1
|
Picciotti U, Lahbib N, Sefa V, Porcelli F, Garganese F. Aphrophoridae Role in Xylella fastidiosa subsp. pauca ST53 Invasion in Southern Italy. Pathogens 2021; 10:1035. [PMID: 34451499 PMCID: PMC8399165 DOI: 10.3390/pathogens10081035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The Philaenus spumarius L. (Hemiptera Aphrophoridae) is a xylem-sap feeder vector that acquires Xylella fastidiosa subsp. pauca ST53 during feeding on infected plants. The bacterium is the plant pathogen responsible for olive quick decline syndrome that has decimated olive trees in Southern Italy. Damage originates mainly from the insect vector attitude that multiplies the pathogen potentialities propagating Xf in time and space. The principal action to manage insect-borne pathogens and to contain the disease spread consists in vector and transmission control. The analysis of an innovative and sustainable integrated pest management quantitative strategy that targets the vector and the infection by combining chemical and physical control means demonstrates that it is possible to stop the Xylella invasion. This review updates the available topics addressing vectors' identification, bionomics, infection management, and induced disease by Xylella invasion to discuss major available tools to mitigate the damage consequent to the disease.
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03080 Alicante, Spain
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
- INRAT—National Institute of Agronomic Research of Tunisia, Laboratory of Plant Protection, Rue Hédi Karray, Ariana 2049, Tunisia
| | - Valdete Sefa
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- CIHEAM—Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, BA, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| |
Collapse
|
2
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|
3
|
Glutaredoxin-like protein (GLP)-a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses. Appl Microbiol Biotechnol 2020; 104:5477-5492. [PMID: 32307572 DOI: 10.1007/s00253-020-10491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/01/2023]
Abstract
The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.
Collapse
|
4
|
Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK, Stenger DC, Almeida RPP, Bergsma-Vlami M, Westenberg M, Cobine PA, De La Fuente L. Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa. THE ISME JOURNAL 2019; 13:2319-2333. [PMID: 31110262 PMCID: PMC6776109 DOI: 10.1038/s41396-019-0423-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Adam C Retchless
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Maria Bergsma-Vlami
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA.
| |
Collapse
|
5
|
Bonants P, Griekspoor Y, Houwers I, Krijger M, van der Zouwen P, van der Lee TAJ, van der Wolf J. Development and Evaluation of a Triplex TaqMan Assay and Next-Generation Sequence Analysis for Improved Detection of Xylella in Plant Material. PLANT DISEASE 2019; 103:645-655. [PMID: 30777801 DOI: 10.1094/pdis-08-18-1433-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa is a heterogenous gram-negative bacterial plant pathogen with a wide host range covering over 300 plant species. Since 2013, in Europe, the presence of the pathogen is increasing in a part of the Mediterranean area, but it causes in particular severe disease problems in olive orchards in the Southern part of Italy. Various subspecies of the pathogen were also diagnosed in natural outbreaks and intercepted ornamental plants in Europe, among them Olea europaea, Coffea arabica, and Nerium oleander. The host range of the pathogen can vary, depending on the subspecies and even the strain. The availability of fast and reliable diagnostic tools is indispensable in management strategies to control diseases caused by X. fastidiosa. To improve the reliability of the TaqMan assay, currently widely used in surveys, a triplex TaqMan assay was developed in which two specific and sensitive TaqMan assays, previously designed for X. fastidiosa, were combined with an internal control. The triplex assay exhibited the same diagnostic sensitivity as the simplex assays. In addition, the usefulness of a metagenomic approach using next-generation sequencing (NGS) was demonstrated, in which total DNA extracted from plant material was sequenced. DNA extracts from plant material free of X. fastidiosa, from artificially inoculated hosts plants or from naturally infected plants sampled in France, Spain, and Italy, or intercepted in Austria and the Netherlands, were analyzed for the presence of X. fastidiosa using the metagenomic approach. In all samples, even in samples with a low infection level, but not in the pathogen-free samples, DNA reads were detected specific for X. fastidiosa. In most cases, the pathogen could be identified to the subspecies level, and for one sample even the whole genome could be assembled and the sequence type could be determined. All results of NGS-analyzed samples were confirmed with the triplex TaqMan polymerase chain reaction and loop-mediated isothermal amplification.
Collapse
Affiliation(s)
- Peter Bonants
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Yvonne Griekspoor
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Ilse Houwers
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Marjon Krijger
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Patricia van der Zouwen
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Theo A J van der Lee
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| | - Jan van der Wolf
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
6
|
Denancé N, Briand M, Gaborieau R, Gaillard S, Jacques MA. Identification of genetic relationships and subspecies signatures in Xylella fastidiosa. BMC Genomics 2019; 20:239. [PMID: 30909861 PMCID: PMC6434890 DOI: 10.1186/s12864-019-5565-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The phytopathogenic bacterium Xylella fastidiosa was thought to be restricted to the Americas where it infects and kills numerous hosts. Its detection worldwide has been blooming since 2013 in Europe and Asia. Genetically diverse, this species is divided into six subspecies but genetic traits governing this classification are poorly understood. RESULTS SkIf (Specific k-mers Identification) was designed and exploited for comparative genomics on a dataset of 46 X. fastidiosa genomes, including seven newly sequenced individuals. It was helpful to quickly check the synonymy between strains from different collections. SkIf identified specific SNPs within 16S rRNA sequences that can be employed for predicting the distribution of Xylella through data mining. Applied to inter- and intra-subspecies analyses, it identified specific k-mers in genes affiliated to differential gene ontologies. Chemotaxis-related genes more prevalently possess specific k-mers in genomes from subspecies fastidiosa, morus and sandyi taken as a whole group. In the subspecies pauca increased abundance of specific k-mers was found in genes associated with the bacterial cell wall/envelope/plasma membrane. Most often, the k-mer specificity occurred in core genes with non-synonymous SNPs in their sequences in genomes of the other subspecies, suggesting putative impact in the protein functions. The presence of two integrative and conjugative elements (ICEs) was identified, one chromosomic and an entire plasmid in a single strain of X. fastidiosa subsp. pauca. Finally, a revised taxonomy of X. fastidiosa into three major clades defined by the subspecies pauca (clade I), multiplex (clade II) and the combination of fastidiosa, morus and sandyi (clade III) was strongly supported by k-mers specifically associated with these subspecies. CONCLUSIONS SkIf is a robust and rapid software, freely available, that can be dedicated to the comparison of sequence datasets and is applicable to any field of research. Applied to X. fastidiosa, an emerging pathogen in Europe, it provided an important resource to mine for identifying genetic markers of subspecies to optimize the strategies attempted to limit the pathogen dissemination in novel areas.
Collapse
Affiliation(s)
- Nicolas Denancé
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Romain Gaborieau
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Sylvain Gaillard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France.
| |
Collapse
|
7
|
Cruaud A, Gonzalez AA, Godefroid M, Nidelet S, Streito JC, Thuillier JM, Rossi JP, Santoni S, Rasplus JY. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. Sci Rep 2018; 8:15628. [PMID: 30353142 PMCID: PMC6199265 DOI: 10.1038/s41598-018-33957-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
We sampled ca 2500 specimens of Philaenus spumarius (Hemiptera: Aphrophoridae) throughout Corsica without a priori knowledge on the presence of symptoms on plants. We screened 448 specimens for the presence of Xylella fastidiosa (Xf) using qPCR and a custom nested PCR. qPCR appeared versatile and under-estimated the prevalence of Xf. Nested PCR showed that Xf was present in all populations. Molecular results were validated by prediction on the distribution of Xf made from tests conducted on plants, which shows the pertinence of using vectors in risk assessment studies. Xf was detected in tenerals and adults. Thus, P. spumarius could acquire Xf from its host plant, mostly Cistus monspeliensis in Corsica, which may act as reservoir for the next season. This contrasts with other observations and suggests that management strategies may have to be adapted on a case-by-case basis. At least two genetic entities and several variants of Xf not yet identified on plants were present in the insects, which suggests ancient introductions of Xf and a probable underestimation of the current diversity of the strains present in Corsica. Interestingly 6% of the specimens carried two subspecies of Xf. Studies are required to better characterize the strains present in Corsica and to determine how the disease was introduced, spread and why no sign of a potential epidemic was detected earlier. This study shows that, when sensitive enough methods are implemented, spittlebugs (and more specifically P. spumarius for which species distribution modelling shows it could be a good sentinel for Europe) can be used to predict and better assess the exact distribution of Xf. Furthermore, Xf multiply only in their foregut and does not become circulative, which facilitates its detection.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France.
| | - Anne-Alicia Gonzalez
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
- INRA, UMR1334 AGAP, F-34398, Montpellier, France
| | - Martin Godefroid
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Sabine Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Jean-Claude Streito
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Jean-Marc Thuillier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | - Jean-Pierre Rossi
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| | | | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France
| |
Collapse
|
8
|
Saponari M, Boscia D, Martelli G. Xylella fastidiosa, a new phytosanitary threat for olive crops. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1199.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Baldi P, La Porta N. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques. FRONTIERS IN PLANT SCIENCE 2017; 8:944. [PMID: 28642764 PMCID: PMC5462928 DOI: 10.3389/fpls.2017.00944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 05/05/2023]
Abstract
In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
- MOUNTFOR Project Centre, European Forest InstituteTrento, Italy
| |
Collapse
|
10
|
Marcelletti S, Scortichini M. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America. Microbiology (Reading) 2016; 162:2087-2098. [DOI: 10.1099/mic.0.000388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via di Fioranello 52, I-00134 Roma, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via Torrino 3, I-81100 Caserta, Italy
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Fruit Trees, Via di Fioranello 52, I-00134 Roma, Italy
| |
Collapse
|