus was present in the lungs and nasal associated lymphoid tissue until 30 days post inoculation but less frequently and at a lower viral load in the lung than in the nasal associated lymphoid tissue. No other site of dissemination was found after aerosol exposure. Despite no evidence of disease being observed, the 30-day long persistence of Marseillevirus in rats and mice, regardless of the route of inoculation, supports the hypothesis of an infective potential of the virus in certain conditions. Its constant and long-term detection in nasal associated lymphoid tissue in mice after an aerosol exposure suggests the involvement of naso-pharyngeal associated lymphoid tissues in protecting the host against environmental Marseillevirus.
Collapse
Affiliation(s)
- Sarah Aherfi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Claude Nappez
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Hubert Lepidi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Laboratoire d'Anatomopathologie, Centre Hospitalo Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Marielle Bedotto
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Lina Barassi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Priscilla Jardot
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Philippe Colson
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Bernard La Scola
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Didier Raoult
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Fabienne Bregeon
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Service des Explorations Fonctionnelles Respiratoires Centre Hospitalo Universitaire Nord, Pôle Cardio-Vasculaire et thoracique, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
11
|
Diesend J, Kruse J, Hagedorn M, Hammann C. Amoebae, Giant Viruses, and Virophages Make Up a Complex, Multilayered Threesome. Front Cell Infect Microbiol 2018; 7:527. [PMID: 29376032 PMCID: PMC5768912 DOI: 10.3389/fcimb.2017.00527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories.
Collapse
Affiliation(s)
- Jan Diesend
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Janis Kruse
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
12
|
Genome Sequences of New Faustovirus Strains ST1 and LC9, Isolated from the South of France. GENOME ANNOUNCEMENTS 2017; 5:5/28/e00613-17. [PMID: 28705976 PMCID: PMC5511915 DOI: 10.1128/genomea.00613-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Faustoviruses are amoeba-infecting giant viruses closely related to the Asfarviridae family. Here, we report the isolation, genome sequencing, and annotation of ST1 and LC9, two new strains belonging to lineages L and E9 of faustoviruses, currently represented by only one representative each.
Collapse
|
13
|
Noumeavirus replication relies on a transient remote control of the host nucleus. Nat Commun 2017; 8:15087. [PMID: 28429720 PMCID: PMC5413956 DOI: 10.1038/ncomms15087] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses. Large dsDNA viruses either replicate in or disrupt the nucleus to gain access to host RNA polymerases, or they rely on virus-encoded, packaged RNA polymerases. Here, the authors show that Noumeavirus replicates in the cytoplasm and relies on a transient recruitment of nuclear proteins to initiate replication.
Collapse
|
14
|
Takemura M. Morphological and Taxonomic Properties of Tokyovirus, the First Marseilleviridae Member Isolated from Japan. Microbes Environ 2016; 31:442-448. [PMID: 27867160 PMCID: PMC5158117 DOI: 10.1264/jsme2.me16107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Members of the Marseilleviridae family are large DNA viruses with icosahedral particle structures that infect Acanthamoeba cells. The first Marseillevirus to be discovered was isolated in 2009. Since then, several other members of the Marseilleviridae family have been reported, including Lausannevirus, Senegalvirus, Cannes 8 virus, Insectomime virus, Tunisvirus, Melbournevirus, Port-Miou virus, and Brazilian Marseillevirus, which have been isolated from Europe, Africa, Australia, and South America. The morphological and genomic properties of a new Marseilleviridae family member, Tokyovirus, discovered in a water/soil sample from a Japanese river in Tokyo, were described in the present study. Tokyovirus possesses icosahedral particles of up to 200 nm in diameter, as revealed by a transmission electron microscopy (TEM) analysis, which form a giant virion factory in Acanthamoeba cells. A preliminary genome analysis predicted 487 coding sequences. A dot plot analysis and phylogenetic analysis using family B DNA polymerase, proliferating cell nuclear antigen (PCNA), and DNA-directed RNA polymerase alpha subunit genes revealed that Tokyovirus shares similarities with Marseillevirus, Melbournevirus, and Cannes 8 virus (Marseilleviridae subclade A), but not with Lausannevirus and Port-Miou virus (subclade B), Tunisvirus and Insectomime virus (subclade C), or Brazilian Marseillevirus (subclade D), suggesting that Tokyovirus has evolved separately from the previously described Marseilleviridae members.
Collapse
Affiliation(s)
- Masaharu Takemura
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science (RIKADAI)
| |
Collapse
|
15
|
A new marseillevirus isolated in Southern Brazil from Limnoperna fortunei. Sci Rep 2016; 6:35237. [PMID: 27739526 PMCID: PMC5064363 DOI: 10.1038/srep35237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Members of the family Marseilleviridae are giant viruses that have the ability to infect amoebas. Such viruses were initially described in 2009. Since then, this family has grown, and diverse members have been found in different environments and geographic locations. Previous phylogenetic analyses suggested the existence of four marseillevirus lineages. A fourth lineage was described with the discovery of the Brazilian marseillevirus (BrMr), isolated from Pampulha Lake, Brazil. Here we describe the isolation and characterization of the Golden marseillevirus (GMar), a new marseillevirus isolated from golden mussels (Limnoperna fortunei) in South of Brazil. This new representative of Marseilleviridae has circular, double-stranded (dsDNA) that contains 360, 610 base pairs and encodes 483 open read frames (ORFs). The complete virus genome was sequenced and phylogenic analyses indicated clear differences between this virus and other marseilleviruses. In addition, this is the only marseillevirus so far that has been isolated from mussels, and this report expands the diversity of environments from which giant viruses could be recovered.
Collapse
|
16
|
Draft Genome Sequence of Tokyovirus, a Member of the Family Marseilleviridae Isolated from the Arakawa River of Tokyo, Japan. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00429-16. [PMID: 27284144 PMCID: PMC4901213 DOI: 10.1128/genomea.00429-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Marseilleviridae family are large DNA viruses with icosahedral particles that infect Acanthamoeba cells. This report presents a new Marseilleviridae family member discovered in a water/soil sample from a river in Tokyo, named Tokyovirus, with genome size of 370 to 380 kb.
Collapse
|
17
|
Giant viruses come of age. Curr Opin Microbiol 2016; 31:50-57. [DOI: 10.1016/j.mib.2016.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
|
18
|
Infection and Proliferation of Giant Viruses in Amoeba Cells. Uirusu 2016; 66:135-146. [PMID: 29081465 DOI: 10.2222/jsv.66.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.
Collapse
|