1
|
Loss of Gramicidin Biosynthesis in Gram-Positive Biocontrol Bacterium Aneurinibacillus migulanus (Takagi et al., 1993) Shida et al. 1996 Emend Heyndrickx et al., 1997 Nagano Impairs Its Biological Control Ability of Phytophthora. FORESTS 2022. [DOI: 10.3390/f13040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The soil-borne species Aneurinibacillus migulanus (A. migulanus) strains Nagano and NCTC 7096 were shown to be potent biocontrol agents active against several plant diseases in agricultural and forest ecosystems. Both strains produce the cyclic peptide gramicidin S (GS) that was described as the main weapon inhibiting some gram-negative and gram-positive bacteria and fungus-like organisms along with the production of biosurfactant and hemolysis activities. However, the contribution of the cyclic peptide gramicidin S (GS) to the biocontrol ability of A. migulanus has never been studied experimentally. In this paper, using a mutant of the A. migulanus Nagano strain (E1 mutant) impaired in GS biosynthesis we evaluated the contribution of GS in the biocontrol potential of A. migulanus against Phytophthora spp. The two strains of A. migulanus, Nagano and NCTC 7096, were tested in a pilot study for the inhibition of the growth of 13 Phytophthora species in dual culture assays. A. migulanus Nagano was significantly more inhibitory than NCTC 7096 to all species. Additionally, using apple infection assays, P. rosacearum MKDF-148 and P. cryptogea E2 were shown to be the most aggressive on apple fruits displaying clear infection halos. Therefore, the three A. migulanus strains, Nagano, NCTC 7096, and E1, were used in apple infection experiments to check their effect on infection ability of these two Phytophthora species. Treatment with A. migulanus Nagano significantly reduced the severity of symptoms in apple fruits compared with NCTC 7096. A. migulanus E1 mutant showed total loss of biocontrol ability suggesting that GS is a major actor in the biocontrol ability of A. migulanus Nagano strain.
Collapse
|
2
|
Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Microorganisms 2021; 9:microorganisms9030499. [PMID: 33652876 PMCID: PMC7996765 DOI: 10.3390/microorganisms9030499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.
Collapse
|
3
|
Cheffi M, Bouket AC, Alenezi FN, Luptakova L, Belka M, Vallat A, Rateb ME, Tounsi S, Triki MA, Belbahri L. Olea europaea L. Root Endophyte Bacillus velezensis OEE1 Counteracts Oomycete and Fungal Harmful Pathogens and Harbours a Large Repertoire of Secreted and Volatile Metabolites and Beneficial Functional Genes. Microorganisms 2019; 7:microorganisms7090314. [PMID: 31484434 PMCID: PMC6780883 DOI: 10.3390/microorganisms7090314] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/19/2022] Open
Abstract
Oomycete and fungal pathogens, mainly Phytophthora and Fusarium species, are notorious causal agents of huge economic losses and environmental damages. For instance, Phytophthora ramorum, Phytophthora cryptogea, Phytophthora plurivora and Fusarium solani cause significant losses in nurseries and in forest ecosystems. Chemical treatments, while harmful to the environment and human health, have been proved to have little or no impact on these species. Recently, biocontrol bacterial species were used to cope with these pathogens and have shown promising prospects towards sustainable and eco-friendly agricultural practices. Olive trees prone to Phytophthora and Fusarium disease outbreaks are suitable for habitat-adapted symbiotic strategies, to recover oomycetes and fungal pathogen biocontrol agents. Using this strategy, we showed that olive trees-associated microbiome represents a valuable source for microorganisms, promoting plant growth and healthy benefits in addition to being biocontrol agents against oomycete and fungal diseases. Isolation, characterization and screening of root microbiome of olive trees against numerous Phytophthora and other fungal pathogens have led to the identification of the Bacillus velezensis OEE1, with plant growth promotion (PGP) abilities and strong activity against major oomycete and fungal pathogens. Phylogenomic analysis of the strain OEE1 showed that B. velezensis suffers taxonomic imprecision that blurs species delimitation, impacting their biofertilizers’ practical use. Genome mining of several B. velezensis strains available in the GenBank have highlighted a wide array of plant growth promoting rhizobacteria (PGPR) features, metals and antibiotics resistance and the degradation ability of phytotoxic aromatic compounds. Strain OEE1 harbours a large repertoire of secreted and volatile secondary metabolites. Rarefaction analysis of secondary metabolites richness in the B. velezenis genomes, unambiguously documented new secondary metabolites from ongoing genome sequencing efforts that warrants more efforts in order to assess the huge diversity in the species. Comparative genomics indicated that B. velezensis harbours a core genome endowed with PGP features and accessory genome encoding diverse secondary metabolites. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of OEE1 Volatile Organic Compounds (VOCs) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) analysis of secondary metabolites identified numerous molecules with PGP abilities that are known to interfere with pathogen development. Moreover, B. velezensis OEE1 proved effective in protecting olive trees against F. solani in greenhouse experiments and are able to inhabit olive tree roots. Our strategy provides an effective means for isolation of biocontrol agents against recalcitrant pathogens. Their genomic analysis provides necessary clues towards their efficient implementation as biofertilizers.
Collapse
Affiliation(s)
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran.
| | | | - Lenka Luptakova
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia.
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, 04181 Košice, Slovakia.
| | - Marta Belka
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-628 Poznań, Poland.
- Department of Plant and Soil Science, Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU, UK.
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchatel, 2000 Neuchatel, Switzerland.
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, Sfax 3000, Tunisia.
| | | | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia.
- Laboratory of Soil Biodiversity, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
4
|
Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A, Eshelli M, Alenezi FN, Vallat A, Luptakova L, Yahiaoui B, Cherrad S, Vacher S, Rateb ME, Belbahri L. Durum Wheat Stress Tolerance Induced by Endophyte Pantoea agglomerans with Genes Contributing to Plant Functions and Secondary Metabolite Arsenal. Int J Mol Sci 2019; 20:ijms20163989. [PMID: 31426312 PMCID: PMC6720286 DOI: 10.3390/ijms20163989] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
In the arid region Bou-Saâda at the South of Algeria, durum wheat Triticum durum L. cv Waha production is severely threatened by abiotic stresses, mainly drought and salinity. Plant growth-promoting rhizobacteria (PGPR) hold promising prospects towards sustainable and environmentally-friendly agriculture. Using habitat-adapted symbiosis strategy, the PGPR Pantoea agglomerans strain Pa was recovered from wheat roots sampled in Bou-Saâda, conferred alleviation of salt stress in durum wheat plants and allowed considerable growth in this unhostile environment. Strain Pa showed growth up to 35 °C temperature, 5-10 pH range, and up to 30% polyethylene glycol (PEG), as well as 1 M salt concentration tolerance. Pa strain displayed pertinent plant growth promotion (PGP) features (direct and indirect) such as hormone auxin biosynthesis, production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia and phosphate solubilization. PGPR features were stable over wide salt concentrations (0-400 mM). Pa strain was also able to survive in seeds, in the non-sterile and sterile wheat rhizosphere, and was shown to have an endophytic life style. Phylogenomic analysis of strain Pa indicated that Pantoea genus suffers taxonomic imprecision which blurs species delimitation and may have impacted their practical use as biofertilizers. When applied to plants, strain Pa promoted considerable growth of wheat seedlings, high chlorophyll content, lower accumulation of proline, and favored K+ accumulation in the inoculated plants when compared to Na+ in control non-inoculated plants. Metabolomic profiling of strain Pa under one strain many compounds (OSMAC) conditions revealed a wide diversity of secondary metabolites (SM) with interesting salt stress alleviation and PGP activities. All these findings strongly promote the implementation of Pantoea agglomerans strain Pa as an efficient biofertilizer in wheat plants culture in arid and salinity-impacted regions.
Collapse
Affiliation(s)
- Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran
| | - Nora Saadaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, University of Veterinary Medicine and Pharmacy, Zoology and Radiobiology, Komenského, 04181 Kosice, Slovakia
| | - Bilal Yahiaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Semcheddine Cherrad
- CONIPHY, Parc d'activitésen Chuel, Route de Chasselay, 69650 Quincieux, France
| | - Sebastien Vacher
- CONIPHY, Parc d'activitésen Chuel, Route de Chasselay, 69650 Quincieux, France
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
5
|
Ben Slama H, Triki MA, Chenari Bouket A, Ben Mefteh F, Alenezi FN, Luptakova L, Cherif-Silini H, Vallat A, Oszako T, Gharsallah N, Belbahri L. Screening of the High-Rhizosphere Competent Limoniastrum monopetalum' Culturable Endophyte Microbiota Allows the Recovery of Multifaceted and Versatile Biocontrol Agents. Microorganisms 2019; 7:microorganisms7080249. [PMID: 31405010 PMCID: PMC6723025 DOI: 10.3390/microorganisms7080249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable candidate for isolating endophytic microbiota members that provide plant growth promotion (PGP) and resistance to abiotic stresses. Selected for biocontrol abilities, these endophytes may represent multifaceted and versatile biocontrol agents, combining pathogen biocontrol in addition to PGP and plant protection against abiotic stresses. In this study 117 root culturable bacterial endophytes, including Gram-positive (Bacillus and Brevibacillus), Gram-negative (Proteus, Providencia, Serratia, Pantoea, Klebsiella, Enterobacter and Pectobacterium) and actinomycete Nocardiopsis genera have been recovered from L. monopetalum. The collection exhibited high levels of biocontrol abilities against bacterial (Agrobacterium tumefaciens MAT2 and Pectobacterium carotovorum MAT3) and fungal (Alternaria alternata XSZJY-1, Rhizoctonia bataticola MAT1 and Fusarium oxysporum f. sp. radicis lycopersici FORL) pathogens. Several bacteria also showed PGP capacity and resistance to antibiotics and metals. A highly promising candidate Bacillus licheniformis LMRE 36 with high PGP, biocontrol, metal and antibiotic, resistance was subsequently tested in planta (potato and olive trees) for biocontrol of a collection of 14 highly damaging Fusarium species. LMRE 36 proved very effective against the collection in both species and against an emerging Fusarium sp. threatening olive trees culture in nurseries. These findings provide a demonstration of our pyramiding strategy. Our strategy was effective in combining desirable traits in biocontrol agents towards broad-spectrum resistance against pathogens and protection of crops from abiotic stresses. Stacking multiple desirable traits into a single biocontrol agent is achieved by first, careful selection of a host for endophytic microbiota recovery; second, stringent in vitro selection of candidates from the collection; and third, application of the selected biocontrol agents in planta experiments. That pyramiding strategy could be successfully used to mitigate effects of diverse biotic and abiotic stresses on plant growth and productivity. It is anticipated that the strategy will provide a new generation of biocontrol agents by targeting the microbiota of plants in hostile environments.
Collapse
Affiliation(s)
- Houda Ben Slama
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Institut de l'Olivier Sfax, Sfax 3000, Tunisia
| | | | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5355179854 Tabriz, Iran
| | - Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Faizah N Alenezi
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy, 04181 Kosice, Slovakia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, 19000 Setif, Algeria
| | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Raszyn, Poland
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, Sfax 3029, Tunisia
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|
6
|
Slama HB, Cherif-Silini H, Chenari Bouket A, Qader M, Silini A, Yahiaoui B, Alenezi FN, Luptakova L, Triki MA, Vallat A, Oszako T, Rateb ME, Belbahri L. Screening for Fusarium Antagonistic Bacteria From Contrasting Niches Designated the Endophyte Bacillus halotolerans as Plant Warden Against Fusarium. Front Microbiol 2019; 9:3236. [PMID: 30687252 PMCID: PMC6336696 DOI: 10.3389/fmicb.2018.03236] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022] Open
Abstract
Date palm (Phoenix dactylifera L.) plantations in North Africa are nowadays threatened with the spread of the Bayoud disease caused by Fusarium oxysporum f. sp. albedinis, already responsible for destroying date production in other infected areas, mainly in Morocco. Biological control holds great promise for sustainable and environmental-friendly management of the disease. In this study, the additional benefits to agricultural ecosystems of using plant growth promoting rhizobacteria (PGPR) or endophytes are addressed. First, PGPR or endophytes can offer an interesting bio-fertilization, meaning that it can add another layer to the sustainability of the approach. Additionally, screening of contrasting niches can yield bacterial actors that could represent wardens against whole genera or groups of plant pathogenic agents thriving in semi-arid to arid ecosystems. Using this strategy, we recovered four bacterial isolates, designated BFOA1, BFOA2, BFOA3 and BFOA4, that proved very active against F. oxysporum f. sp. albedinis. BFOA1-BFOA4 proved also active against 16 Fusarium isolates belonging to four species: F. oxysporum (with strains phytopathogenic of Olea europaea and tomato), F. solani (with different strains attacking O. europaea and potato), F. acuminatum (pathogenic on O. europaea) and F. chlamydosporum (phytopathogenic of O. europaea). BFOA1-BFOA4 bacterial isolates exhibited strong activities against another four major phytopathogens: Botrytis cinerea, Alternaria alternata, Phytophthora infestans, and Rhizoctonia bataticola. Isolates BFOA1-BFOA4 had the ability to grow at temperatures up to 35°C, pH range of 5-10, and tolerate high concentrations of NaCl and up to 30% PEG. The isolates also showed relevant direct and indirect PGP features, including growth on nitrogen-free medium, phosphate solubilization and auxin biosynthesis, as well as resistance to metal and xenobiotic stress. Phylogenomic analysis of BFOA1-BFOA4 isolates indicated that they all belong to Bacillus halotolerans, which could therefore considered as a warden against Fusarium infection in plants. Comparative genomics allowed us to functionally describe the open pan genome of B. halotolerans and LC-HRMS and GCMS analyses, enabling the description of diverse secondary metabolites including pulegone, 2-undecanone, and germacrene D, with important antimicrobial and insecticidal properties. In conclusion, B. halotolerans could be used as an efficient bio-fertilizer and bio-control agent in semi-arid and arid ecosystems.
Collapse
Affiliation(s)
- Houda Ben Slama
- NextBiotech, Agareb, Tunisia
- Institut de l’Olivier Sfax, Sfax, Tunisia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | | | - Mallique Qader
- School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | - Bilal Yahiaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif, Setif, Algeria
| | | | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | | | - Armelle Vallat
- Neuchatel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Tomasz Oszako
- Department of Forest Protection of the Forest Research Institute in Sękocin Stary, Raszyn, Poland
| | - Mostafa E. Rateb
- School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
| | - Lassaad Belbahri
- NextBiotech, Agareb, Tunisia
- Laboratory of Soil Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME. Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Front Microbiol 2017; 8:1438. [PMID: 28824571 PMCID: PMC5541019 DOI: 10.3389/fmicb.2017.01438] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Gram positive, non-pathogenic endospore-forming soil inhabiting prokaryote Bacillus amyloliquefaciens is a plant growth-promoting rhizobacterium. Bacillus amyloliquefaciens processes wide biocontrol abilities and numerous strains have been reported to suppress diverse bacterial, fungal and fungal-like pathogens. Knowledge about strain level biocontrol abilities is warranted to translate this knowledge into developing more efficient biocontrol agents and bio-fertilizers. Ever-expanding genome studies of B. amyloliquefaciens are showing tremendous increase in strain-specific new secondary metabolite clusters which play key roles in the suppression of pathogens and plant growth promotion. In this report, we have used genome mining of all sequenced B. amyloliquefaciens genomes to highlight species boundaries, the diverse strategies used by different strains to promote plant growth and the diversity of their secondary metabolites. Genome composition of the targeted strains suggest regions of genomic plasticity that shape the structure and function of these genomes and govern strain adaptation to different niches. Our results indicated that B. amyloliquefaciens: (i) suffer taxonomic imprecision that blurs the debate over inter-strain genome diversity and dynamics, (ii) have diverse strategies to promote plant growth and development, (iii) have an unlocked, yet to be delimited impressive arsenal of secondary metabolites and products, (iv) have large number of so-called orphan gene clusters, i.e., biosynthetic clusters for which the corresponding metabolites are yet unknown, and (v) have a dynamic pan genome with a secondary metabolite rich accessory genome.
Collapse
Affiliation(s)
- Lassaad Belbahri
- Laboratory of Soil Biology, University of NeuchatelNeuchatel, Switzerland.,NextBiotechAgareb, Tunisia
| | - Ali Chenari Bouket
- NextBiotechAgareb, Tunisia.,Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan.,Young Researchers and Elite Club, Tabriz Branch, Islamic Azad UniversityTabriz, Iran
| | | | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Lenka Luptakova
- NextBiotechAgareb, Tunisia.,Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | - Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | | | | | | | - Mostafa E Rateb
- School of Science and Sport, University of the West of ScotlandPaisley, United Kingdom
| |
Collapse
|
8
|
Alenezi FN, Rekik I, Chenari Bouket A, Luptakova L, Weitz HJ, Rateb ME, Jaspars M, Woodward S, Belbahri L. Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites. Front Microbiol 2017; 8:517. [PMID: 28439259 PMCID: PMC5383652 DOI: 10.3389/fmicb.2017.00517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
The soil-borne gram-positive bacteria Aneurinibacillus migulanus strain Nagano shows considerable potential as a biocontrol agent against plant diseases. In contrast, A. migulanus NCTC 7096 proved less effective for inhibition of plant pathogens. Nagano strain exerts biocontrol activity against some gram-positive and gram-negative bacteria, fungi and oomycetes through the production of gramicidin S (GS). Apart from the antibiotic effects, GS increases the rate of evaporation from the plant surface, reducing periods of surface wetness and thereby indirectly inhibiting spore germination. To elucidate the molecular basis of differential biocontrol abilities of Nagano and NCTC 7096, we compared GS production and biosurfactant secretion in addition to genome mining of the genomes. Our results proved that: (i) Using oil spreading, blood agar lysis, surface tension and tomato leaves wetness assays, Nagano showed increased biosurfactant secretion in comparison with NCTC 7096, (ii) Genome mining indicated the presence of GS genes in both Nagano and NCTC 7096 with two amino acid units difference between the strains: T342I and P419S. Using 3D models and the DUET server, T342I and P419S were predicted to decrease the stability of the NCTC 7096 GS synthase, (iii) Nagano produced two additional GS-like molecules GS-1155 (molecular weight 1155) and GS-1169 (molecular weight 1169), where one or two ornithine residues replace lysine in the peptide. There was also a negative correlation between surface tension and the quantity of GS-1169 present in Nagano, and (iv) the Nagano genome had a full protein network of exopolysaccharide biosynthesis in contrast to NCTC 7096 which lacked the first enzyme of the network. NCTC 7096 is unable to form biofilms as observed for Nagano. Different molecular layers, mainly gramicidin secondary metabolite production, account for differential biocontrol abilities of Nagano and NCTC 7096. This work highlighted the basis of differential biological control abilities between strains belonging to the same species and demonstrates techniques useful to the screening of effective biocontrol strains for environmentally friendly secondary metabolites that can be used to manage plant pathogens in the field.
Collapse
Affiliation(s)
- Faizah N Alenezi
- Institute of Biological and Environmental Sciences, University of AberdeenAberdeen, UK.,NextBiotech, Rue Ali BelhouaneAgareb, Tunisia
| | - Imen Rekik
- NextBiotech, Rue Ali BelhouaneAgareb, Tunisia
| | - Ali Chenari Bouket
- NextBiotech, Rue Ali BelhouaneAgareb, Tunisia.,Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan
| | - Lenka Luptakova
- NextBiotech, Rue Ali BelhouaneAgareb, Tunisia.,Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and PharmacyKošice, Slovakia
| | - Hedda J Weitz
- Institute of Biological and Environmental Sciences, University of AberdeenAberdeen, UK
| | - Mostafa E Rateb
- School of Science and Sport, University of the West of ScotlandPaisley, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of AberdeenAberdeen, UK
| | - Stephen Woodward
- Institute of Biological and Environmental Sciences, University of AberdeenAberdeen, UK
| | - Lassaad Belbahri
- NextBiotech, Rue Ali BelhouaneAgareb, Tunisia.,Laboratory of Soil Biology, University of NeuchatelNeuchatel, Switzerland
| |
Collapse
|