1
|
Szymczak B. Phenotypic and Genotypic Characteristics of Non-Hemolytic L. monocytogenes Isolated from Food and Processing Environments. Foods 2023; 12:3630. [PMID: 37835283 PMCID: PMC10572806 DOI: 10.3390/foods12193630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Increasingly, Listeria monocytogenes (LM) with atypical phenotypic and genotypic characteristics are being isolated from food, causing problems with their classification and testing. From 2495 soil, food, and swab samples from the food industry, 262 LM isolates were found. A total of 30 isolates were isolated, mainly from soil and plant food, and were classified as atypical LM (aLM) because they lacked the ability to move (30/11.4%) and perform hemolysis (25/9.5%). The isolation environment affected aLM incidence, cell size, sugar fermentation capacity, antibiotic sensitivity, and the number of virulence genes. Therefore, despite several characteristics differentiating all aLMs/non-hemolytic isolates from reference LMs, the remaining phenotypic characteristics were specific to each aLM isolate (like a fingerprint). The aLM/non-hemolytic isolates, particularly those from the soil and meat industries, showed more variability in their sugar fermentation capacity and were less sensitive to antibiotics than LMs. As many as 11 (36.7%) aLM isolates had resistance to four different antibiotics or simultaneously to two antibiotics. The aLM isolates possessed 3-7 of the 12 virulence genes: prfA and hly in all aLMs, while iap was not present. Only five (16.7%) isolates were classified into serogroups 1/2c-3c or 4a-4c. The aLM/non-hemolytic isolates differed by many traits from L. immobilis and atypical L. innocua. The reference method of reviving and isolating LM required optimization of aLM. Statistical analyses of clustering, correlation, and PCA showed similarities and differences between LM and aLM/non-hemolytic isolates due to individual phenotypic traits and genes. Correlations were found between biochemical traits, antibiotic resistance, and virulence genes. The increase in the incidence of atypical non-hemolytic LM may pose a risk to humans, as they may not be detected by ISO methods and have greater antibiotic resistance than LM. aLM from LM can be distinguished based on lack of hemolysis, motility, growth at 4 °C, ability to ferment D-arabitol, and lack of six specific genes.
Collapse
Affiliation(s)
- Barbara Szymczak
- Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Papieża Pawła VI 3, 71-459 Szczecin, Poland
| |
Collapse
|
2
|
Nonhemolytic Listeria monocytogenes-Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms 2022; 10:microorganisms10020483. [PMID: 35208937 PMCID: PMC8874635 DOI: 10.3390/microorganisms10020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that typically presents β-hemolytic activity. However, there are literature reports indicating that L. monocytogenes strains are sometimes nonhemolytic or their zones of hemolysis are perceivable only after removal of the colonies from the agar plate. Nonhemolytic L. monocytogenes are most commonly encountered in food products, but some have also been detected in clinical samples. Usually, atypical bacteria of this species belong to serotype 1/2a. Mutations of the prfA gene sequence are the most common reason for changed phenotype, and mutations of the hly gene are the second most common cause. There are also reports that the methodology used for detecting hemolysis may influence the results. Sheep or horse blood, although most commonly used in modern studies, may not allow for the production of clear hemolytic zones on blood agar, whereas other types of blood (guinea pig, rabbit, piglet, and human) are more suitable according to some studies. Furthermore, the standard blood agar plate technique is less sensitive than its modifications such as bilayer or top-layer (overlay) techniques. The microplate technique (employing erythrocyte suspensions) is probably the most informative when assessing listerial hemolysis and is the least susceptible to subjective interpretation.
Collapse
|
3
|
Burall LS, Sepehri S, Srinivasan D, Grim CJ, Lacher DW, Ferguson M, Nambiar R, Datta AR. Development and Validation of a Quantitative PCR Method for Species Verification and Serogroup Determination of Listeria monocytogenes Isolates. J Food Prot 2021; 84:333-344. [PMID: 32977330 DOI: 10.4315/jfp-20-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/22/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes (Lm) is one of the leading causes of death because of foodborne illness, affecting the elderly, pregnant women, neonates, and people who are immunocompromised. Serologically, Lm can be classified into 13 serotypes, although only 4 are typically linked with food contamination and illness. Since 2000, a shift in serotypes involved in listeriosis outbreaks has been observed, suggesting that tracking of serotypes could help identify emerging trends. A PCR method developed in 2004 allowed detection of the four major serotypes as molecular serogroups, corresponding to broad phylogenetic groups. In this study, a novel quantitative PCR (qPCR) method was developed that uses two multiplex qPCRs, one to confirm the Listeria genus and Lm species and the second for Lm molecular serogrouping. This method was compared with the U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) method for Lm and the seroagglutination method, using a 208-strain panel. Comparison of the genus and species qPCR assay with the BAM methods found an equal or slightly higher accuracy for the qPCR method (>98%), compared with the BAM protocol (>96%), when evaluated against independent characterization data. Molecular serogrouping using the qPCR method (96.6%) was more accurate than the seroagglutination assay (75.6%). The qPCR method identified Lm 4bV strains, which could not be resolved using seroagglutination. The qPCR could not identify lineage III and IV serotype 4b strains but did correctly identify 16 of 18 lineage III and IV strains. The qPCR method performed genus identification for the Listeria species Lm, L. innocua, L. welshimeri, L. ivanovii, and L. seeligeri. In addition, the method performed species identification for Lm and classified Lm into six molecular serogroups: 2A, 2B, 2C, 4B, NT, and 4bV. This method provided a rapid and accurate confirmation of Lm and serogroup determinations; furthermore, it could help identify otherwise unlinked strains by enabling whole genome sequencing analysis based on broad phylogeny, independent of other information. HIGHLIGHTS
Collapse
Affiliation(s)
- Laurel S Burall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, Laurel, Maryland 20708
| | - Sadra Sepehri
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland 20740
| | - Devayani Srinivasan
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland 20740
| | - Christopher J Grim
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, Laurel, Maryland 20708
| | - David W Lacher
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, Laurel, Maryland 20708
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, Maryland 20740, USA
| | - Rohini Nambiar
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland 20740
| | - Atin R Datta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, Laurel, Maryland 20708
| |
Collapse
|
4
|
Ghosh P, Zhou Y, Richardson Q, Higgins DE. Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak. Sci Rep 2019; 9:19587. [PMID: 31862952 PMCID: PMC6925182 DOI: 10.1038/s41598-019-56028-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is an intracellular pathogen responsible for listeriosis, a foodborne disease that can lead to life-threatening meningitis. The 2011 L. monocytogenes cantaloupe outbreak was among the deadliest foodborne outbreaks in the United States. We conducted in vitro and in vivo infection analyses to determine whether strains LS741 and LS743, two clinical isolates from the cantaloupe outbreak, differ significantly from the common laboratory strain 10403S. We showed that LS741 and LS743 exhibited increased virulence, characterized by higher colonization of the brain and other organs in mice. Assessment of cellular immune responses to known CD8+ T cell antigens was comparable between all strains. However, pre-existing immunity to 10403S did not confer protection in the brain against challenge with LS741. These studies provide insights into the pathogenesis of clinical isolates linked to the 2011 cantaloupe outbreak and also indicate that currently utilized laboratory strains are imperfect models for studying L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Pallab Ghosh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Zhou
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Quentin Richardson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Darren E Higgins
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Abstract
The review presents data on the antigenic structure and the current classification of epidemically significant serovariants of Listeria. Description of species-specific properties of serovariants of Listeria, which may be common for two or more species, and common antigens with staphylococci and typhoid and paratyphoid bacteria, are given. It has been shown that only the antigenic scheme of Listeria monocytogenes is of practical interest for medical microbiology. Importance of serotyping in the epidemiological analysis to determine the source of infections and ways of its spreading has been determined. Differences in the designation of serovariants in the diagnosis of listeriosis in medical practice are observed. High level of adaptive properties of Listeria, its ability to reproduce in an abiotic environment, including food, susceptibility of immunodeficient individuals, prevalence of food pathway of infection pose a significant danger of increased sickness rate with listeriosis. Serological diagnostics of Listeria has not been developed in detail, and the existing serological methods are aimed at identifying specific antibodies to listeria. Advantages of the serological method include: quick results and the possibility to study any biological material. Currently available serological methods have a number of disadvantages: low reliability of results and low specificity of the study. The most promising method for identification of a serological group of cultures, according to the world classification, is the multiplex PCR method, based on the correlation between the serogroup of an isolate and the presence of specific open reading frames in its genome.
Collapse
|
6
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Herman L, Koutsoumanis K, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Takkinen J, Wagner M, Arcella D, Da Silva Felicio MT, Georgiadis M, Messens W, Lindqvist R. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 2018; 16:e05134. [PMID: 32760461 PMCID: PMC7391409 DOI: 10.2903/j.efsa.2018.5134] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Food safety criteria for Listeria monocytogenes in ready-to-eat (RTE) foods have been applied from 2006 onwards (Commission Regulation (EC) 2073/2005). Still, human invasive listeriosis was reported to increase over the period 2009-2013 in the European Union and European Economic Area (EU/EEA). Time series analysis for the 2008-2015 period in the EU/EEA indicated an increasing trend of the monthly notified incidence rate of confirmed human invasive listeriosis of the over 75 age groups and female age group between 25 and 44 years old (probably related to pregnancies). A conceptual model was used to identify factors in the food chain as potential drivers for L. monocytogenes contamination of RTE foods and listeriosis. Factors were related to the host (i. population size of the elderly and/or susceptible people; ii. underlying condition rate), the food (iii. L. monocytogenes prevalence in RTE food at retail; iv. L. monocytogenes concentration in RTE food at retail; v. storage conditions after retail; vi. consumption), the national surveillance systems (vii. improved surveillance), and/or the bacterium (viii. virulence). Factors considered likely to be responsible for the increasing trend in cases are the increased population size of the elderly and susceptible population except for the 25-44 female age group. For the increased incidence rates and cases, the likely factor is the increased proportion of susceptible persons in the age groups over 45 years old for both genders. Quantitative modelling suggests that more than 90% of invasive listeriosis is caused by ingestion of RTE food containing > 2,000 colony forming units (CFU)/g, and that one-third of cases are due to growth in the consumer phase. Awareness should be increased among stakeholders, especially in relation to susceptible risk groups. Innovative methodologies including whole genome sequencing (WGS) for strain identification and monitoring of trends are recommended.
Collapse
|
7
|
Spontaneous Loss of Virulence in Natural Populations of Listeria monocytogenes. Infect Immun 2017; 85:IAI.00541-17. [PMID: 28827366 PMCID: PMC5649026 DOI: 10.1128/iai.00541-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/04/2022] Open
Abstract
The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes. Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA. Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA−/LLO−) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA−/LLO− mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.
Collapse
|
8
|
Datta AR, Burall LS. Serotype to genotype: The changing landscape of listeriosis outbreak investigations. Food Microbiol 2017; 75:18-27. [PMID: 30056958 DOI: 10.1016/j.fm.2017.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
The classical definition of a disease outbreak is the occurrence of cases of disease in excess of what would normally be expected in a community, geographical area or time period. The establishment of an outbreak then starts with the identification of an incidence of cases above the normally expected threshold during a given time period. Subsequently, the cases are examined using a variety of subtyping methods to identify potential linkages. As listeriosis disease has a long incubation period, relating a single source or multiple sources of contaminated food to clinical disease is challenging and time consuming. The vast majority of human listeriosis cases are caused by three serotypes, 1/2a, 1/2b, and 4b. Thus serotyping of isolates from suspected foods and clinical samples, although useful for eliminating some food sources, has a very limited discriminatory power. The advent of faster and more affordable sequencing technology, coupled with increased computational power, has permitted comparisons of whole Listeria genome sequences from isolates recovered from clinical, food, and environmental sources. These analyses made it possible to identify outbreaks and the source much more accurately and faster, thus leading to a reduction in number of illnesses as well as a reduction in economic losses. Initial DNA sequence information also facilitated the development of a simple molecular serotype protocol which allowed for the identification of major disease causing serotypes of L. monocytogenes, including a clade of 4b variant (4bV) strains of L. monocytogenes involved in at least 3 more recent listeriosis outbreaks in the US. Furthermore, data generated using whole genome sequence (WGS) analyses was successfully utilized to develop a pan-genomic DNA microarray as well as a single nucleotide polymorphism (SNP) based analysis. Herein, we present and compare, the two recently developed sub-typing technologies and discuss how these methods are not only important in outbreak investigations, but could also shed light on possible adaptations to different foods and environments.
Collapse
Affiliation(s)
- Atin R Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Laurel S Burall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
9
|
Casey A, Jordan K, Coffey A, Fox EM, McAuliffe O. Comparative Genomic Analysis of Two Serotype 1/2b Listeria monocytogenes Isolates from Analogous Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Defining Pathogenesis. Front Nutr 2016; 3:54. [PMID: 28066772 PMCID: PMC5174086 DOI: 10.3389/fnut.2016.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
The vast majority of clinical human listeriosis cases are caused by serotype 1/2a, 1/2b, 1/2c, and 4b isolates of Listeria monocytogenes. The ability of L. monocytogenes to establish a systemic listeriosis infection within a host organism relies on a combination of genes that are involved in cell recognition, internalization, evasion of host defenses, and in vitro survival and growth. Recently, whole genome sequencing and comparative genomic analysis have proven to be powerful tools for the identification of these virulence-associated genes in L. monocytogenes. In this study, two serotype 1/2b strains of L. monocytogenes with analogous isolation sources, but differing infection abilities, were subjected to comparative genomic analysis. The results from this comparison highlight the importance of accessory genes (genes that are not part of the conserved core genome) in L. monocytogenes pathogenesis. In addition, a number of factors, which may account for the perceived inability of one of the strains to establish a systemic infection within its host, have been identified. These factors include the notable absence of the Listeria pathogenicity island 3 and the stress survival islet, of which the latter has been demonstrated to enhance the survival ability of L. monocytogenes during its passage through the host intestinal tract, leading to a higher infection rate. The findings from this research demonstrate the influence of hypervariable hotspots in defining the physiological characteristics of a L. monocytogenes strain and indicate that the emergence of a non-pathogenic isolate of L. monocytogenes may result from a cumulative loss of functionality rather than by a single isolated genetic event.
Collapse
Affiliation(s)
- Aidan Casey
- Teagasc Food Research Centre, Fermoy, Ireland; Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology , Bishopstown , Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food , Werribee, VIC , Australia
| | | |
Collapse
|
10
|
Palerme JS, Pan PC, Parsons CT, Kathariou S, Ward TJ, Jacob ME. Isolation and characterization of atypical Listeria monocytogenes associated with a canine urinary tract infection. J Vet Diagn Invest 2016; 28:604-7. [PMID: 27493137 DOI: 10.1177/1040638716661381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes, a well-described cause of encephalitis and abortion in ruminants and of food-borne illness in humans, is rarely associated with disease in companion animals. A case of urinary tract infection associated with an atypical, weakly hemolytic L. monocytogenes strain is described in a diabetic dog. The serotype of the L. monocytogenes isolate was determined to be 1/2a (3a), with the multilocus genotyping pattern 2.72_1/2a. A nucleotide substitution (Gly145Asp) was detected at residue 145 in the promoter prfA region. This residue is within the critical helix-turn-helix motif of PrfA. The source of the L. monocytogenes strain remains unknown, and the dog recovered after a 4-week course of cephalexin (30 mg/kg orally twice daily).
Collapse
Affiliation(s)
- Jean-Sébastien Palerme
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| | - Po Ching Pan
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| | - Cameron T Parsons
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| | - Sophia Kathariou
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| | - Todd J Ward
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| | - Megan E Jacob
- Departments of Clinical Sciences (Palerme, Pan), Food, Bioprocessing & Nutrition Sciences (Parsons, Kathariou), and Population Health & Pathobiology (Jacob), North Carolina State University, Raleigh, NCAgricultural Research Service, U.S. Department of Agriculture, Peoria, IL (Ward)
| |
Collapse
|
11
|
Orsi RH, Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 2016; 100:5273-87. [PMID: 27129530 PMCID: PMC4875933 DOI: 10.1007/s00253-016-7552-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The genus Listeria is currently comprised of 17 species, including 9 Listeria species newly described since 2009. Genomic and phenotypic data clearly define a distinct group of six species (Listeria sensu strictu) that share common phenotypic characteristics (e.g., ability to grow at low temperature, flagellar motility); this group includes the pathogen Listeria monocytogenes. The other 11 species (Listeria sensu lato) represent three distinct monophyletic groups, which may warrant recognition as separate genera. These three proposed genera do not contain pathogens, are non-motile (except for Listeria grayi), are able to reduce nitrate (except for Listeria floridensis), and are negative for the Voges-Proskauer test (except for L. grayi). Unlike all other Listeria species, species in the proposed new genus Mesolisteria are not able to grow below 7 °C. While most new Listeria species have only been identified in a few countries, the availability of molecular tools for rapid characterization of putative Listeria isolates will likely lead to future identification of isolates representing these new species from different sources. Identification of Listeria sensu lato isolates has not only allowed for a better understanding of the evolution of Listeria and virulence characteristics in Listeria but also has practical implications as detection of Listeria species is often used by the food industry as a marker to detect conditions that allow for presence, growth, and persistence of L. monocytogenes. This review will provide a comprehensive critical summary of our current understanding of the characteristics and distribution of the new Listeria species with a focus on Listeria sensu lato.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Nyarko EB, Donnelly CW. Listeria monocytogenes: Strain Heterogeneity, Methods, and Challenges of Subtyping. J Food Sci 2015; 80:M2868-78. [PMID: 26588067 DOI: 10.1111/1750-3841.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/02/2015] [Indexed: 12/28/2022]
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that is associated with 20% to 30% case fatality rate. L. monocytogenes is a genetically heterogeneous species, with a small fraction of strains (serotypes 1/2a, 1/2b, 4b) implicated in human listeriosis. Monitoring and source tracking of L. monocytogenes involve the use of subtyping methods, with the performance of genetic-based methods found to be superior to phenotypic-based ones. Various methods have been used to subtype L. monocytogenes isolates, with the pulsed-field gel electrophoresis (PFGE) being the gold standard. Although PFGE has had a massive impact on food safety through the establishment of the PulseNet, there is no doubt that whole genome sequence (WGS) typing is accurate, has a discriminatory power superior to any known method, and allows genome-wide differences between strains to be quantified through the comparison of nucleotide sequences. This review focuses on the different techniques that have been used to type L. monocytogenes strains, their performance challenges, and the tremendous impact WGS typing could have on the food safety landscape.
Collapse
Affiliation(s)
- Esmond B Nyarko
- Dept. of Animal and Food Science, Univ. of Delaware, 044 Townsend Hall, 531 S. College Avenue, Newark, Del., 19716, U.S.A
| | - Catherine W Donnelly
- Dept. of Nutrition and Food Science, Univ. of Vermont, 109 Carrigan Drive, 256 Carrigan Wing, Burlington, Vt., 05405, U.S.A
| |
Collapse
|